CS/ECE 252: INTRODUCTION TO COMPUTER ENGINEERING

UNIVERSITY OF WISCONSIN—MADISON

Prof. Gurindar Sohi
TAs: Pradip Vallathol and Junaid Khalid
Examination 4
In Class (50 minutes)

Wednesday, December 12, 2012
Weight: 17.5%

NO: BOOK(S), NOTE(S), OR CALCULATORS OF ANY SORT.

The exam has nine pages. Circle your final answers. Plan your time carefully since some problems are longer than others. You must turn in the pages 1-7.
LAST NAME:

FIRST NAME:

ID#

	Problem
	Maximum Points
	Points Earned

	1
	6
	

	2
	6
	

	3
	6
	

	4
	3
	

	5
	3
	

	6
	6
	

	Total
	30
	

Problem 1:
Assembly Language

(a) Briefly explain the four assembly errors in the following LC-3 program.

(4 Points)
 .ORIG x3000

 LD R2, INPUT

 AND R0, R0, #0

 ADD R1, R0, #1
 BR NEXT
LOOP
 AND R4, R2, R1

 BRz SKIP

 OR R0, R0, #1

SKIP
 ADD R1, R1, R1

 ADD R3, R3, x2F

 LD R6, SKIP

 NOT R6, R6
 BRzp LOOP
INPUT
 .FILL x1997
SKIP
 .FILL x1998
 .END

(b) Which of the following (if any) of the following pseudo-ops can be used multiple times in a single assembly file. Circle all options that apply.

(2 Points)
i. .ORIG

ii. .FILL

iii. .BLKW

iv. .STRINGZ

v. .END
Problem 2:
Two pass Assembly Process

An LC-3 assembly language program in given below:
 .ORIG x3000

 AND R3, R3, #0
 LD R0, M0
 LD R1, M1
 LD R2, M2

LOOP
 ADD R3, R3, #1
 ADD R3, R3, R2
 ADD R0, R0, #-1
 BRn LOOP

DONE ST R3, RESULT

 HALT

RESULT .FILL x0000

M0 .BLKW #5

M1 .STRINGZ “CS-ECE-252”
M2 .FILL x0009

 .END
(a) A symbol table is created during the first pass by the assembler. Fill in the following symbol table for the above program:

(4 Points)
	Symbol
	Address

	
	

(b) The assembly program is converted into a binary file during the second pass by the assembler. Fill in the binary instructions at the following memory locations:

(2 Points)
	Address
	Instructions

	x3001
	

	x3007
	

Problem 3:
Traps and Subroutines

(6 Points)
The following LC-3 assembly program takes a single character as input from the user. If the input character is a digit (0-9), it prints the message “Is a digit” on the display. This process is continued until the user enters the termination character ‘#’, and the program halts. Fill in the missing parts of the program indicated by ________.

.ORIG x3000

GETINPUT
TRAP ______

; Input a character from the user

; (Do not echo it on the display)

LD R1, TERMCHAR
; termination check

ADD R1, R0, R1

; Branch to END on ‘#’

; Call CHECKINPUT subroutine

BR GETINPUT

END

HALT

CHECKINPUT

________, SAVELOC
; Save something here

LD R2, DIGIT0

ADD R2, R0, R2

BRn RELOAD

LD R2, DIGIT9

ADD R2, R0, R2

BRp RELOAD
DISP_IS

; print a string

TRAP ______

; to the display
RELOAD
________, SAVELOC
; Load something here

RET

; Data
SAVELOC
.BLKW

#1

STR_IS
.STRINGZ
"Is a digit\n"

STR_NOT
.STRINGZ
"Not a Digit\n"

TERMCHAR
.FILL

0xFFDD
; negative ASCII value of ‘#’
DIGIT0
.FILL

0xFFD0
; negative ASCII value of ‘0’
DIGIT9
.FILL

0xFFC7
; negative ASCII value of ‘9’

.END
Problem 4:
I/O
a) Briefly explain the difference between interrupt-driven I/O and polling based I/O?

(2 Points)
b) What is the main reason to prefer asynchronous I/O over synchronous I/O in recent microprocessor designs?

(1 Point)
Problem 5: Trap Handling

(3 Points)
List the main steps of the TRAP mechanism involved in executing the instruction TRAP x67.
Problem 6:
Short Answer Questions
Answer the flowing questions briefly.

a) What important feature does the instruction JSRR provide that JSR does not?

(1 Point)
b) Explain briefly the problem that the callee-save and the caller-save approaches are trying to solve.

(2 Point)
c) How many trap service routines can be defined in LC-3?

(1 Point)
d) What is the use of Comments in an assembly program?

(1 Point)
e) What happens during the linking phase of an assembly program?
(1 Point)
Extra page for hand written work, if needed. This page is not required and will NOT affect your grade. You don’t even need to hand this page in.
ASCII Table

	Character
	Hex
	Character
	Hex
	Character
	Hex
	Character
	Hex

	nul
	00
	sp
	20
	@
	40
	`
	60

	soh
	01
	!
	21
	A
	41
	a
	61

	stx
	02
	“
	22
	B
	42
	b
	62

	etx
	03
	#
	23
	C
	43
	c
	63

	eot
	04
	$
	24
	D
	44
	d
	64

	enq
	05
	%
	25
	E
	45
	e
	65

	ack
	06
	&
	26
	F
	46
	f
	66

	bel
	07
	‘ (Apostr.)
	27
	G
	47
	g
	67

	bs
	08
	(
	28
	H
	48
	h
	68

	ht
	09
)
	29
	I
	49
	i
	69

	lf
	0A
	*
	2A
	J
	4A
	j
	6A

	vt
	0B
	+
	2B
	K
	4B
	k
	6B

	ff
	0C
	, (Comma)
	2C
	L
	4C
	l
	6C

	cr
	0D
	-
	2D
	M
	4D
	m
	6D

	so
	0E
	. (Period)
	2E
	N
	4E
	n
	6E

	si
	0F
	/
	2F
	O
	4F
	o
	6F

	dle
	10
	0
	30
	P
	50
	p
	70

	dc1
	11
	1
	31
	Q
	51
	q
	71

	dc2
	12
	2
	32
	R
	52
	r
	72

	dc3
	13
	3
	33
	S
	53
	s
	73

	dc4
	14
	4
	34
	T
	54
	t
	74

	nak
	15
	5
	35
	U
	55
	u
	75

	syn
	16
	6
	36
	V
	56
	v
	76

	etb
	17
	7
	37
	W
	57
	w
	77

	can
	18
	8
	38
	X
	58
	x
	78

	em
	19
	9
	39
	Y
	59
	y
	79

	sub
	1A
	:
	3A
	Z
	5A
	z
	7A

	esc
	1B
	;
	3B
	[
	5B
	{
	7B

	fs
	1C
	<
	3C
	\
	5C
	|
	7C

	gs
	1D
	=
	3D
]
	5D
	}
	7D

	rs
	1E
	>
	3E
	^
	5E
	~
	7E

	us
	1F
	?
	3F
	_ (Undrscre)
	5F
	del
	7F

LC-3 Instruction Set (Entered by Mark D. Hill on 03/14/2007; last update 03/15/2007)
PC’: incremented PC. setcc(): set condition codes N, Z, and P. mem[A]:memory contents at address A.
SEXT(immediate): sign-extend immediate to 16 bits. ZEXT(immediate): zero-extend immediate to 16 bits.

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, SR2 ; Addition

| 0 0 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ADD DR, SR1, imm5 ; Addition with Immediate

| 0 0 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 + SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR, SR1, SR2 ; Bit-wise AND

| 0 1 0 1 | DR | SR1 | 0 | 0 0 | SR2 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SR2 also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ AND DR,SR1,imm5 ; Bit-wise AND with Immediate

| 0 1 0 1 | DR | SR1 | 1 | imm5 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  SR1 AND SEXT(imm5) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ BRx,label (where x={n,z,p,zp,np,nz,nzp}); Branch

| 0 0 0 0 | n | z | p | PCoffset9 | GO  ((n and N) OR (z AND Z) OR (p AND P))

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ if(GO is true) then PCPC’+ SEXT(PCoffset9)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JMP BaseR ; Jump

| 1 1 0 0 | 0 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  BaseR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSR label ; Jump to Subroutine

| 0 1 0 0 | 1 | PCoffset11 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  PC’ + SEXT(PCoffset11)

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ JSRR BaseR ; Jump to Subroutine in Register

| 0 1 0 0 | 0 | 0 0 | BaseR | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ temp  PC’, PC  BaseR, R7  temp

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LD DR, label ; Load PC-Relative

| 0 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[PC’ + SEXT(PCoffset9)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDI DR, label ; Load Indirect

| 1 0 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DRmem[mem[PC’+SEXT(PCoffset9)]] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LDR DR, BaseR, offset6 ; Load Base+Offset

| 0 1 1 0 | DR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  mem[BaseR + SEXT(offset6)] also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ LEA, DR, label ; Load Effective Address

| 1 1 1 0 | DR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  PC’ + SEXT(PCoffset9) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ NOT DR, SR ; Bit-wise Complement

| 1 0 0 1 | DR | SR | 1 | 1 1 1 1 1 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ DR  NOT(SR) also setcc()

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RET ; Return from Subroutine

| 1 1 0 0 | 0 0 0 | 1 1 1 | 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ PC  R7

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ RTI ; Return from Interrupt

| 1 0 0 0 | 0 0 0 0 0 0 0 0 0 0 0 0 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ See textbook (2nd Ed. page 537).

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ST SR, label ; Store PC-Relative

| 0 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[PC’ + SEXT(PCoffset9)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STI, SR, label ; Store Indirect

| 1 0 1 1 | SR | PCoffset9 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[mem[PC’ + SEXT(PCoffset9)]]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ STR SR, BaseR, offset6 ; Store Base+Offset

| 0 1 1 1 | SR | BaseR | offset6 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ mem[BaseR + SEXT(offset6)]  SR

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ TRAP ; System Call

| 1 1 1 1 | 0 0 0 0 | trapvect8 |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ R7  PC’, PC  mem[ZEXT(trapvect8)]

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ ; Unused Opcode

| 1 1 0 1 | |

+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+ Initiate illegal opcode exception

 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
TRAP CODES
[image: image1.png]Equivalent

Description

TRAP x25

Halt execution and print message to
console.

IN TRAP x23 | Print prompt on console,
read (and echo) one character from keybd.
Character stored in R0[7:0].

OUT |TRAP x21 |Write one character (in R0O[7:0]) to console.

GETC |TRAP x20 |Read one character from keyboard.
Character stored in R0[7:0].

PUTS |TRAP x22 |Write null-terminated string to console.

Address of string is in RO.

- 5 -

