
CS/ECE 752 ADVANCED COMPUTER ARCHITECTURE I
HOMEWORK # 2

(Due by 11:59 AM on Monday, Feb 22, via upload of PDF to Canvas)
Contact Haocheng Xiao (hxiao55 @wisc.edu) for questions

1. (6 points)
Assume that in a particular program, 15% of the instructions are branches. The
remaining 85% of the instructions has a CPI of 1.2. Consider a microarchitecture
design A that does not have a branch predictor and has to expend 2 cycles for every
branch instruction. Determine the CPI of design A.

Consider another design B that has a branch predictor with an accuracy of 90%.
While a correct prediction (in B) requires only 1 cycle, a misprediction requires 3
cycles for the branch to execute. Determine the CPI of design B.

Consider yet another design C that has a branch predictor with an accuracy of 60%,
and a branch execution time of 1 cycle for correct prediction and 5 cycles for
misprediction. Determine the CPI of design C.

Which of these designs are the best and the worst?

2. (12 points, 4+4+4)
Answer the following questions based on the code sequence given in Figure 1.

Figure 1. Code and latencies for Problem 2

(a) What would be the baseline performance (in cycles, per loop iteration) of the

code sequence if no new instruction execution could be initiated until the
previous instruction execution had completed? Ignore front-end fetch and
decode. Assume for now that execution does not stall for lack of the next

mailto:kagrawal6@wisc.edu

instruction, but only one instruction/cycle can be issued. Assume the branch is
taken.

(b) Consider a multiple-issue design. Suppose you have two execution pipelines,
each capable of beginning execution of one instruction per cycle, and enough
fetch/decode bandwidth in the front end so that it will not stall your execution.
Assume results can be immediately forwarded from one execution unit to
another, or to itself. Further assume that the only reason an execution pipeline
would stall is to observe a true data dependence. Now how many cycles does
the loop require?

(c) In the multiple-issue design of (b), you may have recognized some subtle
issues. Even though the two pipelines have the exact same instruction
repertoire, they are not identical nor interchangeable, because there is an
implicit ordering between them that must reflect the ordering of the instructions
in the original program. If instruction N + 1 begins execution in Execution Pipe
1 at the same time that instruction N begins in Pipe 0, and N + 1 happens to
require a shorter execution latency than N, then N + 1 will complete before
N(even though program ordering would have implied otherwise). Recite at
least two reasons why that could be hazardous and will require special
considerations in the microarchitecture. Give an example of two instructions
from the code in Figure 1 that demonstrate this hazard.

3. (12 points) Introduction to gem5
Learning gem5 book - http://learning.gem5.org/book/

Step 1: Compile gem5
Go through the Introduction and Building gem5 pages of the Learning gem5 book.
Make sure to get your gem5 install working before moving onto the next step. It is
advised to use Linux for this assignment.

NOTE : There is one small issue with the compilation command in the Learning gem5
book: it will not compile the MinorCPU model by default. Use the following command
instead:

scons build/X86/gem5.opt -jX
CPU_MODELS=AtomicSimpleCPU,TimingSimpleCPU,O3CPU,MinorCPU

Step 2: gem5 Book, Part I
For this assignment, the most important parts of the Learning gem5 book are:

● downloading and building gem5,
● creating a simple configuration script,
● how to run gem5,
● adding some complexity to your first script by adding a two-level cache

hierarchy,
● how to parse the gem5 output and understand the statistics, and

http://learning.gem5.org/book/
http://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2018/handouts/hw1.html
http://pages.cs.wisc.edu/~sinclair/courses/cs752/fall2018/handouts/hw1.html

● using the default configuration scripts (se.py).

Step 3: Exercise
In this part, we will run applications from the GAP (Graph Algorithms Platform)
benchmark suite on gem5 using se.py config file.

- Change directories to your gem5 directory.
- Then, clone the gapbs repository from https://github.com/sbeamer/gapbs

using the git clone command.
- Go to gapbs/ directory and run make command. This should generate the

binaries for all applications.
- You can run make test to verify if the tests pass on your build.

You will perform a simple characterization of one of
(a) tc, with arguments “-g 15 -n 1” [if your last name begins with A-I]
(b) pr, with arguments “-g 20 -n 1” [if your last name begins with J-Q]
(c) bfs, with arguments “-g 17 -n 1” [if your last name begins with R-Z]

Submit the following.
Report the IPC and the cache hierarchy miss rates for:

Cache hierarchy for parts (a) and (b):
L1 instruction cache: 64KB 4-way set associative with 64B lines
L1 data cache: 64KB 4-way set associative with 64B lines
L2 cache: 256KB 8-way set associative L2 cache with 64B lines

(a) Simulate using the in-order CPU (MinorCPU) for the cache hierarchy
(b) Simulate using the out-of-order CPU (DerivO3CPU) for the cache hierarchy
(c) Simulate using the out-of-order CPU (DerivO3CPU), and changing the cache

hierarchy to the following setting:

Two Level Cache:
L1 instruction cache: 32KB 2-way set associative with 64B lines
L1 data cache: 32KB 2-way set associative with 64B lines
L2 cache: 512KB 8-way set associative L2 cache with 64B lines

For all of the above tests, fast-forward 200M instructions, and simulate for next 80M
instructions. The relevant config parameters can be found in
configs/common/Options.py

https://github.com/sbeamer/gapbs

