Chapter 7 & 9.2
Assembly Language and Subroutines
Human-Readable Machine Language

Computers like ones and zeros…

0001110010000110

Humans like symbols…

\texttt{ADD \ R6, R2, R6 ; increment index reg.}

\textbf{Assembler} is a program that turns symbols into machine instructions.

- ISA-specific:
 close correspondence between symbols and instruction set
 \begin{itemize}
 \item mnemonics for opcodes
 \item labels for memory locations
 \end{itemize}
- additional operations for allocating storage and initializing data
A program to multiply a number by the constant 6

```
.ORIG x3050
LD    R1, SIX
LD    R2, NUMBER
AND   R3, R3, #0   ; Clear R3. It will contain the product.

; The inner loop
;
AGAIN  ADD   R3, R3, R2
ADD    R1, R1, #-1 ; R1 keeps track of the iteration.
BRp    AGAIN

HALT
;
NUMBER .BLKW 1
SIX    .FILL x0006
;
-END
```
LC-3 Assembly Language Syntax

Each line of a program is one of the following:

- an instruction
- an assemble directive (or pseudo-op)
- a comment

Whitespace (between symbols) and case are ignored. Comments (beginning with ";;") are also ignored.

An instruction has the following format:

```
LABEL OPCODE OPERANDS ; COMMENTS
```

Optional and mandatory parts are indicated as

- `optional`
- `mandatory`
Opcodes and Operands

Opcodes

• reserved symbols that correspond to LC-3 instructions
• listed in Appendix A
 ➢ ex: ADD, AND, LD, LDR, ...

Operands

• registers -- specified by Rn, where n is the register number
• numbers -- indicated by # (decimal) or x (hex)
• label -- symbolic name of memory location
• separated by comma
• number, order, and type correspond to instruction format
 ➢ ex:
 ADD R1,R1,R3
 ADD R1,R1,#3
 LD R6,NUMBER
 BRz LOOP
Labels and Comments

Label

• placed at the beginning of the line
• assigns a symbolic name to the address corresponding to line
 ➢ ex:

 LOOP ADD R1,R1,#-1
 BRp LOOP

Comment

• anything after a semicolon is a comment
• ignored by assembler
• used by humans to document/understand programs
• tips for useful comments:
 ➢ avoid restating the obvious, as “decrement R1”
 ➢ provide additional insight, as in “accumulate product in R6”
 ➢ use comments to separate pieces of program
Assembler Directives

Pseudo-operations

• do not refer to operations executed by program
• used by assembler
• look like instruction, but “opcode” starts with dot

<table>
<thead>
<tr>
<th>Opcode</th>
<th>Operand</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>.ORIG</td>
<td>address</td>
<td>starting address of program</td>
</tr>
<tr>
<td>.END</td>
<td></td>
<td>end of program</td>
</tr>
<tr>
<td>.BLKW</td>
<td>n</td>
<td>allocate n words of storage</td>
</tr>
<tr>
<td>.FILL</td>
<td>n</td>
<td>allocate one word, initialize with value n</td>
</tr>
<tr>
<td>.STRINGZ</td>
<td>n-character string</td>
<td>allocate n+1 locations, initialize w/characters and null terminator</td>
</tr>
</tbody>
</table>
Trap Codes

LC-3 assembler provides “pseudo-instructions” for each trap code, so you don’t have to remember them.

<table>
<thead>
<tr>
<th>Code</th>
<th>Equivalent</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALT</td>
<td>TRAP x25</td>
<td>Halt execution and print message to console.</td>
</tr>
<tr>
<td>IN</td>
<td>TRAP x23</td>
<td>Print prompt on console, read (and echo) one character from keybd. Character stored in R0[7:0].</td>
</tr>
<tr>
<td>OUT</td>
<td>TRAP x21</td>
<td>Write one character (in R0[7:0]) to console.</td>
</tr>
<tr>
<td>GETC</td>
<td>TRAP x20</td>
<td>Read one character from keyboard. Character stored in R0[7:0].</td>
</tr>
<tr>
<td>PUTS</td>
<td>TRAP x22</td>
<td>Write null-terminated string to console. Address of string is in R0.</td>
</tr>
</tbody>
</table>
Style Guidelines

Use the following style guidelines to improve the readability and understandability of your programs:

1. Provide a program header, with author’s name, date, etc., and purpose of program.
2. Start labels, opcode, operands, and comments in same column for each line. (Unless entire line is a comment.)
3. Use comments to explain what each register does.
4. Give explanatory comment for most instructions.
5. Use meaningful symbolic names.
 - Mixed upper and lower case for readability.
 - ASCIItoBinary, InputRoutine, SaveR1
6. Provide comments between program sections.
7. Each line must fit on the page -- no wraparound or truncations.
 - Long statements split in aesthetically pleasing manner.
Sample Program

Count the occurrences of a character in a file.
Remember this?

Count = 0
(R2 = 0)

Ptr = 1st file character
(R3 = M[x3012])

Input char from keybd
(TRAP x23)

Load char from file
(R1 = M[R3])

Done?
(R1 ?= EOT)

Match?
(R1 ?= R0)

Incr Count
(R2 = R2 + 1)

Load next char from file
(R3 = R3 + 1, R1 = M[R3])

Convert count to ASCII character
(R0 = x30, R0 = R2 + R0)

Print count
(TRAP x21)

HALT
(TRAP x25)
Char Count in Assembly Language (1 of 3)

; Program to count occurrences of a character in a file.
; Character to be input from the keyboard.
; Result to be displayed on the monitor.
; Program only works if no more than 9 occurrences are found.
;
; Initialization
;
.ORG x3000
AND R2, R2, #0 ; R2 is counter, initially 0
LD R3, PTR ; R3 is pointer to characters
GETC ; R0 gets character input
LDR R1, R3, #0 ; R1 gets first character
;
; Test character for end of file
;
TEST ADD R4, R1, #−4 ; Test for EOT (ASCII x04)
BRz OUTPUT ; If done, prepare the output
Char Count in Assembly Language (2 of 3)

; Test character for match. If a match, increment count.
;
 NOT R1, R1
 ADD R1, R1, R0 ; If match, R1 = xFFFF
 NOT R1, R1 ; If match, R1 = x0000
 BRnp getchar ; If no match, do not increment
 ADD R2, R2, #1

; Get next character from file.
;
 getchar ADD R3, R3, #1 ; Point to next character.
 LDR R1, R3, #0 ; R1 gets next char to test
 BRnzp test

; Output the count.
;
 output LD R0, ASCII ; Load the ASCII template
 ADD R0, R0, R2 ; Covert binary count to ASCII
 OUT ; ASCII code in R0 is displayed.
 halt ; Halt machine
Char Count in Assembly Language (3 of 3)

; Storage for pointer and ASCII template
;
ASCII .FILL x0030
PTR .FILL x4000
.END
Assembly Process

Convert assembly language file (.asm) into an executable file (.obj) for the LC-3 simulator.

First Pass:
- scan program file
- find all labels and calculate the corresponding addresses; this is called the symbol table

Second Pass:
- convert instructions to machine language, using information from symbol table
First Pass: Constructing the Symbol Table

1. Find the `.ORIG` statement, which tells us the address of the first instruction.
 - Initialize location counter (LC), which keeps track of the current instruction.

2. For each non-empty line in the program:
 a) If line contains a label, add label and LC to symbol table.
 b) Increment LC.
 - NOTE: If statement is `.BLKW` or `.STRINGZ`, increment LC by the number of words allocated.

3. Stop when `.END` statement is reached.

NOTE: A line that contains only a comment is considered an empty line.
Practice

Construct the symbol table for the program in Figure 7.1 (Slides 7-11 through 7-13).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Second Pass: Generating Machine Language

For each executable assembly language statement, generate the corresponding machine language instruction.

- If operand is a label, look up the address from the symbol table.

Potential problems:

- Improper number or type of arguments
 - ex: `NOT R1, #7`
 - `ADD R1, R2`
 - `ADD R3, R3, NUMBER`

- Immediate argument too large
 - ex: `ADD R1, R2, #1023`

- Address (associated with label) more than 256 from instruction
 - can’t use PC-relative addressing mode
Practice

Using the symbol table constructed earlier, translate these statements into LC-3 machine language.

<table>
<thead>
<tr>
<th>Statement</th>
<th>Machine Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>LD R3, PTR</td>
<td></td>
</tr>
<tr>
<td>ADD R4, R1, #−4</td>
<td></td>
</tr>
<tr>
<td>LDR R1, R3, #0</td>
<td></td>
</tr>
<tr>
<td>BRnp GETCHAR</td>
<td></td>
</tr>
</tbody>
</table>
LC-3 Assembler

Using “lc3as” (Unix) or LC3Edit (Windows), generates several different output files.

- Assembly Language Program (.asm)
- Binary Listing (.bin)
- Hex Listing (.hex)
- Symbol Table (.sym)
- Listing File (.lst)
- Object File (.obj)

This one gets loaded into the simulator.
Object File Format

LC-3 object file contains

- Starting address (location where program must be loaded), followed by...
- Machine instructions

Example

- Beginning of “count character” object file looks like this:

```
0011000000000000  \longrightarrow .ORIG x3000
0101010010100000  \longrightarrow AND R2, R2, #0
0010011000010001  \longrightarrow LD R3, PTR
1111000000100011  \longrightarrow TRAP x23
```

...
Multiple Object Files

An object file is not necessarily a complete program.

- system-provided library routines
- code blocks written by multiple developers

For LC-3 simulator, can load multiple object files into memory, then start executing at a desired address.

- system routines, such as keyboard input, are loaded automatically
 - loaded into “system memory,” below x3000
 - user code should be loaded between x3000 and xFDFF
- each object file includes a starting address
- be careful not to load overlapping object files
Linking and Loading

Loading is the process of copying an executable image into memory.

- more sophisticated loaders are able to *relocate* images to fit into available memory
- must readjust branch targets, load/store addresses

Linking is the process of resolving symbols between independent object files.

- suppose we define a symbol in one module, and want to use it in another
- some notation, such as `.EXTERNAL`, is used to tell assembler that a symbol is defined in another module
- linker will search symbol tables of other modules to resolve symbols and complete code generation before loading
Skipping Ahead to Chapter 9

You will need to use subroutines for programming assignments

- Read Section 9.2

A subroutine is a program fragment that:

- performs a well-defined task
- is invoked (called) by another user program
- returns control to the calling program when finished

Reasons for subroutines:

- reuse useful (and debugged!) code without having to keep typing it in
- divide task among multiple programmers
- use vendor-supplied library of useful routines
JSR Instruction

Jumps to a location (like a branch but unconditional), and saves current PC (addr of next instruction) in R7.

- saving the return address is called “linking”
- target address is PC-relative (PC + Sext(IR[10:0]))
- bit 11 specifies addressing mode
 - if =1, PC-relative: target address = PC + Sext(IR[10:0])
 - if =0, register: target address = contents of register IR[8:6]
NOTE: PC has already been incremented during instruction fetch stage.
JSRR Instruction

Just like JSR, except Register addressing mode.
- target address is Base Register
- bit 11 specifies addressing mode

What important feature does JSRR provide that JSR does not?
NOTE: PC has already been incremented during instruction fetch stage.
Returning from a Subroutine

RET (JMP R7) gets us back to the calling routine.

• just like TRAP
Example: Negate the value in R0

2sComp
 NOT R0, R0 ; flip bits
 ADD R0, R0, #1 ; add one
 RET ; return to caller

To call from a program (within 1024 instructions):

; need to compute R4 = R1 - R3
 ADD R0, R3, #0 ; copy R3 to R0
 JSR 2sComp ; negate
 ADD R4, R1, R0 ; add to R1
 ...

Note: Caller should save R0 if we’ll need it later!
Passing Information to/from Subroutines

Arguments

• A value **passed in** to a subroutine is called an argument.
• This is a value needed by the subroutine to do its job.
• Examples:
 ➢ In 2sComp routine, R0 is the number to be negated
 ➢ In OUT service routine, R0 is the character to be printed.
 ➢ In PUTS routine, R0 is *address* of string to be printed.

Return Values

• A value **passed out** of a subroutine is called a return value.
• This is the value that you called the subroutine to compute.
• Examples:
 ➢ In 2sComp routine, negated value is returned in R0.
 ➢ In GETC service routine, character read from the keyboard is returned in R0.
Using Subroutines

In order to use a subroutine, a programmer must know:

• **its address** (or at least a label that will be bound to its address)
• **its function** (what does it do?)
 ➢ **NOTE**: The programmer does not need to know *how* the subroutine works, but what changes are visible in the machine’s state after the routine has run.
• **its arguments** (where to pass data in, if any)
• **its return values** (where to get computed data, if any)
Saving and Restore Registers

Since subroutines are just like service routines, we also need to save and restore registers, if needed.

Generally use “callee-save” strategy, except for return values.

- Save anything that the subroutine will alter internally that shouldn’t be visible when the subroutine returns.
- It’s good practice to restore incoming arguments to their original values (unless overwritten by return value).

Remember: You MUST save R7 if you call any other subroutine or service routine (TRAP).
- Otherwise, you won’t be able to return to caller.
Example

(1) Write a subroutine FirstChar to:
 find the first occurrence
 of a particular character (in R0)
 in a string (pointed to by R1);
 return pointer to character or to end of string (NULL) in R2.

(2) Use FirstChar to write CountChar, which:
 counts the number of occurrences
 of a particular character (in R0)
 in a string (pointed to by R1);
 return count in R2.

Can write the second subroutine first,
without knowing the implementation of FirstChar!
CountChar Algorithm (using FirstChar)

1. save regs
2. call FirstChar
3. \[R3 \leftarrow M(R2) \]
4. If \[R3 \neq 0 \]
 - No
 - \[R1 \leftarrow R2 + 1 \]
5. If \[R3 = 0 \]
 - Yes
6. save R7, since we’re using JSR
7. restore regs
8. return
CountChar Implementation

; CountChar: subroutine to count occurrences of a char

CountChar

 ST R3, CCR3 ; save registers
 ST R4, CCR4
 ST R7, CCR7 ; JSR alters R7
 ST R1, CCR1 ; save original string ptr
 AND R4, R4, #0 ; initialize count to zero
 CC1 JSR FirstChar ; find next occurrence (ptr in R2)
 LDR R3, R2, #0 ; see if char or null
 BRz CC2 ; if null, no more chars
 ADD R4, R4, #1 ; increment count
 ADD R1, R2, #1 ; point to next char in string
 BRnzp CC1

 CC2 ADD R2, R4, #0 ; move return val (count) to R2
 LD R3, CCR3 ; restore regs
 LD R4, CCR4
 LD R1, CCR1
 LD R7, CCR7
 RET ; and return
FirstChar Algorithm

save regs

R2 ← R1

R3 ← M(R2)

R3=0

R3=R0

yes

no

R2 ← R2 + 1

restore regs

return

yes

no
FirstChar Implementation

; FirstChar: subroutine to find first occurrence of a char

FirstChar
 ST R3, FCR3 ; save registers
 ST R4, FCR4 ; save original char
 NOT R4, R0 ; negate R0 for comparisons
 ADD R4, R4, #1
 ADD R2, R1, #0 ; initialize ptr to beginning of string

FC1 LDR R3, R2, #0 ; read character
 BRz FC2 ; if null, we’re done
 ADD R3, R3, R4 ; see if matches input char
 BRz FC2 ; if yes, we’re done
 ADD R2, R2, #1 ; increment pointer
 BRnzp FC1

FC2 LD R3, FCR3 ; restore registers
 LD R4, FCR4 ;
 RET ; and return