CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Gurindar Sohi

TAs: Sujith Surendran, Lisa Ossian, Minsub Shin

Midterm Examination 4

In Class (50 minutes)
Wednesday, December 10, 2014

Weight: 17.5%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has ten pages. Circle your final answers. Plan your time carefully since some

problems are longer than others. You must turn in the pages 1-8. Use the blank sides of
the exam for scratch work.

Note: LC-3 instruction set is provided on Page 9. Trap Codes and Assembler
directives are provided on page 10

LAST NAME:

FIRST NAME:

ID#:

Problem Maximum Points Points Earned
1 10
2 8
3 4
4 6
5 2
Total 30

Problem 1: Short answer questions (10 points)

a) (1 point) How many accesses to memory are made after the instruction fetch phase of a LDI
instruction? Show your work.

b) (1 point) For rare events, would you prefer interrupt-driven I/O or polling I/0? Justify your
answer.

¢) (1 point) Briefly explain the difference between asynchronous and synchronous I/O events.

d) (2 points) An LC-3 assembly program contains the following instruction:

2

MAIN LD RS, MAIN

The symbol table entry for MAIN is x4000. What will be the value of RS after the execution
of the above instruction? Show your work.

e. (2 points) Briefly describe what happens during the linking and loading phases of an assembly
program?

f. (3 points) Identify three assembly errors in the following code:
.ORIG x3000

LEA R1, NUMBER

LD R1, NUMBER
LOOP NOT R5, #2

TRAP x29

BRzp LOOP2

AND R1, R1, FIVE

LD R1, FIVE

BRp LOOP
LOOP HALT
FIVE LFILL #5
NUMBER .FILL x60
.END
Problem 2: Two-pass assembly process (8 points)

a) (3 points) Consider the following LC-3 assembly program.
.ORIG %3000

LEA R2, STRING

LD R3, NUMBER
HERE ADD R1, R2, R3

ADD R2, R1, #0

LDR RO, R1, #0

BRz DONE

OUT

BR HERE

THIS .BLKW 6

STRING .STRINGZ "“2down 3to go”
NUMBER .FILL x4

DONE HALT

.END

What would be the output on the console if you run the above code in Pennsim?

b) (3 points) In the first pass, the assembler creates the symbol table. Fill in the symbol table
created by the assembler for this program

Symbol Address

c) (2 points) In the second pass, the assembler creates a binary version (.obj) of the
program, using the entries from the symbol table shown below. Given that the following
symbol table entries were generated in the first pass of assembly (for another program),

4

fill in the binary code generated by the assembler for the two instructions located at

x3000 and x3001.
Symbol Table:
Label Address
ADDRESS x3015
NEXT x3016
Address Assembly code Binary Code
%3000 LD RO, ADDRESS
x3001 BRnp NEXT
Problem 3 (4 points)

Consider the program below, the goal of which is to multiply the value in memory location

corresponding to label Inputl with the value in memory location corresponding to label Input2 and

store the result in the memory location corresponding to label RESULT.

.ORIG x3000
LD R2, ZERO
LD RO, Inputl
LD R1, Input2

LOOP BRn DONE

ADD R2, R2, RO
ADD R1, R1, -1

BR LOOP

DONE ST R2, RESULT

HALT

RESULT .FILL
ZERO LFILL
Inputl .FILL
Input2 .FILL

.END

x0000
x0000
x0007
x0002

a. (2 points) What is the value at RESULT after executing the HALT instruction? Write the answer in

hexadecimal. Show your work.

b. (2 points) From your answer from 3a, you would have noticed that the answer is not the result of

multiplication of inputl and input2. Identify what caused this error, and how do you fix it?

Problem 4: Traps and Subroutines

(6 points)

Suppose we want to write a new TRAP subroutine, TRAP x02. This subroutine takes an input from the
caller of the subroutine through register R2. R2 has the memory address of the first character of a
string. The subroutine then prints all characters that are not ‘a’. Fill in the missing blanks to complete
this subroutine code. Assume that we are implementing a callee-save subroutine. Save only those
registers that are necessary.

Assume that the trap vector table (also known as the system control block) is shown below:

Address | Value
x0001 x2400
x0002 x2500
x0003 x2600
.ORIG
STORE ST __, SAVEREGI
ST __, SAVEREG2
ST __, SAVEREG3
ST _, SAVEREG4
LOOP LDR RO, R2, #0 ;Load a character from the string.
;If there are no more characters,goto RESTORE
LD R5, neg a ;Load negative of ASCII of ‘a’ into R5.
ADD R2, R2, #1 ;Increment pointer to get next character.
;Determine if current character equals ‘a’.
BRz LOOP ;If character is ‘a’, go load next character.
;Print the extracted character.
BR LOOP ;Branch to LOOP.
RESTORE LD , SAVEREG1
LD __, SAVEREG2
LD _, SAVEREG3
LD _, SAVEREG4
RET
SAVEREG1 BLKW 1
SAVEREG2 BLKW 1
SAVEREG3 BLKW 1
SAVEREG4 BLKW 1
neg a FILL OxFFOD ; This is the negative of ASCII of ‘a’
.END
Problem 5: I/0 (2 points)

The following code segment should display the string specified at the “STRING” label on to the
console. Write the missing assembly instructions of the program (without using
PUTS/PUTC/OUT/TRAP instructions).

Hint: Make use of the DSR and DDR, as shown in the figure below.
- output data

15 87

| . ' |DDR

1514

ready bit t] | DSR

.ORIG x3000

LEA R3, STRING
NEXT LDR RO, R3, #0

ADD R3, R3, #1 ; Point to the next character

BR NEXT
END HALT

STRING .STRINGZ "Enjoy your holidays!" ; String to display

DSR .FILL xFE04 ; Display status register location
DDR .FILL xFEO6 ; Display data register location
.END

LC 3 Instruction Set to be provided here

TRAP CODES

Code | Equivalent

Description

HALT |TRAP x25 | Halt execution and print message to
console,

IN TRAP x23 | Print prompt on console,
read (and echo) one character from keybd.
Character stored in RO[7:0].

OUT | TRAP x21 | Write one character (in RO[7:0]) to console.

GETC |TRAP x20 |Read one character from keyboard.
Character stored in RO[7:0].

PUTS |TRAP x22 | Write null-terminated string to console.
Address of string is in RO.

ASSEMBLER DIRECTIVES
Opcode Operand Meaning
.ORIG address starting address of program
.END end of program
.BLEW n allocate n words of storage
.FILL n allocate one word, initialize with
value n
.STRINGZ |n-character |allocate n+1 locations,
string initialize w/characters and null

terminator

10

