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This Unit: Shared Memory Multiprocessors

• Three issues

• Cache coherence

• Synchronization

• Memory consistency

• Two cache coherence approaches

• “Snooping” (SMPs): < 16 processors

• “Directory”/Scalable: lots of processors
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Thread-Level Parallelism

• Thread-level parallelism (TLP)
• Collection of asynchronous tasks: not started and stopped together

• Data shared loosely, dynamically

• Example: database/web server (each query is a thread)
• accts is shared, can’t register allocate even if it were scalar

• id and amt are private variables, register allocated to r1, r2

• Focus on this

struct acct_t { int bal; };

shared struct acct_t  accts[MAX_ACCT];

int id,amt;

if (accts[id].bal >= amt)

{

accts[id].bal -= amt;

spew_cash();

}

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash
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Shared Memory

• Shared memory

• Multiple execution contexts sharing a single address space

• Multiple programs (MIMD)

• Or more frequently: multiple copies of one program (SPMD) 

• Implicit (automatic) communication via loads and stores

+ Simple software

• No need for messages, communication happens naturally

– Maybe too naturally

• Supports irregular, dynamic communication patterns

• Both DLP and TLP

– Complex hardware

• Must create a uniform view of memory

• Several aspects to this as we will see
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Shared-Memory Multiprocessors

P1 P2 P3 P4

Memory System

• Provide a shared-memory abstraction

• Familiar and efficient for programmers
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• Provide a shared-memory abstraction

• Familiar and efficient for programmers

Shared-Memory Multiprocessors

Interconnection Network
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Paired vs. Separate Processor/Memory?

• Separate processor/memory
• Uniform memory access (UMA): equal latency to all memory

+ Simple software, doesn’t matter where you put data

– Lower peak performance

• Bus-based UMAs common: symmetric multi-processors (SMP)

• Paired processor/memory
• Non-uniform memory access (NUMA): faster to local memory

– More complex software: where you put data matters

+ Higher peak performance: assuming proper data placement
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Shared vs. Point-to-Point Networks

• Shared network: e.g., bus (left) or crossbar (not shown)
+ Low latency

– Low bandwidth: expensive to scale beyond ~16 processors

+ Shared property simplifies cache coherence protocols (later)

• Point-to-point network: e.g., mesh or ring (right)
– Longer latency: may need multiple “hops” to communicate

+ Higher bandwidth: scales to 1000s of processors

– Cache coherence protocols are more complex
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Organizing Point-To-Point Networks

• Network topology: organization of network
• Tradeoff performance (connectivity, latency, bandwidth)  cost

• Router chips
• Networks that require separate router chips are indirect

• Networks that use processor/memory/router packages are direct

+ Fewer components, “Glueless MP”

• Distinction blurry in the multicore era

• Point-to-point network examples
• Indirect tree (left)

• Direct mesh or ring (right)
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Implementation #1: Snooping Bus MP 

• Bus-based systems
• Typically small: 2–8 (maybe 16) processors

• Typically processors split from memories (UMA)

• Sometimes multiple processors on single chip (CMP)

• Symmetric multiprocessors (SMPs)

• Common

• Crossbar-based systems similar, but higher B/W and cost
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Implementation #2: Scalable MP

• General point-to-point network-based systems

• Typically processor/memory/router blocks (NUMA)

• Glueless MP: no need for additional “glue” chips

• Can be arbitrarily large: 1000’s of processors

• Massively parallel processors (MPPs)

• Increasingly used for small systems

• Eliminates need for buses, enables point-to-point wires
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Issues for Shared Memory Systems

• Three in particular

• Cache coherence

• Synchronization

• Memory consistency model

• Not unrelated to each other

• Different solutions for SMPs and MPPs

• Will discuss SMPs only

• CMPs? SMP/MPP mix due

• Different options for on-chip networks
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An Example Execution

• Two $100 withdrawals from account #241 at two ATMs

• Each transaction maps to thread on different processor

• Track accts[241].bal (address is in r3)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

CPU0 MemCPU1
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No-Cache, No-Problem

• Scenario I: processors have no caches

• No problem

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash
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Cache Incoherence

• Scenario II: processors have write-back caches
• Potentially 3 copies of accts[241].bal: memory, p0$, p1$

• Can get incoherent (inconsistent)

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash
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D:400 500D:400
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Write-Thru Alone Doesn’t Help

• Scenario II: processors have write-thru caches
• This time only 2 (different) copies of accts[241].bal

• No problem? What if another withdrawal happens on processor 0?

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500
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V:400 300V:300
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Hardware Cache Coherence

• Absolute coherence

• All copies have same data at all times

– Hard to implement and slow

+ Not strictly necessary

• Relative coherence

• Temporary incoherence OK (e.g., write-back)

• As long as all loads get right values

• i.e., no one looks at incoherent data

• Coherence controller:

• Examines bus traffic (addresses and data)

• Executes coherence protocol

• What to do with local copy when you see 
different things happening on bus
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Bus-Based Coherence Protocols

• Bus-based coherence protocols
• Also called snooping or broadcast

• ALL controllers see ALL transactions IN SAME ORDER

• Bus is the ordering point

• Protocol relies on all processors seeing a total order of requests

• Simplest protocol: write-thru cache coherence
• Two processor-side events

• R: read 

• W: write

• Two bus-side events

• BR: bus-read, read miss on another processor

• BW: bus-write, write thru by another processor
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Write-Thru Coherence Protocol

• VI (valid-invalid) protocol
• Two states (per block)

• V (valid): have block

• I (invalid): don’t have block

+ Can implement with valid bit

• Protocol diagram (left)
• Convention: eventgenerated-event

• Summary

• If anyone wants to write block

• Give it up: transition to I state

• Read miss gets data from memory (as normal)

• This is an invalidate protocol

• Simple, but wastes a lot of bandwidth
• May be used for L1 D$
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Coherence for Writeback caches

• Writeback cache actions
• Three processor-side events

• R: read 

• W: write

• WB: write-back (select block for replacement)

• Two bus-side events

• BR: bus-read, read miss on another processor

• BW: bus-write, write miss on another processor

• CB: copy-back, send block back to memory or other processor

• Point-to-point network protocols also exist
• Typical solution is a directory protocol
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VI (MI) Coherence Protocol

• VI (valid-invalid) protocol: aka MI
• Two states (per block)

• V (valid): have block

• aka M (modified) when block written

• I (invalid): don’t have block

• Protocol summary
• If anyone wants to read/write block

• Give it up: transition to I state

• copy-back on replacement or other request

• Miss gets latest copy (memory or processor)

• This is an invalidate protocol

• Update protocol: copy data, don’t invalidate
• Sounds good, but wastes a lot of bandwidth
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VI Protocol (Write-Back Cache)

• ld by processor 1 generates a BR

• processor 0 responds by CB its dirty copy, transitioning to I

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,&accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

V:500 500

V:400 500

I:CB 400V:400

400V:300
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VI → MSI: A realistic coherence protocol

• VI protocol is inefficient

– Only one cached copy allowed in entire system

– Multiple copies can’t exist even if read-only

• Not a problem in example

• Big problem in reality

• MSI (modified-shared-invalid)

• Fixes problem: splits “V” state into two states

• M (modified): local dirty copy

• S (shared): local clean copy

• Allows either

• Multiple read-only copies (S-state)  --OR--

• Single read/write copy (M-state)
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MSI Protocol (Write-Back Cache)

• ld by processor 1 generates a BR

• processor 0 responds by CB its dirty copy, transitioning to S

• st by processor 1 generates a BW

• processor 0 responds by transitioning to I

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

S:500 500

M:400 500

S:400 400S:400

I:     400M:300
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One Down, Two To Go

• Coherence only one part of the equation

• Synchronization

• Consistency
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The Need for Synchronization

• We’re not done, consider the following execution

• Write-back caches (doesn’t matter, though), MSI protocol

• What happened?

• We got it wrong … and coherence had nothing to do with it

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

S:500 500

S:500 500S:500

M:400 400I:    

I:    400M:400
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The Need for Synchronization

• What really happened?
• Access to accts[241].bal should conceptually be atomic

• Transactions should not be “interleaved”

• But that’s exactly what happened

• Same thing can happen on a multiprogrammed uniprocessor!

• Solution: synchronize access to accts[241].bal

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

500

S:500 500

S:500 500S:500

M:400 400I:    

I:    400M:400
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Synchronization

• Synchronization: second issue for shared memory
• Regulate access to shared data

• Software constructs: semaphore, monitor

• Hardware primitive: lock

• Operations: acquire(lock)and release(lock)

• Region between acquire and release is a critical section

• Must interleave acquire and release

• Second consecutive acquire will fail (actually it will block)

struct acct_t { int bal; };

shared struct acct_t  accts[MAX_ACCT];

shared int lock;

int id,amt;

acquire(lock);

if (accts[id].bal >= amt) {

accts[id].bal -= amt;

spew_cash(); }

release(lock);

// critical section
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Working Spinlock: Test-And-Set

• ISA provides an atomic lock acquisition instruction

• Example: test-and-set

t&s r1,0(&lock)

• Atomically executes

ld r1,0(&lock)

st 1,0(&lock)

• If lock was initially free (0), acquires it (sets it to 1)

• If lock was initially busy (1), doesn’t change it

• New acquire sequence

A0: t&s r1,0(&lock)

A1: bnez r1,A0

• More general atomic mechanisms

• swap, exchange, fetch-and-add, compare-and-swap
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Test-and-Set Lock Correctness

+ Test-and-set lock actually works

• Processor 1 keeps spinning

Processor 0

A0: t&s r1,0(&lock)

A1: bnez r1,#A0

CRITICAL_SECTION

Processor 1

A0: t&s r1,0(&lock)

A1: bnez r1,#A0

A0: t&s r1,0(&lock)

A1: bnez r1,#A0
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Memory Consistency

• Memory coherence

• Creates globally uniform (consistent) view…

• Of a single memory location (in other words: cache line)

– Not enough

• Cache lines A and B can be individually consistent…

• But inconsistent with respect to each other

• Memory consistency

• Creates globally uniform (consistent) view…

• Of all memory locations relative to each other

• Who cares? Programmers

– Globally inconsistent memory creates mystifying behavior
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Coherence vs. Consistency

• Intuition says: P1 prints A=1

• Coherence says?

• Absolutely nothing!
• P1 can see P0’s write of flag before write of A!!! How?

• Maybe coherence event of A is delayed somewhere in network

• Maybe P0 has a coalescing write buffer that reorders writes

• Imagine trying to figure out why this code sometimes 
“works” and sometimes doesn’t

• Real systems act in this strange manner

A=flag=0;

Processor 0

A=1;

flag=1;

Processor 1

while (!flag); // spin

print A;
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Sequential Consistency (SC)

• Sequential consistency (SC)

• Formal definition of memory view programmers expect

• Processors see their own loads and stores in program order

+ Provided naturally, even with out-of-order execution

• But also: processors see others’ loads and stores in program order

• And finally: all processors see same global load/store ordering

– Last two conditions not naturally enforced by coherence

• Lamport definition: multiprocessor ordering…

• Corresponds to some sequential interleaving of uniprocessor orders

• I.e., indistinguishable from multi-programmed uni-processor

A=flag=0;

Processor 0

A=1;

flag=1;

Processor 1

while (!flag); // spin

print A;
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Enforcing SC

• What does it take to enforce SC?

• Definition: all loads/stores globally ordered

• Translation: coherence events of all loads/stores globally ordered

• When do coherence events happen naturally?

• On cache access

• For stores: retirement → in-order → good

• No write buffer? Yikes, but OK with write-back D$

• For loads: execution → out-of-order → bad

– No out-of-order execution? Double yikes

• Is it true that multi-processors cannot be out-of-order?

– No, but it makes OoO a little trickier 

• Treat out-of-order loads and stores as speculative

• Treat certain coherence events as mispeculations

• E.g., a BW request to block with speculative load pending
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Multiprocessors Are Here To Stay

• Moore’s law is making the multiprocessor a commodity part

• >1B transistors on a chip, what to do with all of them?

• Not enough ILP to justify a huge uniprocessor

• Really big caches? thit increases, diminishing %miss returns

• Chip multiprocessors (CMPs)

• Multiple full processors on a single chip

• Just about every chip these days

• Multiprocessors a huge part of computer architecture

• Another entire course on multiprocessor architecture
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Multiprocessing & Power Consumption

• Multiprocessing can be very power efficient

• Recall: dynamic voltage and frequency scaling
• Performance vs power is NOT linear

• Example: Intel’s Xscale 

• 1 GHz → 200 MHz reduces energy used by 30x

• Impact of parallel execution
• What if we used 5 Xscales at 200Mhz?

• Similar performance as a 1Ghz Xscale, but 1/6th the energy

• 5 cores * 1/30th = 1/6th

• Assumes parallel speedup (a difficult task)
• Remember Ahmdal’s law
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Shared Memory Summary

• Three aspects to global memory space illusion

• Coherence: consistent view of individual cache lines

• Implementation? SMP: snooping, MPP: directories

• Synchronization: regulated access to shared data

• Key feature: atomic lock acquisition operation (e.g., t&s)

• Consistency: consistent global view of all memory locations

• Programmers intuitively expect sequential consistency (SC)

• How do we implement this

• Correctly

• Cost-Effectively

• TAKE CS/ECE 757!!



CS/ECE 752 (Sohi): Shared-Memory Multiprocessors 38



CS/ECE 752 (Sohi): Shared-Memory Multiprocessors 39

A Protocol Optimization

• Cache-to-cache transfers (CCT)

• If data you need is in both memory and other cache…

• Better to get it from the other cache

• SRAM is faster than DRAM

• Especially true if cache block is dirty

• Otherwise, writeback followed by memory read

• If multiple blocks have copies, who does CCT?

• One cache designated as “owner”
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Another Protocol Optimization

• Most modern protocols also include E (exclusive) state

• Interpretation: can write to this block, but haven’t yet

• Why is this state useful?
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Cache Coherence and Cache Misses

• A coherence protocol can effect a cache’s miss rate (%miss)

• Requests from other processors can invalidate (evict) local blocks

• 4C miss model: compulsory, capacity, conflict, coherence

• Coherence miss: miss to a block evicted by bus event

• As opposed to a processor event

• Example: direct-mapped 16B cache, 4B blocks, nibble notation

S:0000, M:0010, S:0020, S:0030
Conflict Miss

Coherence Miss

Compulsory Miss

S➔I Invalidation

Nothing

Upgrade Miss

Outcome

Rd:0030
S:0000, M:0010, S:0020, S:3030

Rd:0020
S:0000, M:0010, I:0020, S:3030

Rd:3030
S:0000, M:0010, I:0020, M:0030

BusWr:0020
S:0000, M:0010, S:0020, M:0030

BusRd:0000
S:0000, M:0010, S:0020, M:0030

Wr:0030
S:0000, M:0010, S:0020, S:0030

EventCache contents (state:address)
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Cache Coherence and Cache Misses

• Cache parameters interact with coherence misses

– Larger capacity: more coherence misses

• But offset by reduction in capacity misses

– Increased block size: more coherence misses

• False sharing: “sharing” a cache line without sharing data

• Creates pathological “ping-pong” behavior

• Careful data placement may help, but is difficult

• Number of processors also affects coherence misses

– More processors: more coherence misses
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Coherence Bandwidth Requirements

• How much address bus bandwidth does snooping need?

• Well, coherence events generated on…

• Misses (only in L2, not so bad)

• Dirty replacements

• Some parameters

• 2 GHz CPUs, 2 IPC, 33% memory operations, 

• 2% of which miss in the L2, 50% of evictions are dirty

• (0.33 * 0.02) + (0.33 * 0.02 * 0.50)) = 0.01 events/insn

• 0.01 events/insn * 2 insn/cycle * 2 cycle/ns = 0.04 events/ns

• Request: 0.04 events/ns * 4 B/event = 0.16 GB/s = 160 MB/s

• Data Response: 0.04 events/ns * 64 B/event = 2.56 GB/s

• That’s 2.5 GB/s … per processor

• With 16 processors, that’s 40 GB/s!

• With 128 processors, that’s 320 GB/s!!

• Yes, you can use multiple buses… but that hinders global ordering
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More Coherence Bandwidth

• Bus bandwidth is not the only problem

• Also processor snooping bandwidth

• Recall: snoop implies matching address against current cache tags

• Just a tag lookup, not data

• 0.01 events/insn * 2 insn/cycle = 0.01 events/cycle per processor

• With 16 processors, each would do 0.16 tag lookups per cycle

±Add a port to the cache tags … OK

• With 128 processors, each would do 1.28 tag lookups per cycle

• If caches implement inclusion (L1 is strict subset of L2)

– Additional snooping ports only needed on L2, still bad though

• Upshot: bus-based coherence doesn’t scale beyond 8–16
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Scalable Cache Coherence

• Scalable cache coherence: two part solution

• Part I: bus bandwidth

• Replace non-scalable bandwidth substrate (bus)…

• …with scalable bandwidth one (point-to-point network, e.g., mesh)

• Part II: processor snooping bandwidth

• Interesting: most snoops result in no action

• For loosely shared data, other processors probably 

• Replace non-scalable broadcast protocol (spam everyone)…

• …with scalable directory protocol (only spam processors that care)
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Directory Coherence Protocols

• Observe: physical address space statically partitioned

+ Can easily determine which memory module holds a given line

• That memory module sometimes called “home” 

– Can’t easily determine which processors have line in their caches

• Bus-based protocol: broadcast events to all processors/caches

±Simple and fast, but non-scalable

• Directories: non-broadcast coherence protocol

• Extend memory to track caching information

• For each physical cache line whose home this is, track:

• Owner: which processor has a dirty copy (I.e., M state)

• Sharers: which processors have clean copies (I.e., S state)

• Processor sends coherence event to home directory

• Home directory only sends events to processors that care
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MSI Directory Protocol

• Processor side

• Directory follows its own protocol (obvious in principle)

• Similar to bus-based MSI

• Same three states

• Same five actions (keep BR/BW names)

• Minus grayed out arcs/actions

• Bus events that would not trigger action anyway

+ Directory won’t bother you unless you need to act

I

M

W


B
W

B
W


W
B

, 
W

B


R/W

BR/BW

S

WBW

R/BR

BRWB

P0 P1

Dir

3 hop miss

P0

Dir

2 hop miss
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Directory MSI Protocol

• ld by P1 sends BR to directory

• Directory sends BR to P0, P0 sends P1 data, does WB, goes to S

• st by P1 sends BW to directory

• Directory sends BW to P0, P0 goes to I

Processor 0

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

Processor 1

0: addi r1,accts,r3

1: ld 0(r3),r4

2: blt r4,r2,6

3: sub r4,r2,r4

4: st r4,0(r3)

5: call spew_cash

–:–:500

S:500 S:0:500

M:400 M:0:500

S:400 S:0,1:400S:400

M:1:400M:300

P0       P1    Directory

(stale)
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Directory Flip Side: Latency

• Directory protocols

+ Lower bandwidth consumption → more scalable

– Longer latencies

• Two read miss situations

• Unshared block: get data from memory

• Bus: 2 hops (P0→memory→P0)

• Directory: 2 hops (P0→memory→P0)

• Shared or exclusive block: get data from other processor (P1)

• Assume cache-to-cache transfer optimization

• Bus: 2 hops (P0→P1→P0)

– Directory: 3 hops (P0→memory→P1→P0)

• Common, with many processors high probability someone has it

P0 P1

Dir

3 hop miss
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Directory Flip Side: Complexity

• Latency not only issue for directories
• Subtle correctness issues as well

• Stem from unordered nature of underlying inter-connect

• Individual requests to single cache line must appear atomic 
• Bus: all processors see all requests in same order

• Atomicity automatic

• Point-to-point network: requests may arrive in different orders

• Directory has to enforce atomicity explicitly

• Cannot initiate actions on request B…

• Until all relevant processors have completed actions on request A

• Requires directory to collect acks, queue requests, etc.

• Directory protocols
• Obvious in principle

– Extremely complicated in practice
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Coherence on Real Machines

• Many uniprocessors designed with on-chip snooping logic

• Can be easily combined to form SMPs

• E.g., Intel Pentium4 Xeon

• Larger scale (directory) systems built from smaller SMPs

• E.g., Sun Wildfire, NUMA-Q, IBM Summit

• Some shared memory machines are not cache coherent

• E.g., CRAY-T3D/E

• Shared data is uncachable

• If you want to cache shared data, copy it to private data section

• Basically, cache coherence implemented in software

• Have to really know what you are doing as a programmer
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Best of Both Worlds?

• Ignore processor snooping bandwidth for a minute

• Can we combine best features of snooping and directories?
• From snooping: fast 2-hop cache-to-cache transfers

• From directories: scalable point-to-point networks

• In other words…

• Can we use broadcast on an unordered network?
• Yes, and most of the time everything is fine

• But sometimes it isn’t … data race

• Token Coherence (TC)
• An unordered broadcast snooping protocol … without data races

• Interesting, but won’t talk about here
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Spin Lock Strawman (Does not work)

• Spin lock: software lock implementation
• acquire(lock): while (lock != 0); lock = 1;

• “Spin” while lock is 1, wait for it to turn 0

A0:  ld 0(&lock),r6

A1:  bnez r6,A0

A2:  addi r6,1,r6

A3:  st r6,0(&lock)

• release(lock): lock = 0;

R0:  st r0,0(&lock)     // r0 holds 0
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Spin Lock Strawman (Does not work)

• Spin lock makes intuitive sense, but doesn’t actually work
• Loads/stores of two acquire sequences can be interleaved

• Lock acquire sequence also not atomic

• Definition of “squeezing toothpaste”

• Note, release is trivially atomic

Processor 0

A0: ld 0(&lock),r6

A1: bnez r6,#A0

A2: addi r6,1,r6

A3: st r6,0(&lock)

CRITICAL_SECTION

Processor 1

A0: ld r6,0(&lock)

A1: bnez r6,#A0

A2: addi r6,1,r6

A3: st r6,0(&lock)

CRITICAL_SECTION
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Better Implementation: SYSCALL Lock

• Implement lock in a SYSCALL

• Kernel can control interleaving by disabling interrupts

+ Works… 

– But only in a multi-programmed uni-processor

– Hugely expensive in the common case, lock is free

ACQUIRE_LOCK:

A0: enable_interrupts

A1: disable_interrupts

A2: ld r6,0(&lock)

A3: bnez r6,#A0

A4: addi r6,1,r6

A5: st r6,0(&lock)

A6: enable_interrupts

A7: jr $r31

atomic
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Test-and-Set Lock Performance

– But performs poorly in doing so

• Consider 3 processors rather than 2

• Processor 0 (not shown) has the lock and is in the critical section

• But what are processors 1 and 2 doing in the meantime?

• Loops of t&s, each of which includes a st

– Taking turns invalidating each others cache lines

– Generating a ton of useless bus (network) traffic

Processor 1

A0: t&s r1,0(&lock)

A1: bnez r1,#A0

A0: t&s r1,0(&lock)

A1: bnez r1,#A0

Processor 2

A0: t&s r1,0(&lock)

A1: bnez r1,#A0

A0: t&s r1,0(&lock)

A1: bnez r1,#A0

M:1 1I: 

I: 1M:1

M:1 1I: 

I: 1M:1

I: 1M:1
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Test-and-Test-and-Set Locks

• Solution: test-and-test-and-set locks
• New acquire sequence

A0: ld r1,0(&lock)

A1: bnez r1,A0

A2: addi r1,1,r1

A3: t&s r1,0(&lock)

A4: bnez r1,A0

• Within each loop iteration, before doing a t&s

• Spin doing a simple test (ld) to see if lock value has changed

• Only do a t&s (st) if lock is actually free

• Processors can spin on a busy lock locally (in their own cache)

• Less unnecessary bus traffic
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Test-and-Test-and-Set Lock Performance

• Processor 0 releases lock, informs (invalidates) processors 1 and 2

• Processors 1 and 2 race to acquire, processor 1 wins

Processor 1

A0: ld r1,0(&lock)

A1: bnez r1,A0

A0: ld r1,0(&lock)

// lock released by processor 0

A0: ld r1,0(&lock)

A1: bnez r1,A0

A2: addi r1,1,r1

A3: t&s r1,(&lock)

A4: bnez r1,A0

CRITICAL_SECTION

Processor 2

A0: ld r1,0(&lock)

A1: bnez r1,A0

A1: bnez r1,A0

A0: ld r1,0(&lock)

A1: bnez r1,A0

A2: addi r1,1,r1

A3: t&s r1,(&lock)

A4: bnez r1,A0

A0: ld r1,0(&lock)

A1: bnez r1,A0

S:1 1I: 

S:1 1S:1

S:1 1S:1

I: 0I:

S:0 0I: 

S:0 0S:0 

S:0 0S:0 

M:1 1I: 

I: 1M:1 

I: 1M:1 

I: 1M:1 

I: 1M:1 
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Queue Locks

• Test-and-test-and-set locks can still perform poorly

• If lock is contended for by many processors

• Lock release by one processor, creates “free-for-all” by others

– Network gets swamped with t&s requests

• Queue lock

• When lock is released by one processor...

• Directory doesn’t notify (by invalidations) all waiting processors

• Instead, chooses one and sends invalidation only to it

• Others continue spinning locally, unaware lock was released

• Effectively, directory passes lock from one processor to the next

+ Greatly reduced network traffic
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Queue Lock Performance

• Processor 0 releases lock, informs only processor 1

Processor 1

A0: ld r1,0(&lock)

A1: bnez r1,A0

A0: ld r1,0(&lock)

// lock released by processor 0

A0: ld r1,0(&lock)

A1: bnez r1,A0

A2: addi r1,1,r1

A3: t&s r1,(&lock)

A4: bnez r1,A0

CRITICAL_SECTION

Processor 2

A0: ld r1,0(&lock)

A1: bnez r1,A0

A1: bnez r1,A0

A0: ld r1,0(&lock)

A1: bnez r1,A0

A0: ld r1,0(&lock)

A1: bnez r1,A0

A0: ld r1,0(&lock)

A1: bnez r1,A0

S:1 1I: 

S:1 1S:1

S:1 1S:1

S:1 0I:

S:0 0I: 

S:0 0S:0 

S:0 0S:0 

M:1 1I: 

S:1 1S:1 

S:1 1S:1 

S:1 1S:1 

S:1 1S:1 
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A Final Word on Locking

• A single lock for the whole array may restrict parallelism

• Will force updates to different accounts to proceed serially

• Solution: one lock per account

• Locking granularity: how much data does a lock lock?

• A software issue, but one you need to be aware of

struct acct_t { int bal,lock; };

shared struct acct_t  accts[MAX_ACCT];

int id,amt;

acquire(accts[id].lock);

if (accts[id].bal >= amt) {

accts[id].bal -= amt;

spew_cash(); }

release(accts[id].lock);
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SC + OOO

• Recall: opportunistic load scheduling in a uni-processor
• Loads issue speculatively relative to older stores

• Stores scan for younger loads to same address have issued

• Find one? Ordering violation → flush and restart

• In-flight loads effectively “snoop” older stores from same process

• SC + OOO can be reconciled using same technique
• Write bus requests from other processors snoop in-flight loads

• Think of MOB as extension of the cache hierarchy

• MIPS R10K does this

• SC implementable, but overheads still remain: 
• Write buffer issues

• Complicated ld/st logic
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Is SC Really Necessary?

• SC 

+ Most closely matches programmer’s intuition (don’t under-estimate)

– Restricts optimization by compiler, CPU, memory system

• Supported by MIPS, HP PA-RISC

• Is full-blown SC really necessary? What about…

• All processors see others’ loads/stores in program order

• But not all processors have to see same global order

+ Allows processors to have in-order write buffers

– Doesn’t confuse programmers too much

• Synchronized programs (e.g., our example) work as expected

• Processor Consistency (PC): e.g., Intel IA-32, SPARC
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Weak Memory Ordering

• For properly synchronized programs
• Only acquires/releases must be strictly ordered

• Why? Acquire-release pairs define critical sections

• Between critical-sections: data is private 

• Globally unordered access OK

• Within critical-section: access to shared data is exclusive

• Globally unordered access also OK

• Implication: compiler or dynamic scheduling is OK

• As long as re-orderings do not cross synchronization points

• Weak Ordering (WO): Alpha, IA-64, PowerPC

• ISA provides fence insns to indicate scheduling barriers

• Proper use of fences is somewhat subtle

• Use synchronization library, don’t write your own
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SC + OOO vs. WO

• Big debate these days

• Is SC + OOO equal to WO performance wise?

• And if so, which is preferred?

• Another hot button issue

• Can OOO be used to effectively speculate around locks?

• Short answer: yes
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Shared Memory Summary

• Shared-memory multiprocessors

+ Simple software: easy data sharing, handles both DLP and TLP

– Complex hardware: must provide illusion of global address space

• Two basic implementations

• Symmetric (UMA) multi-processors (SMPs)

• Underlying communication network: bus (ordered)

+ Low-latency, simple protocols that rely on global order

– Low-bandwidth, poor scalability

• Scalable (NUMA) multi-processors (MPPs)

• Underlying communication network: point-to-point (unordered)

+ Scalable bandwidth 

– Higher-latency, complex protocols


