
CS/ECE 752 (Sohi): Vectors 1

U. Wisconsin CS/ECE 752
Advanced Computer Architecture I

Prof. Guri Sohi

Unit 7: Vectors for Data-Level Parallelism

Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

Slides enhanced by Milo Martin, Mark Hill, and David Wood
with sources that included Profs. Asanovic, Falsafi, Hoe,
Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood

CS/ECE 752 (Sohi): Vectors 2

This Unit: Data/Thread Level Parallelism
• Data-level parallelism

• Vector processors
• Message-passing multiprocessors

• Thread-level parallelism
• Shared-memory multiprocessors

• Flynn Taxonomy

Application
OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

CS/ECE 752 (Sohi): Vectors 3

Latency, Bandwidth, and Parallelism
• Latency

• Time to perform a single task
– Hard to make smaller

• Bandwidth
• Number of tasks that can be performed in a given amount of time
+ Easier to make larger: overlap tasks, execute tasks in parallel

• One form of parallelism: insn-level parallelism (ILP)
• Parallel execution of insns from a single sequential program
• Pipelining: overlap processing stages of different insns
• Superscalar: multiple insns in one stage at a time
• Have seen

CS/ECE 752 (Sohi): Vectors 4

Exposing and Exploiting ILP
• ILP is out there…

• Integer programs (e.g., gcc, gzip): ~10–20
• Floating-point programs (e.g., face-rec, weather-sim): ~50–250
+ It does make sense to build at least 4-way superscalar

• …but compiler/processor work hard to exploit it
• Independent insns separated by branches, stores, function calls
• Overcome with dynamic scheduling and speculation
– Modern processors extract ILP of 1–3

CS/ECE 752 (Sohi): Vectors 5

Fundamental Problem with ILP
• Clock rate and IPC are at odds with each other

• Pipelining
+ Fast clock
– Increased hazards lower IPC

• Wide issue
+ Higher IPC
– N2 bypassing slows down clock

• Can we get both fast clock and wide issue?
• Yes, but with a parallelism model less general than ILP

• Data-level parallelism (DLP)
• Single operation repeated on multiple data elements
• Less general than ILP: parallel insns are same operation

CS/ECE 752 (Sohi): Vectors 6

Data-Level Parallelism (DLP)
for (I = 0; I < 100; I++)

Z[I] = A*X[I] + Y[I];

0:ldf X(r1),f1 // I is in r1
mulf f0,f1,f2 // A is in f0
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
addi r1,4,r1
blti r1,400,0

• One example of DLP: inner loop-level parallelism
• Iterations can be performed in parallel

CS/ECE 752 (Sohi): Vectors 7

Exploiting DLP With Vectors

• One way to exploit DLP: vectors
• Extend processor with vector “data type”
• Vector: array of MVL 32-bit FP numbers

• Maximum vector length (MVL): typically 8–64
• Vector register file: 8–16 vector registers (v0–v15)

regfile

I$
B
P

D$

V-regfile

CS/ECE 752 (Sohi): Vectors 8

Vector ISA Extensions
• Vector operations

• Versions of scalar operations: op.v
• Each performs an implicit loop over MVL elements

for (I=0;I<MVL;I++) op[I];
• Examples
• ldf.v X(r1),v1: load vector

for (I=0;I<MVL;I++) ldf X+I(r1),v1[I];
• stf.v v1,X(r1): store vector

for (I=0;I<MVL;I++) stf v1[I],X+I(r1);
• addf.vv v1,v2,v3: add two vectors

for (I=0;I<MVL;I++) addf v1[I],v2[I],v3[I];
• addf.vs v1,f2,v3: add vector to scalar

for (I=0;I<MVL;I++) addf v1[I],f2,v3[I];

CS/ECE 752 (Sohi): Vectors 9

Vectorizing SAXPY

• Pack loop body into vector insns
• Horizontal packing changes execution order

• Aggregate loop control
• Add increment immediates

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
addi r1,4,r1
blti r1,400,0

ldf.v X(r1),v1
mulf.vs v1,f0,v2
ldf.v Y(r1),v3
addf.vv v2,v3,v4
stf.v v4,Z(r1)
addi r1,16,r1
blti r1,400,0

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
addi r1,4,r1
blti r1,400,0

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
addi r1,4,r1
blti r1,400,0

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
addi r1,4,r1
blti r1,400,0

CS/ECE 752 (Sohi): Vectors 10

Scalar SAXPY Performance
• Scalar version

• 5-cycle mulf, 2-cycle addf, 1 cycle others

• 100 iters * 11 cycles/iter = 1100 cycles

ldf X(r1),f1
mulf f0,f1,f2
ldf Y(r1),f3
addf f2,f3,f4
stf f4,Z(r1)
addi r1,4,r1
slti r1,400,r2
bne Loop

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ldf X(r1),f1 F D X M W
mulf f0,f1,f2 F D d* E* E* E* E* E* W
ldf Y(r1),f3 F p* D X M W
addf f2,f3,f4 F D d* d* d* E+ E+ W
stf f4,Z(r1) F p* p* p* D X M W
addi r1,4,r1 F D X M W
blt r1,r2,0 F D X M W
ldf X(r1),f1 F D X M W

CS/ECE 752 (Sohi): Vectors 11

Vector SAXPY Performance
• Vector version

• 4 element vectors
• 25 iters * 11 insns/iteration * = 275 cycles
+ Factor of 4 speedup

ldf.v X(r1),v1
mulf.vs v1,f0,v2
ldf.v Y(r1),v3
addf.vv v2,v3,v4
stf.v v4,Z(r1)
addi r1,16,r1
slti r1,400,r2
bne r2,Loop

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ldf.v X(r1),v1 F D X M W
mulf.vv v1,f0,v2 F D d* E* E* E* E* E* W
ldf.v Y(r1),v3 F p* D X M W
addf.vv v2,v3,v4 F D d* d* d* E+ E+ W
stf.v v4,Z(r1) F p* p* p* D X M W
addi r1,4,r1 F D X M W
blt r1,r2,0 F D X M W
ldf X(r1),f1 F D X M W

CS/ECE 752 (Sohi): Vectors 12

Not So Fast
• A processor with 32-element vectors

• 1 Kb (32 * 32) to cache? 32 FP multipliers?
• No: vector load/store/arithmetic units are pipelined

• Processors have L (1 or 2) of each type of functional unit
• L is called number of vector lanes

• Micro-code streams vectors through units M data elements at once
• Pipelined vector insn timing

• Tvector = Tscalar + (MVL / L) – 1
• Example: 64-element vectors, 10-cycle multiply, 2 lanes
• Tmulf.vv = 10 + (64 / 2) – 1 = 41
+ Not bad for a loop with 64 10-cycle multiplies

CS/ECE 752 (Sohi): Vectors 13

Pipelined Vector SAXPY Performance
• Vector version

• 4-element vectors, 1 lane
• 4-cycle ldf.v/stf.v
• 8-cycle mulf.sv, 5-cycle addf.vv
• 25 iters * 20 cycles/iter = 500 cycles
• Factor of 2.2 speedup

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ldf.v X(r1),v1 F D X M M M M W
mulf.sv v1,f0,v2 F D d* d* d* d* E* E* E* E* E* E* E* E* W
ldf.v Y(r1),v3 F p* p* p* p* D X M M M M W
addf.vv v2,v3,v4 F D d* d* d* d* d* d* E+E+E+ E+
stf.v v4,Z(r1) F p* p* p* p* p* p* D X d* d*
addi r1,4,r1 F D p* p*
blt r1,r2,0 F p* p*
ldf.v X(r1),f1

ldf.v X(r1),v1
mulf.vs v1,f0,v2
ldf.v Y(r1),v3
addf.vv v2,v3,v4
stf.v v4,Z(r1)
addi r1,16,r1
slti r1,400,r2
bne r2,Loop

CS/ECE 752 (Sohi): Vectors 14

Not So Slow
• For a given vector operation

• All MVL results complete after Tscalar + (MVL / L) – 1
• First M results (e.g., v1[0] and v1[1]) ready after Tscalar

• Start dependent vector operation as soon as those are ready

• Chaining: pipelined vector forwarding
• Tvector1 = Tscalar1 + (MVL / L) – 1
• Tvector2 = Tscalar2 + (MVL / L) – 1
• Tvector1 + Tvector2 = Tscalar1 + Tscalar2 + (MVL / L) – 1

CS/ECE 752 (Sohi): Vectors 15

Chained Vector SAXPY Performance
• Vector version

• 1 lane
• 4-cycle ldf.v/stf.v
• 8-cycle mulf.sv, 5-cycle addf.vv
• 25 iters * 11 cycles/iter = 275 cycles
+ Factor of 4 speedup again

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
ldf.v X(r1),v1 F D X M M M M W
mulf.vv v1,f0,v2 F D d* E* E* E* E* E* E* E* E* W
ldf.v Y(r1),v3 F p* D X s* M M M M W
addf.vv v2,v3,v4 F D p* d* d* E+E+E+ E+ E+ W
stf.v v4,Z(r1) F p* p* p* D X M M M M W
addi r1,4,r1 F D X M W
blt r1,r2,0 F D X M W
ldf.v X(r1),f1 F D X M M M M W

ldf.v X(r1),v1
mulf.vs v1,f0,v2
ldf.v Y(r1),v3
addf.vv v2,v3,v4
stf.v v4,Z(r1)
addi r1,16,r1
slti r1,400,r2
bne r2,Loop

CS/ECE 752 (Sohi): Vectors 16

Vector Performance
• Where does it come from?

+ Fewer loop control insns: addi, blt, etc.
• Vector insns contain implicit loop control

+ RAW stalls taken only once, on “first iteration”
• Vector pipelines hide stalls of “subsequent iterations”

• How does it change with vector length?
+ Theoretically increases, think of Tvector/MVL

• Tvector = Tscalar + (MVL / L) – 1
• MVL = 1 → (Tvector/MVL) = Tscalar
• MVL = 1000 → (Tvector/MVL) = 1

– But vector regfile becomes larger and slower

CS/ECE 752 (Sohi): Vectors 17

Amdahl’s Law
• Amdahl’s law: the law of diminishing returns

• speeduptotal = 1 / [%vector / speedupvector + (1–%vector)]
• Speedup due to vectorization limited by non-vector portion
• In general: optimization speedup limited by unoptimized portion

• Example: %opt = 90%
• speedupopt = 10 → speeduptotal = 1 / [0.9/10 + 0.1] = 5.3
• speedupopt = 100 → speeduptotal = 1 / [0.9/100 + 0.1] = 9.1
• Speedupopt = ∞ → speeduptotal = 1 / [0.9/∞ + 0.1] = 10

• CRAY-1 rocked because it had fastest vector unit …
• … and the fastest scalar unit

CS/ECE 752 (Sohi): Vectors 18

Variable Length Vectors
• Vector Length Register (VLR): 0 < VLR < MVL

• Implicit in all vector operations
for (I=0; I<VLR; I++) { vop… }

• Used to handle vectors of different sizes
• General scheme for cutting up loops is strip mining

• Similar to loop blocking (cuts arrays into cache-sized chunks)

for (I=0; I<N; I++)
Z[I] = A*X[I]+Y[I];

VLR = N % MVL;
for (J=0; J<N; J+=VLR, VLR=MVL)

for (I=J; I<J+VLR; I++)
Z[I] = A*X[I]+Y[I];

CS/ECE 752 (Sohi): Vectors 19

Vector Predicates
• Vector Mask Register (VMR): 1 bit per vector element

• Implicit predicate in all vector operations
for (I=0; I<VLR; I++) if (VMR[I]) { vop… }

• Used to vectorize loops with conditionals in them
seq.v, slt.v, slti.v, etc.: sets vector predicates
cvmr: clear vector mask register (set to ones)

for (I=0; I<32; I++)
if (X[I] != 0) Z[I] = A/X[I];

ldf X(r1),v1
sne.v v1,f0 // 0.0 is in f0
divf.sv v1,f1,v2 // A is in f1
stf.v v2,Z(r1)
cvmr

CS/ECE 752 (Sohi): Vectors 20

Reductions
• Reduce vector to scalar

S = 0;
for (I=0; I<64; I++)

S = S + X[I]; // other ops include max, min, etc.

• Not vectorizable?
• Binary partitioning

ldf.v X(r1),v1
ldf.v X+32*8(r1),v2
addf.vv v1,v2,v3
stf.v v3,tmp(r1) // tmp holds X[0]+X[32], X[1]+X[33]…

• Repeat until faster to use scalar instructions

CS/ECE 752 (Sohi): Vectors 21

ILP vs. DLP
• Recall: fundamental conflict of ILP

• High clock frequency or high IPC, not both
• High clock frequency → deep pipeline → more hazards → low IPC
• High IPC → superscalar → complex issue/bypass → slow clock

• DLP (vectors) sidesteps this conflict
+ Key: operations within a vector insn are parallel → no data hazards
+ Key: loop control is implicit → no control hazards
• High clock frequency → deep pipeline + no hazards → high IPC
• High IPC → natural wide issue + no bypass → fast clock

CS/ECE 752 (Sohi): Vectors 22

History of Vectors
• Vector-register architectures: “RISC” vectors

• Most modern vector supercomputers (Cray, Convex)
• Like we have talked about so far
• Optimized for short-medium sized (8–64 element) vectors

• Memory-memory vector architectures: “CISC” vectors
• Early vector supercomputers (TI ASC, CDC STAR100)
• Optimized for (arbitrarily) long vectors
• All vectors reside in memory
– Require a lot of memory bandwidth
– Long startup latency

CS/ECE 752 (Sohi): Vectors 23

Modern Vectors
• Both floating-point and integer vectors common today

• But both of the parallel (not pipelined) variety
• Integer vectors

• Image processing: a pixel is 4 bytes (RGBA)
• Also: speech recognition, geometry, audio, tele-communications

• Floating-point vectors
• Useful for geometry processing: 4x4 translation/rotation matrices
• Also: scientific/engineering programs, digital signal processing

• Sub-word multimedia vectors
• Intel MMX: 64-bit integer (2x32b, 4x16b, 8x8b)
• Intel SSE: 64-bit FP (2x32b)
• Intel SSE2: 128-bit FP (2x64b, 4x32b)
• Motorola AltiVEC: 128-bit integer/FP (2x64b, 4x32b, 8x16b, 16x8b)

CS/ECE 752 (Sohi): Vectors 24

MMX [Peleg & Weiser, IEEE Micro, 8/1996]
• Goal: 2x performance in multimedia (audio, video, etc.)
• Sub-word vector in 64b FP register:

• 8x8-bit bytes, 4x16-bit words, 2x32-bit, or 1x64-bit

• E.g., addb (for byte)
• 17 87 100 …. (5 more)
• +17 13 200 ….
• ---
• 34 100 255 ….

• Also move to/from memory & pack/unpack w.r.t. normal

Note: saturating
arithmetic common:
100 + 200 max

CS/ECE 752 (Sohi): Vectors 25

Array-based Processors
• Many processor nodes operating in parallel

• Each with scalar or vector processor
• Memory with each node
• Vectors/Matrices distributed across nodes

• Early machines (Illiac IV)
• E.g., 64 scalar PEs

• Later machines (Thinking Machines CM-5)
• Thousands of vector PEs

• Current machines (IBM Blue Gene/L)
• Emerging machines (IBM Cell)

• 8 SPEs and one PowerPC
• General Purpose GPUs (GPGPUs)

CS/ECE 752 (Sohi): Vectors 26

Automatic Vectorization
• Automatic vectorization

• Compiler conversion of sequential code to vector code
– Very difficult in general

• Vectorization implicitly reorders operations
• Invariably, loads and stores are some of those operations
• How to tell whether load/store reordering is legal?

• Possible in languages without references: e.g., FORTRAN
– Hard (impossible?) in languages with references: e.g., C, Java
– Compiler directives (“just do it!”)

• Compilers don’t generate MMX and SSE code
• Libraries of routines that exploit MMX and SSE are hand assembled

CS/ECE 752 (Sohi): Vectors 27

Not Everything Easy To Vectorize
for (I = 0; I < N; I++)

for (J = 0; J < N; J++)
for (K = 0; K < N; K++)

C[I][J] += A[I][K] * B[K][J];

• Matrix multiply difficult to vectorize
• Vectorization works on inner loops
• The iterations in this inner loop are not independent

• Need to transform it
for (I = 0; I < N; I++)

for (J = 0; J < N; J+=MVL)
for (K = 0; K < N; K++)

for (JJ = 0; JJ<MVL; JJ++)
C[I][J+JJ] += A[I][K] * B[K][J+JJ];

CS/ECE 752 (Sohi): Vectors 28

Vector Energy
• Vectors are more power efficient than superscalar

• For a given loop, vector code…
+ Fetches, decodes, issues fewer insns (obvious)
+ Actually executes fewer operations too (loop control)

• Also remember: clock frequency is not power efficient
+ Vectors can trade frequency (pipelining) for parallelism (lanes)

• In general: hardware more power efficient than software
• Custom circuits more efficient than insns on general circuits
• Think of vectors as custom hardware for array-based loops

CS/ECE 752 (Sohi): Vectors 29

Summary
• Data-level parallelism (DLP)

+ Easier form of parallelism than ILP
– Hard to exploit automatically

• Vectors (SIMD)
• Extend processor with new data type: vector
+ Very effective
– Only handles inner-loop parallelism

CS/ECE 752 (Sohi): Vectors 30

CS/ECE 752 (Sohi): Vectors 31

Cray-1 Implementation Challenges
• High density machine for speed
• Heat dissipation

• Freon cooling
• Complex metallurgy to bond aluminum to stainless steel
• “loss of Freon is not itself a problem”….

• Power distribution and circuit reliability
• Used current balanced design

• differential outputs, all outputs are terminated
• steer current to correct output, no di/dt

• Required using simple gates
• all logic used 5/4 AND/NAND gates (high and low speed

grades)
• all memory was 16x4 or 1024x1 SRAMs

CS/ECE 752 (Sohi): Vectors 32

Cray-1 Implementation Challenges
• High density machine for speed
• Heat dissipation

• Freon cooling
• Complex metallurgy to bond aluminum to stainless steel
• “loss of Freon is not itself a problem”….

• Power distribution and circuit reliability
• Used current balanced design

• differential outputs, all outputs are terminated
• steer current to correct output, no di/dt

• Required using simple gates
• all logic used 5/4 AND/NAND gates (high and low speed

grades)
• all memory was 16x4 or 1024x1 SRAMs

CS/ECE 752 (Sohi): Vectors 33

Exploiting DLP With Parallel Processing
for (I = 0; I < 100; I++)

for (J = 0; J < 100; J++)
for (K = 0; K < 100; K++)

C[I][J] += A[I][K] * B[K][J];

• Matrix multiplication can also be parallelized

• Outer loop parallelism
• Outer loop iterations are parallel
• Run entire I or J loop iterations in parallel
• Each iteration runs on a different processor
• Each processor runs all K inner loop iterations sequentially

• Which is better? Do both!

CS/ECE 752 (Sohi): Vectors 34

Parallelizing Matrix Multiply

for (J = 0; J < N; J++)
for (K = 0; K < N; K++)

C[my_id()][J] += A[my_id()][K] * B[K][J];

• How to parallelize matrix multiply over N processors?
• Or N machines in a cluster

• One possibility: give each processor an 1 iteration
• Each processor runs copy of loop above

• my_id() function gives each processor ID from 0 to N
• Parallel processing library (e.g., MPI) provides this function

• Have to also divide matrices between N processors
• Each processor gets row my_id() of A, C, column my_id()of B

A B C

my_id() my_id()

m
y
_
i
d
(
)

X =

CS/ECE 752 (Sohi): Vectors 35

Parallelizing Matrix Multiply
for (J = 0; J < 100; J++) {

if (J == my_id()) {
memcpy(tmp_B, my_B, 100);
for (id = 0; id < 100; id++)

if (id != my_id())
send(id, &my_B, 100);

}
else recv(J, &tmp_B, 100);
for (K = 0; K < 100; K++)

my_C[J] += my_A[K] * tmp_B[K];
}

• Data communication
• Processors send their portions of B (my_B) to other processors
• Library provides send(), recv() functions for this

CS/ECE 752 (Sohi): Vectors 36

Parallelizing Matrix Multiply
if (my_id() == 0) {

memcpy(tmp_A, &A[I][0], 100);
memcpy(tmp_B, &B[0][J], 100);
for (id = 1; id < 100; id++)
{ send(id, &A[id][0], 100); send(id, &B[0][id], 100); }

}
else { recv(0, &my_A, 100); recv(0, &my_B, 100); }

if (my_id() == 0)
for (id = 1; id < 100; id++)

recv(id, &C[id][0], 100);
else send(0, &my_C, 100);

• Data initialization/collection
• Processor 0 must initialize others with portions of A, B matrices
• Processor 0 must collect C matrix portions from other processors

CS/ECE 752 (Sohi): Vectors 37

Parallel Matrix Multiply Performance
• Gross assumptions

• 10 cycles per FP instruction, all other instructions free
• 50 cycles + 1 cycle for every 4 B to send/receive a message

• Sequential version: no communication
• Computation: 2M FP-insn * 10 cycle/FP insn = 20M cycles

• Parallel version: calculate for processor 0 (takes longest)
• Computation: 20K FP-insn * 10 cycle/FP-insn = 200K cycles
• Initialization: ~200 send * 150 cycle/send = 30K cycles
• Communication: ~200 send * 150 cycle/send = 30K cycles
• Collection: ~100 send * 150 cycle/send = 15K cycles
• Total: 275K cycles
+ 73X speedup (not quite 100X)
– 32% communication overhead

CS/ECE 752 (Sohi): Vectors 38

Parallel Performance

• How does it scale with number of processors P?
– 97% efficiency for 10 processors, 73% for 100, 6.3% for 1000
– 1000 processors actually slower than 100

• Must initialize/collect data from too many processors
• Each transfer is too small, can’t amortize constant overhead

• Amdahl’s law again
• Speedup due to parallelization limited by non-parallel portion

P (peak speedup) 10 100 1000
Computation 200,000*10=2M 20,000*10=200K 2000*10=20K
Initialization 20*(50+1000)=21K 200*(50+100)=30K 2000*(50+10)=120K
Communication 20*(50+1000)=21K 200*(50+100)=30K 2000*(50+10)=120K
Collection 10*(50+1000)=11K 100*(50+100)=15K 1000*(50+10)=60K
Total 2.05M 275K 320K
Actual speedup 9.7 73 63
Actual/Peak 97% 73% 6.3%

CS/ECE 752 (Sohi): Vectors 39

Automatic Parallelization?
• Same as automatic vectorization: hard

• Same reason: difficult to analyze memory access patterns
• Maybe even harder

• Outer loop analysis harder than inner loop analysis

CS/ECE 752 (Sohi): Vectors 40

Message Passing
• Parallel matrix multiply we saw uses message passing

• Each copy of the program has a private virtual address space
• Explicit communication through messages

• Messages to other processors look like I/O
+ Simple hardware

• Any network configuration will will do
• No need to synchronize memories

– Complex software
• Must orchestrate communication
• Only programs with regular (static) communication patterns

• Message passing systems called multi-computers

CS/ECE 752 (Sohi): Vectors 41

Shared Memory
“shared” float A[100][100], B[100][100], C[100][100];
for (J = 0; J < 100; J++)

for (K = 0; K < 100; K++)
C[my_id()][J] += A[my_id()][K] * B[K][J];

• Alternative: shared memory
• All copies of program share (part of) an address space
• Implicit (automatic) communication via loads and stores
+ Simple software

• No need for messages, communication happens naturally
– Maybe too naturally

• Supports irregular, dynamic communication patterns
– Complex hardware

• Create a uniform view of memory
• More complex on with caches

CS/ECE 752 (Sohi): Vectors 42

Issues for Shared Memory
• Shared memory not without issues

• Cache coherence
• Synchronization
• Something called “memory consistency model”
• Not unrelated to each other
• Not issues for message passing systems
• Topic of next unit

CS/ECE 752 (Sohi): Vectors 43

Thread Level Parallelism (TLP)

• But can also exploit thread-level parallelism (TLP)
• Collection of asynchronous tasks: not started and stopped together
• Data shared loosely, dynamically
• Dynamically allocate tasks to processors

• Example: database server (each query is a thread)
• accts is shared, can’t register allocate even if it were scalar
• id and amt are private variables, register allocated to r1, r2

• Confusion: outer-loop DLP sometimes also called TLP

struct acct_t { int bal; };
shared struct acct_t accts[MAX_ACCT];
int id,amt;
if (accts[id].bal >= amt)
{
 accts[id].bal -= amt;
 dispense_cash();
}

0: addi r1,&accts,r3
1: ld 0(r3),r4
2: blt r4,r2,6
3: sub r4,r2,r4
4: st r4,0(r3)
5: call dispense_cash

CS/ECE 752 (Sohi): Vectors 44

Summary: Flynn Taxonomy
• Flynn taxonomy: taxonomy of parallelism

• Two dimensions
• Number of instruction streams: single vs. multiple
• Number of data streams: single vs. multiple

• SISD: single-instruction single-data
• Pipelining and ILP on a uniprocessor

• SIMD: single-instruction multiple-data
• DLP on a vector processor

• MIMD: multiple-instruction multiple-data
• DLP, TLP on a parallel processor
• SPMD: single-program multiple data

CS/ECE 752 (Sohi): Vectors 45

SISD vs. SIMD vs. SPMD
• SISD ruled the 1990s

• ILP techniques found in all processors

• SIMD has its niche
• Multimedia, tele-communications, engineering

• SPMD is starting to dominate commercially
+ Handles more forms of parallelism

• Inner-loop DLP, outer-loop DLP, and TLP
+ More economical: just glue together cheap uniprocessors
+ Better scalability: start small, add uniprocessors

CS/ECE 752 (Sohi): Vectors 46

Summary
• Data-level parallelism (DLP)

+ Easier form of parallelism than ILP
– Hard to exploit automatically

• Vectors (SIMD)
• Extend processor with new data type: vector
+ Very effective
– Only handles inner-loop parallelism

• Parallel Processing (MIMD)
• Multiple uniprocessors glued together

• Glue? explicit messages or shared memory
+ The way of the future: inner-loop and outer-loop DLP and TLP
+ The way of the future: inner-loop and outer-loop DLP and TLP

	U. Wisconsin CS/ECE 752�Advanced Computer Architecture I
	This Unit: Data/Thread Level Parallelism
	Latency, Bandwidth, and Parallelism
	Exposing and Exploiting ILP
	Fundamental Problem with ILP
	Data-Level Parallelism (DLP)
	Exploiting DLP With Vectors
	Vector ISA Extensions
	Vectorizing SAXPY
	Scalar SAXPY Performance
	Vector SAXPY Performance
	Not So Fast
	Pipelined Vector SAXPY Performance
	Not So Slow
	Chained Vector SAXPY Performance
	Vector Performance
	Amdahl’s Law
	Variable Length Vectors
	Vector Predicates
	Reductions
	ILP vs. DLP
	History of Vectors
	Modern Vectors
	MMX [Peleg & Weiser, IEEE Micro, 8/1996]
	Array-based Processors
	Automatic Vectorization
	Not Everything Easy To Vectorize
	Vector Energy
	Summary
	Slide Number 30
	Cray-1 Implementation Challenges
	Cray-1 Implementation Challenges
	Exploiting DLP With Parallel Processing
	Parallelizing Matrix Multiply
	Parallelizing Matrix Multiply
	Parallelizing Matrix Multiply
	Parallel Matrix Multiply Performance
	Parallel Performance
	Automatic Parallelization?
	Message Passing
	Shared Memory
	Issues for Shared Memory
	Thread Level Parallelism (TLP)
	Summary: Flynn Taxonomy
	SISD vs. SIMD vs. SPMD
	Summary

