Introduction to Computer Engineering

CS/ECE 252, Fall 2012
Prof. Guri Sohi
Computer Sciences Department
University of Wisconsin – Madison
Chapter 3
Digital Logic Structures

Slides based on set prepared by
Gregory T. Byrd, North Carolina State University
Transistor: Building Block of Computers

Microprocessors contain millions of transistors

- Intel Pentium II: 7 million
- Compaq Alpha 21264: 15 million
- Intel Pentium III: 28 million

Logically, each transistor acts as a switch
Combined to implement logic functions

- AND, OR, NOT

Combined to build higher-level structures

- Adder, multiplexer, decoder, register, …

Combined to build processor

- LC-3
Simple Switch Circuit

Switch open:
- No current through circuit
- Light is off
- \(V_{\text{out}} \) is +2.9V

Switch closed:
- Short circuit across switch
- Current flows
- Light is on
- \(V_{\text{out}} \) is 0V

Switch-based circuits can easily represent two states: on/off, open/closed, voltage/no voltage.
N-type MOS Transistor

MOS = Metal Oxide Semiconductor

- two types: N-type and P-type

N-type

- when Gate has **positive** voltage, short circuit between #1 and #2 (switch **closed**)
- when Gate has **zero** voltage, open circuit between #1 and #2 (switch **open**)

Terminal #2 must be connected to GND (0V).
P-type MOS Transistor

P-type is *complementary* to N-type

- when Gate has **positive** voltage, open circuit between #1 and #2 (switch **open**)
- when Gate has **zero** voltage, short circuit between #1 and #2 (switch **closed**)

Terminal #1 must be connected to +2.9V.
Logic Gates

Use switch behavior of MOS transistors to implement logical functions: AND, OR, NOT.

Digital symbols:
- recall that we assign a range of analog voltages to each digital (logic) symbol

• assignment of voltage ranges depends on electrical properties of transistors being used
 ➢ typical values for "1": +5V, +3.3V, +2.9V, +1.1V
 ➢ for purposes of illustration, we'll use +2.9V
CMOS Circuit

Complementary MOS

Uses both **N-type** and **P-type** MOS transistors

- **P-type**
 - Attached to + voltage
 - Pulls output voltage UP when input is zero

- **N-type**
 - Attached to GND
 - Pulls output voltage DOWN when input is one

For all inputs, make sure that output is either connected to GND or to +, but not both!
Inverter (NOT Gate)

Inverter truth table:

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 V</td>
<td>2.9 V</td>
</tr>
<tr>
<td>2.9 V</td>
<td>0 V</td>
</tr>
</tbody>
</table>

Inverter gate diagram:

- **P-type**
- **N-type**

In = 0 → Out = 1
In = 1 → Out = 0
NOR Gate

Note: Serial structure on top, parallel on bottom.
OR Gate

Add inverter to NOR.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
NAND Gate (AND-NOT)

Note: Parallel structure on top, serial on bottom.
AND Gate

Add inverter to NAND.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Basic Logic Gates

- **NOT**: \(A \rightarrow \overline{A} \)
- **OR**: \(A + B \)
- **NOR**: \(\overline{A + B} \)
- **AND**: \(AB \)
- **NAND**: \(\overline{AB} \)
More than 2 Inputs?

AND/OR can take any number of inputs.

- AND = 1 if all inputs are 1.
- OR = 1 if any input is 1.
- Similar for NAND/NOR.

Can implement with multiple two-input gates, or with single CMOS circuit.
Practice

Implement a 3-input NOR gate with CMOS.
Logical Completeness

Can implement **ANY** truth table with AND, OR, NOT.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

1. AND combinations that yield a "1" in the truth table.
2. OR the results of the AND gates.
Practice

Implement the following truth table.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
DeMorgan's Law

Converting AND to OR (with some help from NOT)

Consider the following gate:

To convert AND to OR (or vice versa), invert inputs and output.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>(\overline{A})</th>
<th>(\overline{B})</th>
<th>(A \cdot B)</th>
<th>(\overline{A} \cdot \overline{B})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Same as \(A+B \)!
Summary

MOS transistors are used as switches to implement logic functions.

- **N-type**: connect to GND, turn on (with 1) to pull down to 0
- **P-type**: connect to +2.9V, turn on (with 0) to pull up to 1

Basic gates: NOT, NOR, NAND

- Logic functions are usually expressed with AND, OR, and NOT

Properties of logic gates

- Completeness
 - can implement any truth table with AND, OR, NOT
- DeMorgan's Law
 - convert AND to OR by inverting inputs and output
Building Functions from Logic Gates

We've already seen how to implement truth tables using AND, OR, and NOT -- an example of combinational logic.

Combinational Logic Circuit
- output depends only on the current inputs
- stateless

Sequential Logic Circuit
- output depends on the sequence of inputs (past and present)
- stores information (state) from past inputs

We'll first look at some useful combinational circuits, then show how to use sequential circuits to store information.
Decoder

\(n \) inputs, \(2^n \) outputs

- exactly one output is 1 for each possible input pattern

2-bit decoder

A
B

1, if \(AB=00 \)

1, if \(AB=01 \)

1, if \(AB=10 \)

1, if \(AB=11 \)
Multiplexer (MUX)

n-bit selector and 2^n inputs, one output
- output equals one of the inputs, depending on selector

4-to-1 MUX

A, if $S=00$
B, if $S=01$
C, if $S=10$
D, if $S=11$
Full Adder

Add two bits and carry-in, produce one-bit sum and carry-out.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C_in</td>
<td>S</td>
<td>C_out</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Four-bit Adder
Combinational vs. Sequential

Combinational Circuit

- always gives the same output for a given set of inputs
 - ex: adder always generates sum and carry, regardless of previous inputs

Sequential Circuit

- stores information
- output depends on stored information (state) plus input
 - so a given input might produce different outputs, depending on the stored information
- example: ticket counter
 - advances when you push the button
 - output depends on previous state
- useful for building “memory” elements and “state machines”
R-S Latch: Simple Storage Element

R is used to “reset” or “clear” the element – set it to zero. S is used to “set” the element – set it to one.

If both R and S are one, out could be either zero or one.

- “quiescent” state -- holds its previous value
- note: if a is 1, b is 0, and vice versa
Clearing the R-S latch
Suppose we start with output = 1, then change R to zero.

Then set R=1 to “store” value in quiescent state.
Setting the R-S Latch

Suppose we start with output = 0, then change S to zero.

Output changes to one.

Then set S=1 to “store” value in quiescent state.
R-S Latch Summary

R = S = 1
- hold current value in latch

S = 0, R=1
- set value to 1

R = 0, S = 1
- set value to 0

R = S = 0
- both outputs equal one
- final state determined by electrical properties of gates
- *Don’t do it!"*
Gated D-Latch

Two inputs: D (data) and WE (write enable)

- when $WE = 1$, latch is set to value of D
 $S = \text{NOT}(D), \ R = D$
- when $WE = 0$, latch holds previous value
 $S = R = 1$
Register

A register stores a multi-bit value.

- We use a collection of D-latches, all controlled by a common WE.
- When WE=1, n-bit value D is written to register.
Representing Multi-bit Values

Number bits from right (0) to left (n-1)
 • just a convention -- could be left to right, but must be **consistent**

Use brackets to denote range:
D[l:r] denotes bit l to bit r, from *left* to *right*

\[
A = \underbrace{0101001101010101}_{15} \quad 0
\]

\[
A[14:9] = 101001
\]

\[
A[2:0] = 101
\]

May also see \(A<14:9>\),
evenly in hardware block diagrams.
Memory

Now that we know how to store bits, we can build a memory – a logical $k \times m$ array of stored bits.

Address Space: number of locations (usually a power of 2)

Addressability: number of bits per location (e.g., byte-addressable)
2² x 3 Memory

address
word select
word WE
input bits

address decoder
write enable
output bits
More Memory Details

This is not the way actual memory is implemented.

- fewer transistors, much more dense, relies on electrical properties

But the logical structure is very similar.

- address decoder
- word select line
- word write enable

Two basic kinds of **RAM** (Random Access Memory)

Static RAM (SRAM)

- fast, maintains data without power

Dynamic RAM (DRAM)

- slower but denser, bit storage must be periodically refreshed

Also, non-volatile memories: ROM, PROM, flash, …
State Machine

Another type of sequential circuit
- Combines combinational logic with storage
- “Remembers” state, and changes output (and state) based on inputs and current state
Combinational vs. Sequential

Two types of “combination” locks

Combinational
Success depends only on the values, not the order in which they are set.

Sequential
Success depends on the sequence of values (e.g., R-13, L-22, R-3).
State

The **state** of a system is a **snapshot** of all the relevant elements of the system at the moment the snapshot is taken.

Examples:

- The state of a basketball game can be represented by the scoreboard.
 - Number of points, time remaining, possession, etc.
- The state of a tic-tac-toe game can be represented by the placement of X’s and O’s on the board.
State of Sequential Lock

Our lock example has four different states, labelled A-D:

A: The lock is **not open**, and no relevant operations have been performed.

B: The lock is **not open**, and the user has completed the **R-13** operation.

C: The lock is **not open**, and the user has completed **R-13**, followed by **L-22**.

D: The lock is **open**.
State Diagram

Shows states and actions that cause a transition between states.
Finite State Machine

A description of a system with the following components:

1. A finite number of states
2. A finite number of external inputs
3. A finite number of external outputs
4. An explicit specification of all state transitions
5. An explicit specification of what causes each external output value.

Often described by a state diagram.

• Inputs may cause state transitions.
• Outputs are associated with each state (or with each transition).
The Clock

Frequently, a clock circuit triggers transition from one state to the next.

At the beginning of each clock cycle, state machine makes a transition, based on the current state and the external inputs.

- Not always required. In lock example, the input itself triggers a transition.
Implementing a Finite State Machine

Combinational logic
- Determine outputs and next state.

Storage elements
- Maintain state representation.

[Diagram of a State Machine with inputs, combinational logic, storage elements, and outputs]
Storage: Master-Slave Flipflop

A pair of gated D-latches, to isolate next state from current state.

During 1st phase (clock=1), previously-computed state becomes current state and is sent to the logic circuit.

During 2nd phase (clock=0), next state, computed by logic circuit, is stored in Latch A.
Storage

Each master-slave flipflop stores one state bit.

The number of storage elements (flipflops) needed is determined by the number of states (and the representation of each state).

Examples:

- Sequential lock
 - Four states – two bits
- Basketball scoreboard
 - 7 bits for each score, 5 bits for minutes, 6 bits for seconds, 1 bit for possession arrow, 1 bit for half, …
Complete Example

A blinking traffic sign

- No lights on
- 1 & 2 on
- 1, 2, 3, & 4 on
- 1, 2, 3, 4, & 5 on
- (repeat as long as switch is turned on)
Traffic Sign State Diagram

Transition on each clock cycle.
Traffic Sign Truth Tables

Outputs (depend only on state: \(S_1 S_0 \))

<table>
<thead>
<tr>
<th>(S_1)</th>
<th>(S_0)</th>
<th>Z</th>
<th>Y</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

- Lights 1 and 2
- Lights 3 and 4
- Light 5

Next State: \(S_1 \)' \(S_0 \)' (depend on state and input)

<table>
<thead>
<tr>
<th>(\text{In})</th>
<th>(S_1)</th>
<th>(S_0)</th>
<th>(S_1')</th>
<th>(S_0')</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Whenever \(\text{In}=0 \), next state is 00.
Traffic Sign Logic

![Diagram of Traffic Sign Logic]

- **Master-slave flipflop**
- Storage Element 0
- Storage Element 1
- In
- Z
- Y
- X
- S_0'
- S_1'
- Clock
From Logic to Data Path

The data path of a computer is all the logic used to process information.

- See the data path of the LC-2 on next slide.

Combinational Logic

- Decoders -- convert instructions into control signals
- Multiplexers -- select inputs and outputs
- ALU (Arithmetic and Logic Unit) -- operations on data

Sequential Logic

- State machine -- coordinate control signals and data movement
- Registers and latches -- storage elements
LC-2/LC-3 Data Path