
1 

 

 
CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING 

UNIVERSITY OF WISCONSIN—MADISON 

Prof. Gurindar Sohi 

TAs: Rebecca Lam, Mona Jalal, Preeti Agarwal, Pradip Vallathol 

  

Midterm Examination 4 

In Class (50 minutes) 

Wednesday, May 8, 2013 

Weight: 17.5% 

  

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT. 

The exam has 12 pages.  Circle your final answers. Plan your time carefully since some problems are 

longer than others.  You must turn in the pages 1-9. The LC-3 instruction set is provided to you on the 

last page. 

  

LAST NAME:    ___________________________________________________________ 

FIRST NAME:   ___________________________________________________________ 

ID#                      ___________________________________________________________ 

 

  



2 

 

 

 

  
  

Problem Maximum Points Points Earned 

1 4   

2 5   

3 3  

4 5   

5 5   

6 3   

7 5   

Total 30   

  

 

 

 

  



3 

 

Problem 1: Multiple Choice Questions      (4 Points) 

For the following questions, select the best answer. Choose only one answer per question. 

 

i. The TRAP instructions in LC-3 are similar to which of the following instructions in terms 

of the number of memory accesses that are made to the fetch and execute the instruction? 

a. LD 

b. LDR 

c. LEA 

d. LDI 

 

ii. Which of the following is not true about polling? 

a. The CPU keeps monitoring status register. 

b. CPU cannot perform other tasks during polling. 

c. Polling requires changes to the Fetch and Decode logic of the CPU. 

d. Polling wastes a lot of CPU time. 

 

iii. Which of the following is not true about comments in an LC-3 program? 

a. Anything after the semicolon is a comment. 

b. They can be used multiple times in a program. 

c. It is used by the assembler to understand the program. 

d. Can be used to separate pieces of the program. 

 

iv. JSRR R5 is equivalent to 

a. LEA R5, #1 

JMP R7 

b. LEA R5, #1 

JMP R5 

c. LEA R7, #1 

JMP R5 

d. LEA R7, #1 

JMP R7 

e. All of the above are equivalent 

 

  



4 

 

Problem 2: Assembly Process       (5 Points) 

Answer the questions below for the following program: 

.ORIG x4000 
 LD  R2, LOW_A 
 NOT R2, R2 
 ADD R2, R2, #1  
 LEA R0, STRG 

; Comment 1  
L1 LDR R1, R0, #0  
 BRz DONE 
 ADD R3, R1, R2  
 BRnp SKIP  

  
 LD  R1, UPP_A 
 STR R1, R0, #0  
SKIP ADD R0, R0, #1   

BRnzp L1 
DONE LEA R0, STRG 
 PUTS  ; Display the string at the address in R0 

HALT 
LOW_A .FILL x61 ; ASCII Character 'a' 
STRG .STRINGZ "Salt and Pepper" 
UPP_A .FILL x41 ; ASCII Character 'A' 

.END   
 

a. Fill out the following symbol table:       (3 Points) 

SYMBOL ADDRESS 

L1  

 
SKIP  

 
DONE  

 
LOW_A  

 
STRG  

 
UPP_A  

 

 

b. What is the output of this program?       (2 Points) 
 

  



5 

 

Problem 3: Assembly Errors       (3 Points) 

Identify the assembly errors in the following assembly program. 

  .ORIG x3000 

 

  ADD R1, R2, #21 

  ; OR R2, R3, R4 

  

LOOP AND R3, R3, #0 

  ADD R4, R4, R4 

  ADD R3, R3, #-1 

  BRzp NEXT 

 

STRG .STRINGZ "Error" 

 

HALT STR R4, R4, #16 

  TRAP x25 

 

  .END 

 

 

(a) 

 

 

 

 

 

(b) 

 

 

 

 

 

(c) 

  



6 

 

Problem 4: TRAPS (5 Points) 

Suppose the following LC-3 subroutine implements a new service routine called GETS. The 

subroutine will store the input string starting at the address in R0 and then return to normal 

execution. It performs this operation by repeatedly taking input characters from the keyboard 

and storing it in the location specified by R0 until it sees the '\n' character. 

Note: The most significant bit of the KBSR is 1 if keyboard has received a new character. 
 

a. Fill in the blanks. There should be only one instruction per line.  (4 Points) 
 

 .ORIG x0650 
 ST  R0, R0_TMP 

ST  R1, R1_TMP 
 ST  R2, R2_TMP 

L1 LDI R1, KBSR   
(a)______________ ; Check KBSR 

 (b)_____ R2, KBDR ; Load value in the KBDR into R2 

 LD  R1, NEGCHAR 
 ADD R1, R1, R2  
 BRz DONE   ; Check for '\n' 

STR R2, R0, #0 

 ADD R0, R0, #1 
 BRnzp L1 
DONE (c)_______________ 

STR R2, R0, #0  ; Store NULL CHAR 
LD  R2, R2_TMP 
LD  R1, R1_TMP 
LD  R0, R0_TMP 

 (d)________________ 

 
KBSR  .FILL xFE00 ; Address of KBSR 
KBDR  .FILL xFE02 ; Address of KBDR 
NEGCHAR .FILL xFFF6 ; Negative value of character '\n' 

R0_TMP .FILL 0 
R1_TMP .FILL 0 
R2_TMP .FILL 0 

 .END 

 
 

b. Assume the above assembly code is a service routine that can be called using TRAP x55. 

What is the address of the corresponding System Control Block entry and what are its 

contents? Give your answer in hex.      (1 Point) 

 

Address of trap vector table entry Contents at this memory location 

  

  



7 

 

Problem 5: Subroutines (5 Points) 

 

a. There is a problem with the below assembly code segment for a subroutine called 

PUTCH. What is it, and how can you fix the error?     (2 Points) 

  .ORIG x3010 
PUTCH 

  ST  R0, TMP_R0 

  ADD R0, R4, 0 

  OUT   ; TRAP x21 which displays the 

     ; character in R0 

  LD  R0, TMP_R0 

  RET 

TMP_R0 .FILL 0 

  .END 

 

 

 

 

 

 

 

 

 

 

b. Is the above subroutine PUTCH a callee-save or caller-save subroutine? Explain.  

          (1 Point) 
 

 

 

 

 

 

 

c. Given the following initial values of registers, what are the values of the registers after 

the execution of an instruction at address x3030: JSR PUTCH; and before the execution 

of the first instruction of the subroutine.     (2 Points) 
 

Register Initial Final 

R0 0x3010  

R4 0x3030  

R7 0x3010  

PC 0x3030  

  



8 

 

Problem 6: I/O (3 Points) 

Let us monitor the contents of the KBSR (Keyboard Status Register), KBDR (Keyboard Data 

Register), DSR (Display Status Register) and DDR (Display Data Register) during the 

execution of TRAP x23 (IN) in LC-3. The leftmost bit of the block is the MSB and the 

rightmost bit is the LSB of the registers. Note: TRAP x23 (IN) prints prompt to console, 

read and echo a character from the keyboard. 

 

Below fill in the contents of the different registers at the different steps  b, c, and d during the 

execution of the trap handler for TRAP x23. 

a. Initial State: 

KBDR  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

KBSR 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

b. The user types in character “S” on the keyboard, but the character is not read. 

KBDR  

                

KBSR 

                

c. The character “S” is read from the keyboard and no new character is typed. 

KBSR  

                

 

d. The display is ready but the character is not yet written to the Display Data Register. 

DSR  

                

  



9 

 

Problem 7: General Questions       (5 Points) 

Answer the following short answer questions using 1-2 sentences. 

a. What is the difference between Memory Mapped I/O and Special I/O instructions?  

          (2 Points) 
 

 

 

 

 

 

 

 

 

b. Why are two passes required during the assembly process?    (1 Point) 

 

 

 

 

 

 

 

 

 

 

c. What is the difference between a subroutine call and a branch instruction?  (1 Point) 

 

 

 

 

 

 

 

 

 

 

d. What do labels represent in an LC-3 assembly program?    (1 Point) 

 

 

 

 

 
 

  



10 

 

Scratch page. You do not need to turn this page in. 

  



11 

 

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007) 

PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A. 

SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits. 

 15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition 

| 0   0   0   1 |    DR     |    SR1    | 0 | 0   0 |    SR2    |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SR2 also setcc() 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate 

| 0   0   0   1 |    DR     |    SR1    | 1 |       imm5        |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SEXT(imm5) also setcc() 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND  DR, SR1, SR2 ; Bit-wise AND 

| 0   1   0   1 |    DR     |    SR1    | 0 | 0   0 |    SR2    |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SR2 also setcc() 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR,SR1,imm5 ; Bit-wise AND with Immediate 

| 0   1   0   1 |    DR     |    SR1    | 1 |       imm5        |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SEXT(imm5) also setcc() 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx,label (where x={n,z,p,zp,np,nz,nzp}); Branch 

| 0   0   0   0 | n | z | p |              PCoffset9            | GO  ((n and N) OR (z AND Z) OR (p AND P)) 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if(GO is true) then PCPC’+ SEXT(PCoffset9) 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump 

| 1   1   0   0 | 0   0   0 |   BaseR   | 0   0   0   0   0   0 |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  BaseR 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine 

| 0   1   0   0 | 1 |                  PCoffset11               |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  PC’ + SEXT(PCoffset11) 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register 

| 0   1   0   0 | 0 | 0   0 |   BaseR   | 0   0   0   0   0   0 |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp  PC’, PC  BaseR, R7  temp 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative 

| 0   0   1   0 |    DR     |              PCoffset9            |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[PC’ + SEXT(PCoffset9)] also setcc() 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect 

| 1   0   1   0 |    DR     |              PCoffset9            |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DRmem[mem[PC’+SEXT(PCoffset9)]] also setcc() 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset 

| 0   1   1   0 |    DR     |   BaseR   |        offset6        |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[BaseR + SEXT(offset6)] also setcc() 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address 

| 1   1   1   0 |    DR     |              PCoffset9            |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  PC’ + SEXT(PCoffset9) also setcc() 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement 

| 1   0   0   1 |    DR     |     SR    | 1 | 1   1   1   1   1 |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  NOT(SR) also setcc() 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine 

| 1   1   0   0 | 0   0   0 | 1   1   1 | 0   0   0   0   0   0 |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  R7 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt 

| 1   0   0   0 | 0   0   0   0   0   0   0   0   0   0   0   0 |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537). 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative 

| 0   0   1   1 |    SR     |              PCoffset9            |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)]  SR 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect 

| 1   0   1   1 |    SR     |              PCoffset9            |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]]  SR 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset 

| 0   1   1   1 |    SR     |   BaseR   |        offset6        |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)]  SR 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call 

| 1   1   1   1 | 0   0   0   0 |           trapvect8           |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  mem[ZEXT(trapvect8)] 

 

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode  

| 1   1   0   1 |                                               |  

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception 

 15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0 

 

  



12 

 

ASCII Table 

 

Character Hex Character Hex Character Hex Character Hex 

nul 00 sp 20 @ 40 ` 60 

soh 01 ! 21 A 41 a 61 

stx 02 “ 22 B 42 b 62 

etx 03 # 23 C 43 c 63 

eot 04 $ 24 D 44 d 64 

enq 05 % 25 E 45 e 65 

ack 06 & 26 F 46 f 66 

bel 07 ‘  (Apostr.) 27 G 47 g 67 

bs 08 ( 28 H 48 h 68 

ht 09 ) 29 I 49 i 69 

lf 0A * 2A J 4A j 6A 

vt 0B + 2B K 4B k 6B 

ff 0C , (Comma) 2C L 4C l 6C 

cr 0D - 2D M 4D m 6D 

so 0E . (Period) 2E N 4E n 6E 

si 0F / 2F O 4F o 6F 

dle 10 0 30 P 50 p 70 

dc1 11 1 31 Q 51 q 71 

dc2 12 2 32 R 52 r 72 

dc3 13 3 33 S 53 s 73 

dc4 14 4 34 T 54 t 74 

nak 15 5 35 U 55 u 75 

syn 16 6 36 V 56 v 76 

etb 17 7 37 W 57 w 77 

can 18 8 38 X 58 x 78 

em 19 9 39 Y 59 y 79 

sub 1A : 3A Z 5A z 7A 

esc 1B ; 3B [ 5B { 7B 

fs 1C < 3C \ 5C | 7C 

gs 1D = 3D ] 5D } 7D 

rs 1E > 3E ^ 5E ~ 7E 

us 1F ? 3F _  (Undrscre) 5F del 7F 

 


