CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING UNIVERSITY OF WISCONSIN—MADISON

Prof. Mark D. Hill
TAs: Preeti Agarwal, Rebecca Lam, Mona Jalal, Pradip Vallathol
Midterm Examination 3
In Class (50 minutes)
Friday, April 12, 2013

Weight: 17.5\%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.
The exam has 10 pages. Circle your final answers. Plan your time carefully since some problems are longer than others. You must turn in the pages 1-8. The LC-3 instruction set is provided to you on the last page.

LAST NAME:

FIRST NAME: \qquad
ID\#

Problem	Maximum Points	Points Earned
$\mathbf{1}$	4	
$\mathbf{2}$	4	
$\mathbf{3}$	4	
$\mathbf{4}$	3	
$\mathbf{5}$	6	
$\mathbf{6}$	4	
$\mathbf{7}$	5	
Total	30	

Problem 1
(4 Points)
For the following questions, select the best answer. Choose only one answer per question.
i. Which of the following is not true about branch instructions?
a. They can be used to create a loop.
b. In LC-3, they can be used for both conditional and unconditional jump.
c. They can change the PC value.
d. They change the condition code.
ii. Excluding the memory access to fetch the instruction, which of the following is not true about the different load instructions in LC3?
a. LDR instruction makes one memory access.
b. LD instruction makes one memory access.
c. LDI instruction makes two memory accesses.
d. LEA instruction makes one memory access.
iii. Apart from incrementing the PC in the fetch stage of an instruction cycle, the processing of which of the following instructions does not perform an addition?
a. ADD
b. AND
c. STR
d. LDR
e. All of the above.
iv. Which of the following LC-3 instructions can only have register operands and cannot have either immediate or memory operands?
a. AND
b. ST
c. ADD
d. NOT

Problem 2

Give the contents of the following registers after instruction 1 (at address 0x3035) has executed but before the fetch phase of instruction 2 (at address $0 x 3036$) has started.

	Address	Instruction
1.	0×3035	0001010011000010
2.	0×3036	0001011110000001

Program Counter (PC)	
Instruction Register(IR)	
Memory Address Register (MAR)	
Memory Data Register (MDR)	

Problem 3
(4 Points)
We are about to execute the following code snippet. Assume that before execution R4 = 0×2000 and that the value at memory address $0 \times 3090=0 \times 2000$. Complete each of the below LC-3 machine instructions so that each instruction stores the value in R2 at the destination address specified in the rightmost column.

Instruction Address	Instruction	Destination Address
0×3000	$0111010 \ldots$	0×2005
0×3001	0011010	$0 \times 2 \mathrm{FFF}$
0×3002	1011010	0×2000

Consider the following LC-3 instructions. The "Intended Operation" specifies what was expected from the Instruction. Identify errors, if any, in the given instructions, and give a brief description of the error in the space provided. Write "No error" in case there is no error in the given instruction.

	Instruction	Intended Operation
(a)	0001011010000010	$\mathrm{R} 3 \leftarrow \mathrm{R} 2+\mathrm{R} 1$
(b)	1100010010100010	$\mathrm{R} 2 \leftarrow \mathrm{R} 2$ AND (0x2)
(c)	1001001001110000	$\mathrm{R} 1 \leftarrow \mathrm{NOT}(\mathrm{R} 1)$

(a)
(b)
(c)

Problem 5
(6 Points)
We are about to execute the following code snippet:

Address	Instruction	Comment
0×3000	0111000001000101	
0×3001	0010000100000000	
0×3002	0000011000000001	
0×3003	0001010010000010	
0×3004	0011010000000010	
0×3005	1111000000100101	

Assume the following shows the contents of certain parts of memory before execution:

Address	Value
$0 \times 2 \mathrm{~F} 01$	0×3000
$0 \times 2 \mathrm{~F} 02$	0×3001
$0 \times 2 \mathrm{~F} 03$	0×3002
0×3006	0×3003
0×3007	0×3004
0×3100	0×3005

Given the initial values of the below registers, fill in the values after the program has completed execution (before the fetch phase of the HALT). Give your answers in hex.

Register	Initial Value	Final Value
CC	N	
R0	$0 \times \mathrm{x} 000$	
R1	0x2EFD	
R2	0x0FFF	

Problem 6

(4 Points)
The following flowchart represents an algorithm which counts the number of positive numbers stored in 50 consecutive memory locations starting from 0x5040. On completion, it sets the value of register R2 to the count of positive numbers found. Fill in the missing parts of the flowchart indicated by " \qquad $"$.

Register Usage:
R1: address of stored number, R2: count, R3: number of numbers remaining, and R4: a number.

Problem 7

(5 Points)
Answer the following short answer questions using 1-2 sentences.
a. What advantage does the LC-3 LDR instruction provide over the LD instruction?
(1 Point)
b. Name one non-memory addressing mode and one memory addressing mode supported by LC-3. Give an example LC-3 OPCODE corresponding to each mode that you list (e.g. ADD, LD, ST).
(2 Points)
c. What is the difference between Breakpoints and Single-Stepping?
(2 Points)

Scratch page. You do not need to turn this page in.

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)
P^{\prime} : incremented $P C$. setcc () : set condition codes N, Z, and P. mem[A]:memory contents at address A. SEXT (immediate) : sign-extend immediate to 16 bits. ZEXT (immediate) : zero-extend immediate to 16 bits.

