CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN—MADISON

Prof. Mark D. Hill and Prof. Gurindar Sohi

TAs: Rebecca Lam, Preeti Agarwal, Mona Jalal, Pradip Vallathol

Midterm Examination 3

In Class (50 minutes)

Friday, April 12, 2013

Weight: 17.5%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has 10 pages. **Circle your final answers**. Plan your time carefully since some problems are longer than others. You **must turn in the pages 1-8**. The LC-3 instruction set is provided to you on the last page.

LAST NAME:	 	
FIRST NAME:	 	
ID#	 	

Problem	Maximum Points	Points Earned
1	4	
2	4	
3	4	
4	3	
5	6	
6	4	
7	5	
Total	30	

Problem 1 (4 Points)

For the following questions, select the **best** answer. Choose only **one answer per question**.

- i. Excluding the memory access to fetch the instruction, which of the following is *not* true about the different load instructions in LC3?
 - a. LD instruction makes one memory access.
 - b. LDI instruction makes two memory accesses.
 - c. LEA instruction makes one memory access.
 - d. LDR instruction makes one memory access.
- ii. Which of the following LC-3 instructions can only have register operands and cannot have either immediate or memory operands?
 - a. AND
 - b. NOT
 - c. ADD
 - d. ST
- iii. Apart from incrementing the PC in the fetch stage of an instruction cycle, the processing of which of the following instructions does not perform an addition?
 - a. ADD
 - b. STR
 - c. AND
 - d. LDR
 - e. All of the above.
- iv. Which of the following is *not* true about branch instructions?
 - a. They can be used to create a loop.
 - b. In LC-3, they can be used for both conditional and unconditional jump.
 - c. They change the condition code.
 - d. They can change the PC value.

Problem 2 (4 Points)

Give the contents of the following registers after instruction 1 (at address 0x3023) has executed but before the fetch phase of instruction 2 (at address 0x3024) has started.

	Address	Instruction
1.	0x3023	0001 0010 0100 0100
2.	0x3024	0001 0110 0100 0011

Program Counter (PC)	0x3024
Instruction Register(IR)	0x1244
Memory Address Register (MAR)	0x3023
Memory Data Register (MDR)	0x1244

Problem 3 (4 Points)

We are about to execute the following code snippet. Assume that before execution R5 = 0x2000 and that the value at memory address 0x3080 = 0x2000. Complete each of the below LC-3 machine instructions so that each instruction stores the value in R2 at the destination address specified in the rightmost column.

Instruction Address	Instruction	Destination Address
0x3000	0111 010 <u>101 000011</u>	0x2003
0x3001	0011 010 <u>111111101</u>	0x2FFF
0x3002	1011 010 <u>001111101</u>	0x2000

Problem 4 (3 Points)

Consider the following LC-3 instructions. The "Intended Operation" specifies what was expected from the Instruction. Identify errors, if any, in the given instructions, and give a brief description of the error in the space provided. Write "No error" in case there is no error in the given instruction.

	Instruction	Intended Operation
(a)	0001 0110 1000 0010	R3 ← R2 + R1
(b)	1100 0100 1010 0010	R2 ← R2 AND (0x2)
(c)	1001 0010 0111 0000	$R1 \leftarrow NOT(R1)$

(a) Yes, there is an error. The result R2 + R2 is stored into R3 rather than R2 + R1

(b) Yes there is an error. The opcode is not the one for AND.

(c) Yes there is an error. Bits 0 to 4 should be all ones for a NOT operation.

Problem 5 (6 Points)

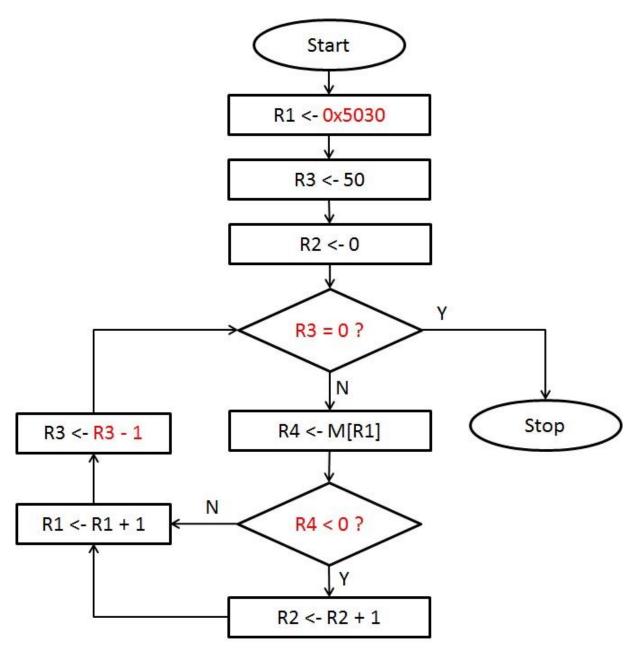
We are about to execute the following code snippet:

Address	Instruction	Comment
0x3000	0111 000 010 000101	STR R0, R2, offset = $5 : M[0x2F02] \leftarrow R0$
0x3001	0010 000 100000000	LD R0, offset = $0xFF00 : R0 \leftarrow M[0x2F02]$
0x3002	0000 110 000000001	BRnz offset = 1 : R0 is +ve, don't branch
0x3003	0001 001 001 000 001	ADD R1, R1, R1 : R1 = 2*R1
0x3004	0011 001 000000010	ST R1, offset = $0x0002 : M[0x3006] \leftarrow R2$
0x3005	1111 0000 0010 0101	HALT

Assume the following shows the contents of certain parts of memory **before** execution:

Address	Value
0x2F01	0x3000
0x2F02	0x3001
0x2F03	0x3002
0x3006	0x3003
0x3007	0x3004
0x3100	0x3005

Given the initial values of the below registers, fill in the values after the program has completed execution (before the fetch phase of the HALT). Give your answers in **hex.**


Register	Initial Value	Final Value
CC	N	P
R0	0x0001	0x0001
R1	0x0FFF	0x1FFE
R2	0x2EFD	0x2EFD

Problem 6 (4 Points)

The following flowchart represents an algorithm which counts the number of negative numbers stored in 50 consecutive memory locations starting from 0x5030. On completion, it sets the value of register R2 to the count of negative numbers found. Fill in the missing parts of the flowchart indicated by "____".

Register Usage:

R1: address of stored number, R2: count, R3: number of numbers remaining, and R4: a number.

Proble	em 7	(5 Points)
An	swer the following short answer questions using 1-2 sentences.	
a.	What is the difference between Breakpoints and Single-Stepping?	(2 Points)
	Breakpoints are used to indicate an instruction to pause at when execution Single-stepping is the act of executing one instruction at a time.	n reaches it.
b.	What advantage does the LC-3 LDR instruction provide over the LD inst	ruction? (1 Point)
	The LDR instruction can address more locations in memory since it uses which can access 2 ¹⁶ locations, whereas LD uses PCoffset which can access 2 ¹⁶ locations.	
c.	Name one non -memory addressing mode and one memory addressing by LC-3. Give an example LC-3 OPCODE corresponding to each mode ADD, LD, ST).	
	Memory addressing modes: PC-Relative: LD, ST Indirect: LDI, STI Base offset: LDR, STR	
	Non-memory addressing modes: Register: ADD, AND, NOT Immediate: ADD, AND	