
1

CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Gurindar Sohi

TAs: Mona Jalal, Rebecca Lam, Preeti Agarwal, Pradip Vallathol

Midterm Examination 3

In Class (50 minutes)

Friday, April 12, 2013

Weight: 17.5%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has 10 pages. Circle your final answers. Plan your time carefully since some problems are

longer than others. You must turn in the pages 1-8. The LC-3 instruction set is provided to you on the

last page.

LAST NAME: ___

FIRST NAME: ___

ID# ___

2

Problem Maximum Points Points Earned

1 4

2 4

3 4

4 3

5 6

6 4

7 5

Total 30

3

Problem 1 (4 Points)

For the following questions, select the best answer. Choose only one answer per question.

i. Which of the following LC-3 instructions can only have register operands and cannot

have either immediate or memory operands?

a. NOT

b. AND

c. ADD

d. LD

ii. Which of the following is not true about branch instructions?

a. They can change the PC value.

b. They change the condition code.

c. In LC-3, they can be used for both conditional and unconditional jump.

d. They can be used to create a loop.

iii. Excluding the memory access to fetch the instruction, which of the following is not true

about the different load instructions in LC3?

a. LDI instruction makes two memory accesses.

b. LEA instruction makes one memory access.

c. LD instruction makes one memory access.

d. LDR instruction makes one memory access.

iv. Apart from incrementing the PC in the fetch stage of an instruction cycle, the processing

of which of the following instructions does not perform an addition?

a. AND

b. STR

c. ADD

d. LDR

e. All of the above.

4

Problem 2 (4 Points)

Give the contents of the following registers after instruction 1 (at address 0x3014) has

executed but before the fetch phase of instruction 2 (at address 0x3015) has started.

Address Instruction

1. 0x3014 0001 0100 0100 0001

2. 0x3015 0001 0110 1000 0010

Program Counter (PC)

Instruction Register(IR)

Memory Address Register (MAR)

Memory Data Register (MDR)

Problem 3 (4 Points)

We are about to execute the following code snippet. Assume that before execution R6 =

0x2000 and that the value at memory address 0x30A0 = 0x2000. Complete each of the below

LC-3 machine instructions so that each instruction stores the value in R2 at the destination

address specified in the rightmost column.

Instruction

Address

Instruction Destination

Address

0x3000 0111 010 ___________________________ 0x2004

0x3001 0011 010 ___________________________ 0x2FFF

0x3002 1011 010 ___________________________ 0x2000

5

Problem 4 (3 Points)

Consider the following LC-3 instructions. The “Intended Operation” specifies what was

expected from the Instruction. Identify errors, if any, in the given instructions, and give a

brief description of the error in the space provided. Write “No error” in case there is no error

in the given instruction.

 Instruction Intended Operation

(a) 0001 0110 1000 0010 R3 R2 + R1

(b) 1100 0100 1010 0010 R2 R2 AND (0x2)

(c) 1001 0010 0111 0000 R1 NOT(R1)

(a)

(b)

(c)

6

Problem 5 (6 Points)

We are about to execute the following code snippet:

Address Instruction Comment

0x3000 0111 000 001 000101

0x3001 0010 000 100000000

0x3002 0000 101 000000001

0x3003 0001 010 010 000 010

0x3004 0011 010 000000010

0x3005 1111 0000 0010 0101

Assume the following shows the contents of certain parts of memory before execution:

Address Value

0x2F01 0x3000

0x2F02 0x3001

0x2F03 0x3002

0x3006 0x3003

0x3007 0x3004

0x3100 0x3005

Given the initial values of the below registers, fill in the values after the program has

completed execution (before the fetch phase of the HALT). Give your answers in hex.

Register Initial Value Final Value

CC N

R0 0x0000

R1 0x2EFD

R2 0x0FFF

7

Problem 6 (4 Points)

The following flowchart represents an algorithm which counts the number of positive

numbers stored in 50 consecutive memory locations starting from 0x5020. On completion, it

sets the value of register R2 to the count of positive numbers found. Fill in the missing parts

of the flowchart indicated by “_____”.

Register Usage:

R1: address of stored number, R2: count, R3: number of numbers remaining, and R4: a number.

8

Problem 7 (5 Points)

Answer the following short answer questions using 1-2 sentences.

a. What advantage does the LC-3 LDR instruction provide over the LD instruction?

(1 Point)

b. What is the difference between Breakpoints and Single-Stepping? (2 Points)

c. Name one non-memory addressing mode and one memory addressing mode supported

by LC-3. Give an example LC-3 OPCODE corresponding to each mode that you list (e.g.

ADD, LD, ST). (2 Points)

9

Scratch page. You do not need to turn this page in.

10

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.

SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition

| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate

| 0 0 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND

| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR,SR1,imm5 ; Bit-wise AND with Immediate

| 0 1 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx,label (where x={n,z,p,zp,np,nz,nzp}); Branch

| 0 0 0 0 | n | z | p | PCoffset9 | GO ((n and N) OR (z AND Z) OR (p AND P))

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if(GO is true) then PCPC’+ SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump

| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine

| 0 1 0 0 | 1 | PCoffset11 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 PC’, PC PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register

| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp PC’, PC BaseR, R7 temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative

| 0 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect

| 1 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DRmem[mem[PC’+SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset

| 0 1 1 0 | DR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address

| 1 1 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement

| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine

| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt

| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative

| 0 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)] SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect

| 1 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]] SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1 | SR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)] SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call

| 1 1 1 1 | 0 0 0 0 | trapvect8 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7 PC’, PC mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode

| 1 1 0 1 | |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

