
CS/ECE 752 (Sohi): Caches 1

U. Wisconsin CS/ECE 752
Advanced Computer Architecture I

Prof. Guri Sohi

Unit 8: Storage Hierarchy I: Caches

Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

Slides enhanced by Milo Martin, Mark Hill, and David Wood
with sources that included Profs. Asanovic, Falsafi, Hoe,
Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood

CS/ECE 752 (Sohi): Caches 2

This Unit: Caches
• Memory hierarchy concepts
• Cache organization
• High-performance techniques
• Low power techniques
• Some example calculations

Application
OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

CS/ECE 752 (Sohi): Caches 3

Motivation
• Processor can compute only as fast as memory

• A 3Ghz processor can execute an “add” operation in 0.33ns
• Today’s “Main memory” latency is 50-100ns
• Naïve implementation: loads/stores can be 300x slower than other

operations

• Unobtainable goal:
• Memory that operates at processor speeds
• Memory as large as needed for all running programs
• Memory that is cost effective

• Can’t achieve all of these goals at once

CS/ECE 752 (Sohi): Caches 4

Types of Memory
• Static RAM (SRAM)

• 6 transistors per bit
• Optimized for speed (first) and density (second)
• Fast (sub-nanosecond latencies for small SRAM)

• Speed proportional to its area
• Mixes well with standard processor logic

• Dynamic RAM (DRAM)
• 1 transistor + 1 capacitor per bit
• Optimized for density (in terms of cost per bit)
• Slow (>40ns internal access, >100ns pin-to-pin)
• Different fabrication steps (does not mix well with logic)

• Nonvolatile storage: Magnetic disk, Flash RAM

CS/ECE 752 (Sohi): Caches 5

Storage Technology
• Cost - what can $100 buy today?

• SRAM - 16MB
• DRAM - 4,000MB (4GB) --- 250x cheaper than SRAM
• Disk – 1,000,000MB (iTB) --- 250x cheaper than DRAM

• Latency
• SRAM - <1 to 5ns (on chip)
• DRAM - ~100ns --- 100x or more slower
• Disk - 10,000,000ns or 10ms --- 100,000x slower (mechanical)

• Bandwidth
• SRAM - 10-100GB/sec
• DRAM - ~1-2GB/sec
• Disk - 100MB/sec (0.1 GB/sec) - sequential access only

• Aside: Flash, a non-traditional (and nonvolatile) memory
• 4,000MB (4GB) for $50, cheaper than DRAM!

CS/ECE 752 (Sohi): Caches 6

Storage Technology Trends

Cost

Access Time
Copyright Elsevier Scientific 2003

CS/ECE 752 (Sohi): Caches 7

The “Memory Wall”

• Processors are get faster more quickly than memory (note log scale)
• Processor speed improvement: 35% to 55%
• Memory latency improvement: 7%

Copyright Elsevier Scientific 2003

CS/ECE 752 (Sohi): Caches 8

Locality to the Rescue
• Locality of memory references

• Property of real programs, few exceptions
• Books and library analogy

• Temporal locality
• Recently referenced data is likely to be referenced again soon
• Reactive: cache recently used data in small, fast memory

• Spatial locality
• More likely to reference data near recently referenced data
• Proactive: fetch data in large chunks to include nearby data

• Holds for data and instructions

CS/ECE 752 (Sohi): Caches 9

Known From the Beginning

“Ideally, one would desire an infinitely large memory
capacity such that any particular word would be
immediately available … We are forced to recognize the
possibility of constructing a hierarchy of memories, each
of which has a greater capacity than the preceding but
which is less quickly accessible.”

Burks, Goldstine, VonNeumann
“Preliminary discussion of the logical design of an

electronic computing instrument”
IAS memo 1946

CS/ECE 752 (Sohi): Caches 10

Exploiting Locality: Memory Hierarchy
• Hierarchy of memory components

• Upper components
• Fast ↔ Small ↔ Expensive

• Lower components
• Slow ↔ Big ↔ Cheap

• Connected by buses
• Which also have latency and bandwidth issues

• Most frequently accessed data in M1
• M1 + next most frequently accessed in M2, etc.
• Move data up-down hierarchy

• Optimize average access time
• latencyavg = latencyhit + % miss * latencymiss
• Attack each component

CPU

M1

M2

M3

M4

CS/ECE 752 (Sohi): Caches 11

Concrete Memory Hierarchy
• 1st level: Primary caches

• Split instruction (I$) and data (D$)
• Typically 8-64KB each

• 2nd level: Second-level cache (L2$)
• On-chip, certainly on-package (with CPU)
• Made of SRAM (same circuit type as CPU)
• Typically 512KB to 16MB

• 3rd level: main memory
• Made of DRAM
• Typically 4GB to 16GB for PCs

• Servers can have 100s of GB
• 4th level: disk (swap and files)

• Made of magnetic iron oxide disks

CPU

D$

L2$

Main
Memory

I$

Disk

Compiler
Managed

Hardware
Managed

Software
Managed

CS/ECE 752 (Sohi): Caches 12

This Unit: Caches
• Cache organization

• ABC
• Miss classification

• High-performance techniques
• Reducing misses
• Improving miss penalty
• Improving hit latency

• Low-power techniques
• Some example performance calculations

CPU

D$

L2

Main
Memory

I$

Disk

CS/ECE 752 (Sohi): Caches 13

Looking forward: Memory and Disk
• Main memory

• Virtual memory
• DRAM-based memory systems

• Disks and Storage
• Properties of disks
• Disk arrays (for performance and reliability)

CPU

Main
Memory

Disk

D$

L2$

I$

CS/ECE 752 (Sohi): Caches 14

Basic Memory Array Structure
• Number of entries

• 2n, where n is number of address bits
• Example: 1024 entries, 10 bit address
• Decoder changes n-bit address to

2n bit “one-hot” signal
• One-bit address travels on “wordlines”

• Size of entries
• Width of data accessed
• Data travels on “bitlines”
• 256 bits (32 bytes) in example

0

1

1021

1022

1023

2

3

1024*256
SRAM

bitlines

w
or

dl
in

es

10 bits

CS/ECE 752 (Sohi): Caches 15

Physical Cache Layout
• Logical layout

• Arrays are vertically contiguous
• Physical layout - roughly square

• Vertical partitioning to minimize wire lengths
• H-tree: horizontal/vertical partitioning layout

• Applied recursively
• Each node looks like an H

512

513

1022

1023

767

dataaddress

0

1

510

511

255

256 768

CS/ECE 752 (Sohi): Caches 16

Physical Cache Layout
• Arrays and h-trees make caches easy to spot in µgraphs

CS/ECE 752 (Sohi): Caches 17

Basic Cache Structure
• Basic cache: array of block frames

• Example: 32KB cache (1024 frames, 32B blocks)
• “Hash table in hardware”

• To find frame: decode part of address
• Which part?
• 32-bit address
• 32B blocks → 5 lowest bits locate byte in block

• These are called offset bits
• 1024 frames → next 10 bits find frame

• These are the index bits
• Note: nothing says index must be these bits
• But these work best (think about why)

0

1

1021

1022

1023

2

3

[4:0][31:15] index [14:5] <<

1024*
256bit
SRAM

bitlines

w
or

dl
in

es

dataaddress

CS/ECE 752 (Sohi): Caches 18

Basic Cache Structure
• Each frame can hold one of 217 blocks

• All blocks with same index bit pattern
• How to know which if any is currently there?

• To each frame attach tag and valid bit
• Compare frame tag to address tag bits

• No need to match index bits (why?)
• Lookup algorithm

• Read frame indicated by index bits
• “Hit” if tag matches and valid bit is set
• Otherwise, a “miss”. Fetch block

0

1

1021

1022

1023

2

3

[4:0]tag [31:15]

data

index [14:5] <<

address

=

hit?

w
or

dl
in

es

CS/ECE 752 (Sohi): Caches 19

Calculating Tag Overhead
• “32KB cache” means cache holds 32KB of data

• Called capacity
• Tag storage is considered overhead

• Tag overhead of 32KB cache with 1024 32B frames
• 32B frames → 5-bit offset
• 1024 frames → 10-bit index
• 32-bit address – 5-bit offset – 10-bit index = 17-bit tag
• (17-bit tag + 1-bit valid)* 1024 frames = 18Kb tags = 2.2KB tags
• ~6% overhead

• What about 64-bit addresses?
• Tag increases to 49bits, ~20% overhead

CS/ECE 752 (Sohi): Caches 20

Cache Performance Simulation
• Parameters: 8-bit addresses, 32B cache, 4B blocks

• Nibble notation (base 4)
• Initial contents: 0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130

Cache contents (prior to access) Address Outcome
0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 3020 Miss
0000, 0010, 3020, 0030, 0100, 0110, 0120, 0130 3030 Miss
0000, 0010, 3020, 3030, 0100, 0110, 0120, 0130 2100 Miss
0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0010 Hit
0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0020 Miss
0000, 0010, 0020, 3030, 2100, 0110, 0120, 0130 0030 Miss
0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0110 Hit
0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0100 Miss
0000, 1010, 0020, 0030, 0100, 0110, 0120, 0130 2100 Miss
1000, 1010, 0020, 0030, 2100, 0110, 0120, 0130 3020 Miss

2 bitstag (3 bits) index (3 bits)

Hill’s 3C Miss Rate Classification
• Compulsory

• Miss caused by initial access
• Capacity

• Miss caused by finite capacity
• I.e., would not miss in infinite cache

• Conflict
• Miss caused by finite associativity
• I.e., would not miss in a fully-associative cache

• Coherence (4th C, added by Jouppi)
• Miss caused by invalidation to enforce coherence

CS/ECE 752 (Sohi): Caches 21

CS/ECE 752 (Sohi): Caches 22

Miss Rate: ABC
• Capacity

+ Decreases capacity misses
– Increases latencyhit

• Associativity
+ Decreases conflict misses
– Increases latencyhit

• Block size
– Increases conflict/capacity misses (fewer frames)
+ Decreases compulsory/capacity misses (spatial prefetching)
• No effect on latencyhit
- May increase latencymiss

CS/ECE 752 (Sohi): Caches 23

Increase Cache Size
• Biggest caches always have better miss rates

• However latencyhit increases
• Diminishing returns

Cache Size

Miss
Rate

“working set” size

Most workloads have multiple
“critical” working sets

CS/ECE 752 (Sohi): Caches 24

Block Size
• Given capacity, manipulate %miss by changing organization
• One option: increase block size

• Notice index/offset bits change
• Tag remain the same

• Ramifications
+ Exploit spatial locality

• Caveat: past a certain point…
+ Reduce tag overhead (why?)
– Useless data transfer (needs more bandwidth)
– Premature replacement of useful data
– Fragmentation

0

1

510

511

2

[5:0][31:15]

data

[14:6]

address

=

hit?

<<

512*512bit
SRAM

9-bit

CS/ECE 752 (Sohi): Caches 25

Effect of Block Size on Miss Rate
• Two effects on miss rate

+ Spatial prefetching (good)
• For blocks with adjacent addresses
• Turns miss/miss into miss/hit pairs

– Interference (bad)
• For blocks with non-adjacent

addresses (but in adjacent frames)
• Turns hits into misses by disallowing

simultaneous residence
• Both effects always present

• Spatial prefetching dominates initially
• Depends on size of the cache

• Good block size is 16–128B
• Program dependent

Block Size

Miss
Rate

Pollution Point

CS/ECE 752 (Sohi): Caches 26

Block Size and Tag Overhead
• Tag overhead of 32KB cache with 1024 32B frames

• 32B frames → 5-bit offset
• 1024 frames → 10-bit index
• 32-bit address – 5-bit offset – 10-bit index = 17-bit tag
• (17-bit tag + 1-bit valid) * 1024 frames = 18Kb tags = 2.2KB tags
• ~6% overhead

• Tag overhead of 32KB cache with 512 64B frames
• 64B frames → 6-bit offset
• 512 frames → 9-bit index
• 32-bit address – 6-bit offset – 9-bit index = 17-bit tag
• (17-bit tag + 1-bit valid) * 512 frames = 9Kb tags = 1.1KB tags
+ ~3% overhead

CS/ECE 752 (Sohi): Caches 27

Block Size and Performance
• Parameters: 8-bit addresses, 32B cache, 8B blocks

• Initial contents : 0000(0010), 0020(0030), 0100(0110), 0120(0130)

Cache contents (prior to access) Address Outcome
0000(0010), 0020(0030), 0100(0110), 0120(0130) 3020 Miss
0000(0010), 3020(3030), 0100(0110), 0120(0130) 3030 Hit (spatial locality)
0000(0010), 3020(3030), 0100(0110), 0120(0130) 2100 Miss
0000(0010), 3020(3030), 2100(2110), 0120(0130) 0010 Hit
0000(0010), 3020(3030), 2100(2110), 0120(0130) 0020 Miss
0000(0010), 0020(0030), 2100(2110), 0120(0130) 0030 Hit (spatial locality)
0000(0010), 0020(0030), 2100(2110), 0120(0130) 0110 Miss (conflict)
0000(0010), 0020(0030), 0100(0110), 0120(0130) 0100 Hit (spatial locality)
0000(0010), 0020(0030), 0100(0110), 0120(0130) 2100 Miss
0000(0010), 0020(0030), 2100(2110), 0120(0130) 3020 Miss

3 bitstag (3 bits) index (2 bits)

CS/ECE 752 (Sohi): Caches 28

Large Blocks and Subblocking
• Large cache blocks can take a long time to refill

• refill cache line critical word first
• restart cache access before complete refill

• Large cache blocks can waste bus bandwidth if block size
is larger than spatial locality
• divide a block into subblocks
• associate separate valid bits for each subblock

• Sparse access patterns can use 1/S of the cache
• S is subblocks per block

tagsubblockvsubblockv subblockv

CS/ECE 752 (Sohi): Caches 29

Conflicts
• What about pairs like 3030/0030, 0100/2100?

• These will conflict in any sized cache (regardless of block size)
• Will keep generating misses

• Can we allow pairs like these to simultaneously reside?
• Yes, reorganize cache to do so

Cache contents (prior to access) Address Outcome
0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 3020 Miss
0000, 0010, 3020, 0030, 0100, 0110, 0120, 0130 3030 Miss
0000, 0010, 3020, 3030, 0100, 0110, 0120, 0130 2100 Miss
0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0010 Hit
0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0020 Miss
0000, 0010, 0020, 3030, 2100, 0110, 0120, 0130 0030 Miss
0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0110 Hit

2 bitstag (3 bits) index (3 bits)

CS/ECE 752 (Sohi): Caches 30

Set-Associativity
• Set-associativity

• Block can reside in one of few frames
• Frame groups called sets
• Each frame in set called a way
• This is 2-way set-associative (SA)
• 1-way → direct-mapped (DM)
• 1-set → fully-associative (FA)

+ Reduces conflicts
– Increases latencyhit: additional muxing

• Note: valid bit not shown

512

513

1022

1023

514

data

<<

address

=

hit?

0

1

510

511

2

=

ways

se
ts

[4:0][31:14] [13:5]

9-bit

CS/ECE 752 (Sohi): Caches 31

Set-Associativity
• Lookup algorithm

• Use index bits to find set
• Read data/tags in all frames in parallel
• Any (match and valid bit), Hit

• Notice tag/index/offset bits
• Only 9-bit index (versus 10-bit for

direct mapped)
• Notice block numbering

512

513

1022

1023

514

data

<<

address

=

hit?

0

1

510

511

2

=

ways

se
ts

[4:0][31:14] [13:5]

9-bit

CS/ECE 752 (Sohi): Caches 32

Associativity and Performance
• Parameters: 32B cache, 4B blocks, 2-way set-associative

• Initial contents : 0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130

Cache contents Address Outcome
[0000,0100], [0010,0110], [0020,0120], [0030,0130] 3020 Miss
[0000,0100], [0010,0110], [0120,3020], [0030,0130] 3030 Miss
[0000,0100], [0010,0110], [0120,3020], [0130,3030] 2100 Miss
[0100,2100], [0010,0110], [0120,3020], [0130,3030] 0010 Hit
[0100,2100], [0110,0010], [0120,3020], [0130,3030] 0020 Miss
[0100,2100], [0110,0010], [3020,0020], [0130,3030] 0030 Miss
[0100,2100], [0110,0010], [3020,0020], [3030,0030] 0110 Hit
[0100,2100], [0010,0110], [3020,0020], [3030,0030] 0100 Hit (avoid conflict)
[2100,0100], [0010,0110], [3020,0020], [3030,0030] 2100 Hit (avoid conflict)
[0100,2100], [0010,0110], [3020,0020], [3030,0030] 3020 Hit (avoid conflict)

2 bitstag (4 bits) index (2 bits)

CS/ECE 752 (Sohi): Caches 33

Increase Associativity
• Higher associative caches have better miss rates

• However latencyhit increases
• Diminishing returns (for a single thread)

Associative Degree

Miss
Rate

~5

CS/ECE 752 (Sohi): Caches 34

Replacement Policies
• Set-associative caches present a new design choice

• On cache miss, which block in set to replace (kick out)?
• Some options

• Random
• FIFO (first-in first-out)
• LRU (least recently used)

• Fits with temporal locality, LRU = least likely to be used in future
• NMRU (not most recently used)

• An easier to implement approximation of LRU
• Is LRU for 2-way set-associative caches

• Belady’s: replace block that will be used furthest in future
• Unachievable optimum

• Which policy is simulated in previous example?

CS/ECE 752 (Sohi): Caches 35

NMRU and Miss Handling
• Add MRU field to each set

• MRU data is encoded “way”
• Hit? update MRU

• MRU/LRU bits updated on each
access

512

513

1023

data

<<

address

=

hit?

0

1

511

=W
E

data from memory

[4:0][31:15] [14:5]

CS/ECE 752 (Sohi): Caches 36

Parallel or Serial Tag Access?
• Note: data and tags actually physically separate

• Split into two different arrays
• Parallel access example:

data

<<

== ==

offsettag 2-bit index

2-bit

2-bit

Four blocks transferred

CS/ECE 752 (Sohi): Caches 37

Serial Tag Access
• Tag match first, then access only one data block

• Advantages: lower power, fewer wires/pins
• Disadvantages: slow

<<

== ==

offsettag 2-bit index
2-bit

2-bit

4-bit

Only one block transferred

CPU Data
Tags

Serial

CPU Data
Tags

Parallel

Chip boundary

Chip boundary

data

CS/ECE 752 (Sohi): Caches 38

Best of Both? Way Prediction
• Predict “way” of block

• Just a “hint”
• Use the index plus some tag bits
• Table of n-bit for 2n associative cache
• Update on mis-prediction or replacement

• Advantages
• Fast
• Low-power

• Disadvantage
• More “misses”

<<
== ==

offsettag 2-bit index
2-bit

2-bit

4-bit

Way
Predictor

=

datahit

CS/ECE 752 (Sohi): Caches 39

Classifying Misses: 3(4)C Model
• Divide cache misses into three categories

• Compulsory (cold): never seen this address before
• Would miss even in infinite cache
• Identify? easy

• Capacity: miss caused because cache is too small
• Would miss even in fully associative cache
• Identify? Consecutive accesses to block separated by access to

at least N other distinct blocks (N is number of frames in cache)
• Conflict: miss caused because cache associativity is too low

• Identify? All other misses
• (Coherence): miss due to external invalidations

• Only in shared memory multiprocessors

• Who cares? Different techniques for attacking different misses

CS/ECE 752 (Sohi): Caches 40

Cache Performance Simulation
• Parameters: 8-bit addresses, 32B cache, 4B blocks

• Initial contents : 0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130
• Initial blocks accessed in increasing order

Cache contents Address Outcome
0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 3020 Miss (compulsory)
0000, 0010, 3020, 0030, 0100, 0110, 0120, 0130 3030 Miss (compulsory)
0000, 0010, 3020, 3030, 0100, 0110, 0120, 0130 2100 Miss (compulsory)
0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0010 Hit
0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0020 Miss (capacity)
0000, 0010, 0020, 3030, 2100, 0110, 0120, 0130 0030 Miss (capacity)
0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0110 Hit
0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0100 Miss (capacity)
0000, 1010, 0020, 0030, 0100, 0110, 0120, 0130 2100 Miss (conflict)
1000, 1010, 0020, 0030, 2100, 0110, 0120, 0130 3020 Miss (conflict)

CS/ECE 752 (Sohi): Caches 41

Conflict Misses: Victim Buffer
• Conflict misses: not enough associativity

• High-associativity is expensive, but also rarely needed
• 3 blocks mapping to same 2-way set and accessed (ABC)*

• Victim buffer (VB): small fully-associative cache
• Sits on I$/D$ fill path
• Small so very fast (e.g., 8 entries)
• Blocks kicked out of I$/D$ placed in VB
• On miss, check VB: hit? Place block back in I$/D$
• 8 extra ways, shared among all sets

+ Only a few sets will need it at any given time
+ Very effective for small caches
• Does VB reduce %miss or latencymiss?

I$/D$

L2

VB

CS/ECE 752 (Sohi): Caches 42

Seznec’s Skewed-Associative Cache

Bank1 Bank0

tag idx b.o.

f1 f0

Can get better utilization with less assoc?
 average case? worst case?

same index
same set

same index
redistribute to

different set

CS/ECE 752 (Sohi): Caches 43

Software Restructuring: Data
• Capacity misses: poor spatial or temporal locality

• Several code restructuring techniques to improve both
– Compiler must know that restructuring preserves semantics

• Loop interchange: spatial locality
• Example: row-major matrix: X[i][j] followed by X[i][j+1]
• Poor code: X[i][j] followed by X[i+1][j]

for (j = 0; j<NCOLS; j++)
for (i = 0; i<NROWS; i++)

sum += X[i][j]; // non-contiguous accesses
• Better code

for (i = 0; i<NROWS; i++)
for (j = 0; j<NCOLS; j++)

sum += X[i][j]; // contiguous accesses

CS/ECE 752 (Sohi): Caches 44

Software Restructuring: Data
• Loop blocking: temporal locality

• Poor code
for (k=0; k<NITERATIONS; k++)

for (i=0; i<NELEMS; i++)
sum += X[i]; // say

• Better code
• Cut array into CACHE_SIZE chunks
• Run all phases on one chunk, proceed to next chunk
for (i=0; i<NELEMS; i+=CACHE_SIZE)

for (k=0; k<NITERATIONS; k++)
for (ii=0; ii<i+CACHE_SIZE-1; ii++)

sum += X[ii];

– Assumes you know CACHE_SIZE, do you?
• Loop fusion: similar, but for multiple consecutive loops

CS/ECE 752 (Sohi): Caches 45

Restructuring Loops
• Loop Fusion

• Merge two independent loops
• Increase reuse of data

• Loop Fission
• Split loop into independent

loops
• Reduce contention for cache

resources

Fusion Example:
for (i=0; i < N; i++)
 for (j=0; j < N; j++)
 a[i][j] = 1/b[i][j]*c[i][j];
for (i=0; i < N; i++)
 for (j=0; j < N; j++)
 d[i][j] = a[i][j]+c[i][j];

Fused Loop:
for (i=0; i < N; i++)
 for (j=0; j < N ;j++)
 {
 a[i][j] = 1/b[i][j]*c[i][j];
 d[i][j] = a[i][j]+c[i][j];
 }

CS/ECE 752 (Sohi): Caches 46

Software Restructuring: Code
• Compiler lays out code for temporal and spatial locality

• If (a) { code1; } else { code2; } code3;
• But, code2 case never happens (say, error condition)

• Intra-procedure, inter-procedure
• Related to trace scheduling

Better
locality

Better
locality

CS/ECE 752 (Sohi): Caches 47

Miss Cost: Critical Word First/Early Restart
• Observation: latencymiss = latencyaccess + latencytransfer

• latencyaccess: time to get first word
• latencytransfer: time to get rest of block
• Implies whole block is loaded before data returns to CPU

• Optimization
• Critical word first: return requested word first

• Must arrange for this to happen (bus, memory must cooperate)
• Early restart: send requested word to CPU immediately

• Get rest of block load into cache in parallel
• latencymiss = latencyaccess

CS/ECE 752 (Sohi): Caches 48

Miss Cost: Lockup Free Cache
• Lockup free: allows other accesses while miss is pending

• Consider: Load [r1] -> r2; Load [r3] -> r4; Add r2, r4 -> r5
• Only makes sense for…

• Data cache
• Processors that can go ahead despite D$ miss (out-of-order)

• Implementation: miss status holding register (MSHR)
• Remember: miss address, chosen frame, requesting instruction
• When miss returns know where to put block, who to inform

• Simplest scenario: “hit under miss”
• Handle hits while miss is pending
• Easy for OoO cores

• More common: “miss under miss”
• A little trickier, but common anyway
• Requires split-transaction bus/interconnect
• Requires multiple MSHRs: search to avoid frame conflicts

CS/ECE 752 (Sohi): Caches 49

Prefetching
• Prefetching: put blocks in cache proactively/speculatively

• Key: anticipate upcoming miss addresses accurately
• Can do in software or hardware

• Simple example: next block prefetching
• Miss on address X → anticipate miss on X+block-size
+ Works for insns: sequential execution
+ Works for data: arrays

• Timeliness: initiate prefetches sufficiently in advance
• Coverage: prefetch for as many misses as possible
• Accuracy: don’t pollute with unnecessary data

• It evicts useful data

I$/D$

L2

prefetch logic

CS/ECE 752 (Sohi): Caches 50

Software Prefetching
• Software prefetching: two kinds

• Binding: prefetch into register (e.g., software pipelining)
+ No ISA support needed, use normal loads (non-blocking cache)
– Need more registers, and what about faults?

• Non-binding: prefetch into cache only
– Need ISA support: non-binding, non-faulting loads
+ Simpler semantics

• Example
for (i = 0; i<NROWS; i++)

for (j = 0; j<NCOLS; j+=BLOCK_SIZE) {
prefetch(&X[i][j]+BLOCK_SIZE);
for (jj=j; jj<j+BLOCK_SIZE-1; jj++)

sum += x[i][jj];
}

CS/ECE 752 (Sohi): Caches 51

Hardware Prefetching
• What to prefetch?

• One block ahead
• How much latency do we need to hide (Little’s Law)?
• Can also do N blocks ahead to hide more latency
+ Simple, works for sequential things: insns, array data

• Address-prediction
• Needed for non-sequential data: lists, trees, etc.

• When to prefetch?
• On every reference?
• On every miss?

+ Works better than doubling the block size
• Ideally: when resident block becomes dead (avoid useful evictions)

– How to know when that is? [“Dead-Block Prediction”, ISCA’01]

CS/ECE 752 (Sohi): Caches 52

Address Prediction for Prefetching
• “Next-block” prefetching is easy, what about other

options?
• Correlating predictor

• Large table stores (miss-addr → next-miss-addr) pairs
• On miss, access table to find out what will miss next

• It’s OK for this table to be large and slow
• Content-directed or dependence-based prefetching

• Greedily chases pointers from fetched blocks
• Jump pointers

• Augment data structure with prefetch pointers
• Can do in hardware too

• An active area of research

CS/ECE 752 (Sohi): Caches 53

Write Issues
• So far we have looked at reading from cache (loads)
• What about writing into cache (stores)?

• Several new issues
• Tag/data access
• Write-through vs. write-back
• Write-allocate vs. write-not-allocate

• Buffers
• Store buffers (queues)
• Write buffers
• Writeback buffers

CS/ECE 752 (Sohi): Caches 54

Tag/Data Access
• Reads: read tag and data in parallel

• Tag mis-match → data is garbage (OK)
• Writes: read tag, write data in parallel?

• Tag mis-match → clobbered data (oops)
• For associative cache, which way is

written?

• Writes are a pipelined 2 cycle process
• Cycle 1: match tag
• Cycle 2: write to matching way

1022

1023

offtag

data

index

address

=

hit?

0

1

2

offindex data

data

CS/ECE 752 (Sohi): Caches 55

Tag/Data Access
• Cycle 1: check tag

• Hit? Advance “store pipeline”
• Miss? Stall “store pipeline”

1022

1023

offtag

data

index

addresshit?

0

1

2

offindex data

data

=

CS/ECE 752 (Sohi): Caches 56

Tag/Data Access
• Cycle 2: write data

• Advanced Technique
• Decouple write pipeline
• In the same cycle

• Check tag of storei
• Write data of storei-1
• Bypass data of storei-1 to loads

1022

1023

offtag

data

index

addresshit?

0

1

2

offindex data

data

=

CS/ECE 752 (Sohi): Caches 57

Write-Through vs. Write-Back
• When to propagate new value to (lower level) memory?

• Write-through: immediately
+ Conceptually simpler
+ Uniform latency on misses
– Requires additional bus bandwidth

• Write-back: when block is replaced
• Requires additional “dirty” bit per block
+ Lower bus bandwidth for large caches

• Only writeback dirty blocks
– Non-uniform miss latency

• Clean miss: one transaction with lower level (fill)
• Dirty miss: two transactions (writeback + fill)

• Writeback buffer: fill, then writeback (later)

• Common design: Write through L1, write-back L2/L3

CS/ECE 752 (Sohi): Caches 58

Write-allocate vs. Write-non-allocate
• What to do on a write miss?

• Write-allocate: read block from lower level, write value into it
+ Decreases read misses
– Requires additional bandwidth
• Used mostly with write-back

• Write-non-allocate: just write to next level
– Potentially more read misses
+ Uses less bandwidth
• Used mostly with write-through

• Write allocate is common for write-back
• Write-non-allocate for write through

CS/ECE 752 (Sohi): Caches 59

Buffering Writes 1 of 3: Store Queues

• (1) Store queues
• Part of speculative processor; transparent to architecture
• Hold speculatively executed stores
• May rollback store if earlier exception occurs
• Used to track load/store dependences

• (2) Write buffers
• (3) Writeback buffers

$ $$/MemoryCPU

CS/ECE 752 (Sohi): Caches 60

Buffering Writes 2 of 3: Write Buffer

• (1) Store queues
• (2) Write buffers

• Holds committed architectural state
• Transparent to single thread
• May affect memory consistency model

• Hides latency of memory access or cache miss
• May bypass values to later loads (or stall)
• Store queue & write buffer may be in same physical structure

• (3) Writeback buffers

$ $$/MemoryCPU

CS/ECE 752 (Sohi): Caches 61

Buffering Writes 3 of 3: Writeback Buffer

• (1) Store queues
• (2) Write buffers

• (3) Writeback buffers (Special case of Victim Buffer)
• Transparent to architecture
• Holds victim block(s) so miss/prefetch can start immediately
• (Logically part of cache for multiprocessor coherence)

$ $$/MemoryCPU

CS/ECE 752 (Sohi): Caches 62

Increasing Cache Bandwidth
• What if we want to access the cache twice per cycle?
• Option #1: multi-ported cache

• Same number of six-transistor cells
• Double the decoder logic, bitlines, wordlines

• Areas becomes “wire dominated” -> slow
• OR, time multiplex the wires

• Option #2: banked cache
• Split cache into two smaller “banks”
• Can do two parallel access to different parts of the cache
• Bank conflict occurs when two requests access the same bank

• Option #3: replication
• Make two copies (2x area overhead)
• Writes both replicas (does not improve write bandwidth)
• Independent reads
• No bank conflicts, but lots of area
• Split instruction/data caches is a special case of this approach

CS/ECE 752 (Sohi): Caches 63

Multi-Port Caches

$

Pipe 1

Addr

Pipe 2

Addr

Pipe 1

Data

Pipe 2

Data

• Superscalar processors requires multiple data references
per cycle

• Time-multiplex a single port (double pump)
• need cache access to be faster than datapath clock
• not scalable

• Truly multiported SRAMs are
possible, but
• more chip area
• slower access

(very undesirable for L1-D)

CS/ECE 752 (Sohi): Caches 64

Multi-Banking (Interleaving) Caches
• Address space is statically partitioned and assigned to

different caches Which addr bit to use for partitioning?

• A compromise (e.g. Intel P6, MIPS R10K)
• multiple references per cyc. if no conflict
• only one reference goes through

if conflicts are detected
• the rest are deferred

(bad news for scheduling logic)

• Most helpful is compiler knows
about the interleaving rules

Even $

Odd $

CS/ECE 752 (Sohi): Caches 65

Multiple Cache Copies: e.g. Alpha 21164
• Independent fast load paths
• Single shared store path

• Not a scalable solution
• Store is a bottleneck
• Doubles area

$

Pipe 1

Load

Store

Pipe 1

Data

$Pipe 2

Load

Pipe 2

Data

CS/ECE 752 (Sohi): Caches 66

Evaluation Methods

• The three system evaluation methodologies
1. Analytic modeling
2. Software simulation
3. Hardware prototyping and measurement

CS/ECE 752 (Sohi): Caches 67

Methods: Hardware Counters

• See Clark, TOCS 1983
 accurate
 realistic workloads, system + user + others
 difficult, why?
 must first have the machine
 hard to vary cache parameters
 experiments not deterministic
 use statistics!
 take multiple measurements
 compute mean and confidence measures

• Most modern processors have built-in hardware counters

CS/ECE 752 (Sohi): Caches 68

Methods: Analytic Models

• Mathematical expressions
 insightful: can vary parameters
 fast
 absolute accuracy suspect for models with few parameters
 hard to determine parameter values
 difficult to evaluate cache interaction with system
 bursty behavior hard to evaluate

CS/ECE 752 (Sohi): Caches 69

Methods: Trace-Driven Simulation

Program

Memory trace
generator

Cache simulatorRepeat

Miss ratio

CS/ECE 752 (Sohi): Caches 70

Methods: Trace-Driven Simulation

 experiments repeatable
 can be accurate
 much recent progress
 reasonable traces are very large (gigabytes?)
 simulation is time consuming
 hard to say if traces are representative
 don’t directly capture speculative execution
 don’t model interaction with system

Widely used in industry

CS/ECE 752 (Sohi): Caches 71

Methods: Execution-Driven Simulation

• Simulate the program execution
• simulates each instruction’s execution on the computer
• model processor, memory hierarchy, peripherals, etc.
 reports execution time

 accounts for all system interactions
 no need to generate/store trace
 much more complicated simulation model
 time-consuming but good programming can help
 multi-threaded programs exhibit variability

Very common in academia today

Watch out for repeatability in multithreaded workloads

CS/ECE 752 (Sohi): Caches 72

Low-Power Caches
• Caches consume significant power

• 15% in Pentium4
• 45% in StrongARM

• Three techniques
• Way prediction (already talked about)
• Dynamic resizing
• Drowsy caches

CS/ECE 752 (Sohi): Caches 73

Low-Power Access: Dynamic Resizing
• Dynamic cache resizing

• Observation I: data, tag arrays implemented as many small arrays
• Observation II: many programs don’t fully utilize caches

• Idea: dynamically turn off unused arrays
• Turn off means disconnect power (VDD) plane
+ Helps with both dynamic and static power

• There are always tradeoffs
– Flush dirty lines before powering down → costs power↑
– Cache-size↓ → %miss↑ → power↑, execution time↑

CS/ECE 752 (Sohi): Caches 74

Dynamic Resizing: When to Resize
• Use %miss feedback

• %miss near zero? Make cache smaller (if possible)
• %miss above some threshold? Make cache bigger (if possible)

• Aside: how to track miss-rate in hardware?
• Hard, easier to track miss-rate vs. some threshold
• Example: is %miss higher than 5%?

• N-bit counter (N = 8, say)
• Hit? counter –= 1
• Miss? counter += 19
• Counter positive? More than 1 miss per 19 hits (%miss > 5%)

CS/ECE 752 (Sohi): Caches 75

Dynamic Resizing: How to Resize?
• Reduce ways

• [“Selective Cache Ways”, Albonesi, ISCA-98]
+ Resizing doesn’t change mapping of blocks to sets → simple
– Lose associativity

• Reduce sets
• [“Resizable Cache Design”, Yang+, HPCA-02]
– Resizing changes mapping of blocks to sets → tricky

• When cache made bigger, need to relocate some blocks
• Actually, just flush them

• Why would anyone choose this way?
+ More flexibility: number of ways typically small
+ Lower %miss: for fixed capacity, higher associativity better

Drowsy Caches
• Circuit technique to reduce leakage power

• Lower Vdd Much lower leakage
• But too low Vdd Unreliable read/destructive read

• Key: Drowsy state (low Vdd) to hold value w/ low leakage
• Key: Wake up to normal state (high Vdd) to access

• 1-3 cycle additional latency

CS/ECE 752 (Sohi): Caches 76

Low Vdd
High Vdd

Drowsy

Vdd to cache SRAM

CS/ECE 752 (Sohi): Caches 77

Memory Hierarchy Design
• Important: design hierarchy components together
• I$, D$: optimized for latencyhit and parallel access

• Insns/data in separate caches (for bandwidth)
• Capacity: 8–64KB, block size: 16–64B, associativity: 1–4
• Power: parallel tag/data access, way prediction?
• Bandwidth: banking or multi-porting/replication
• Other: write-through or write-back

• L2: optimized for %miss, power (latencyhit: 10–20)
• Insns and data in one cache (for higher utilization, %miss)
• Capacity: 128KB–2MB, block size: 64–256B, associativity: 4–16
• Power: parallel or serial tag/data access, banking
• Bandwidth: banking
• Other: write-back

• L3: starting to appear (latencyhit = 30-50)

CS/ECE 752 (Sohi): Caches 78

Hierarchy: Inclusion versus Exclusion
• Inclusion

• A block in the L1 is always in the L2
• Good for write-through L1s (why?)

• Exclusion
• Block is either in L1 or L2 (never both)
• Good if L2 is small relative to L1

• Example: AMD’s Duron 64KB L1s, 64KB L2

• Non-inclusion
• No guarantees

CS/ECE 752 (Sohi): Caches 79

Memory Performance Equation

• For memory component M
• Access: read or write to M
• Hit: desired data found in M
• Miss: desired data not found in M

• Must get from another (slower) component
• Fill: action of placing data in M

• %miss (miss-rate): #misses / #accesses
• thit: time to read data from (write data to) M
• tmiss: time to read data into M

• Performance metric
• tavg: average access time

tavg = thit + %miss * tmiss

CPU

M

thit

tmiss

%miss

CS/ECE 752 (Sohi): Caches 80

Hierarchy Performance

tavg
tavg-M1
thit-M1 + (%miss-M1*tmiss-M1)
thit-M1 + (%miss-M1*tavg-M2)
thit-M1 + (%miss-M1*(thit-M2 + (%miss-M2*tmiss-

M2)))
thit-M1 + (%miss-M1* (thit-M2 + (%miss-M2*tavg-

M3)))
…

tmiss-M3 = tavg-M4

CPU

M1

M2

M3

M4

tmiss-M2 = tavg-M3

tmiss-M1 = tavg-M2

tavg = tavg-M1

CS/ECE 752 (Sohi): Caches 81

Local vs Global Miss Rates
• Local hit/miss rate:

• Percent of references to cache hit (e.g, 90%)
• Local miss rate is (100% - local hit rate), (e.g., 10%)

• Global hit/miss rate:
• Misses per instruction (1 miss per 30 instructions)
• Instructions per miss (3% of instructions miss)
• Above assumes loads/stores are 1 in 3 instructions

• Consider second-level cache hit rate
• L1: 2 misses per 100 instructions
• L2: 1 miss per 100 instructions
• L2 “local miss rate” -> 50%

CS/ECE 752 (Sohi): Caches 82

Performance Calculation I
• Parameters

• Reference stream: all loads
• D$: thit = 1ns, %miss = 5%
• L2: thit = 10ns, %miss = 20%
• Main memory: thit = 50ns

• What is tavgD$ without an L2?
• tmissD$ = thitM
• tavgD$ = thitD$ + %missD$*thitM = 1ns+(0.05*50ns) = 3.5ns

• What is tavgD$ with an L2?
• tmissD$ = tavgL2
• tavgL2 = thitL2+%missL2*thitM = 10ns+(0.2*50ns) = 20ns
• tavgD$ = thitD$ + %missD$*tavgL2 = 1ns+(0.05*20ns) = 2ns

CS/ECE 752 (Sohi): Caches 83

Performance Calculation II
• In a pipelined processor, I$/D$ thit is “built in” (effectively 0)

• Parameters
• Base pipeline CPI = 1
• Instruction mix: 30% loads/stores
• I$: %miss = 2%, tmiss = 10 cycles
• D$: %miss = 10%, tmiss = 10 cycles

• What is new CPI?
• CPII$ = %missI$*tmiss = 0.02*10 cycles = 0.2 cycle
• CPID$ = %memory*%missD$*tmissD$ = 0.30*0.10*10 cycles = 0.3 cycle
• CPInew = CPI + CPII$ + CPID$ = 1+0.2+0.3= 1.5

CS/ECE 752 (Sohi): Caches 84

An Energy Calculation
• Parameters

• 2-way SA D$
• 10% miss rate
• 5µW/access tag way, 10µW/access data way

• What is power/access of parallel tag/data design?
• Parallel: each access reads both tag ways, both data ways

• Misses write additional tag way, data way (for fill)
• [2 * 5µW + 2 * 10µW] + [0.1 * (5µW + 10µW)] = 31.5 µW/access

• What is power/access of serial tag/data design?
• Serial: each access reads both tag ways, one data way

• Misses write additional tag way (actually…)
• [2 * 5µW + 10µW] + [0.1 * 5µW] = 20.5 µW/access

CS/ECE 752 (Sohi): Caches 85

Summary
• Average access time of a memory component

• latencyavg = latencyhit + %miss * latencymiss
• Hard to get low latencyhit and %miss in one structure → hierarchy

• Memory hierarchy
• Cache (SRAM) → memory (DRAM) → swap (Disk)
• Smaller, faster, more expensive → bigger, slower, cheaper

• Cache ABCs (capacity, associativity, block size)
• 3C miss model: compulsory, capacity, conflict

• Performance optimizations
• %miss: victim buffer, prefetching
• latencymiss: critical-word-first/early-restart, lockup-free design

• Power optimizations: way prediction, dynamic resizing
• Write issues

• Write-back vs. write-through/write-allocate vs. write-no-allocate

CS/ECE 752 (Sohi): Caches 86

Backups

CS/ECE 752 (Sohi): Caches 87

SRAM Technology
• SRAM: static RAM

• Static: bits directly connected to power/ground
• Naturally/continuously “refreshed”, never decay

• Designed for speed

• Implements all storage arrays in real processors
• Register file, caches, branch predictor, etc.
• Everything except pipeline latches

• Latches vs. SRAM
• Latches: singleton word, always read/write same one
• SRAM: array of words, always read/write different one

• Address indicates which one

CS/ECE 752 (Sohi): Caches 88

(CMOS) Memory Components
• Interface

• N-bit address bus (on N-bit machine)
• Data bus

• Typically read/write on same data bus
• Can have multiple ports: address/data bus pairs
• Can be synchronous: read/write on clock edges
• Can be asynchronous: untimed “handshake”

M

address data

CS/ECE 752 (Sohi): Caches 89

SRAM: First Cut
• 4x2 (4 2-bit words) RAM

• 2-bit addr
• First cut: bits are D-Latches

• Write port
• Addr decodes to enable signals

• Read port
• Addr decodes to mux selectors
– 1024 input OR gate?
– Physical layout of output wires

• RAM width ∝ M
• Wire delay ∝ wire length

read-data1

0 0

11

1 0

10

read-data0

write-data1 write-data0

w
rit

e-
ad

dr
re

ad
-a

dd
r

CS/ECE 752 (Sohi): Caches 90

SRAM: Second Cut
• Second cut: tri-state wired-OR

• Read mux using tri-states
+ Scalable, distributed “muxes”
+ Better layout of output wires

• RAM width independent of M

• Standard RAM
• Bits in word connected by wordline

• 1-hot decode address
• Bits in position connected by bitline

• Shared input/output wires
• Port: one set of wordlines/bitlines
• Grid-like designread-data1

0 0

11

1 0

10

read-data0

write-data1 write-data0

w
rit

e-
ad

dr
re

ad
-a

dd
r

CS/ECE 752 (Sohi): Caches 91

SRAM: Third Cut
• Third cut: replace latches with…

– 28 transistors per bit
• Cross-coupled inverters (CCI)

+ 4 transistors
• Convention

• Right node is bit, left is ~bit
• Non-digital interface

• What is the input and output?
• Where is write enable?

• Implement ports in “analog” way
• Transistors, not full gates

OUTWE

IN

bit
OUT? IN?

~bit
IN? OUT?

CS/ECE 752 (Sohi): Caches 92

SRAM: Register Files and Caches
• Two different SRAM port styles

• Regfile style
• Modest size: <4KB
• Many ports: some read-only, some write-only
• Write and read both take half a cycle (write first, read second)

• Cache style
• Larger size: >8KB
• Few ports: read/write in a single port
• Write and read can both take full cycle

CS/ECE 752 (Sohi): Caches 93

Regfile-Style Read Port
• Two phase read

• Phase I: clk = 0
• Pre-charge bitlines to 1
• Negated bitlines are 0

• Phase II: clk = 1
• One wordline goes high
• All “1” bits in that row

discharge their bitlines to 0
• Negated bitlines go to 1

CLK

ra
dd

r

rdata1 rdata0

wordline1

wordline0

bi
tli

ne
1

bi
tli

ne
0

10

01

CS/ECE 752 (Sohi): Caches 94

Read Port In Action: Phase I
• CLK = 0

• p-transistors conduct
• Bitlines “pre-charge” to 1
• rdata1-0 are 0

CLK=0

ra
dd

r

rdata1 rdata0

11

0 0

1

1

0

0

CS/ECE 752 (Sohi): Caches 95

Read Port In Action: Phase II
• raddr = 1
• CLK = 1

• p-transistors close
• wordline1 = 1
• “1” bits on wordline1 create path

from bitline to ground
• SRAM[1]

• Corresponding bitlines discharge
• bitline1

• Corresponding rdata bits go to 1
• rdata1

• That’s a read

CLK=1

ra
dd

r

rdata1 rdata0

0 1

01

0

10

1

CS/ECE 752 (Sohi): Caches 96

Regfile-Style Write Port
• Two phase write

• Phase I: clk = 1
• Stabilize one wordline high

• Phase II: clk = 0
• Open pass-transistors
• “Overwhelm” bits in selected word

• Actually: two clocks here
• Both phases in first half

CLK

w
ad

dr

wdata1 wdata0

pass transistor: like a tri-state buffer

0

10

1

CS/ECE 752 (Sohi): Caches 97

A 2-Read Port 1-Write Port Regfile
CLK

rdata10 rdata20

wdata0

rdata11 rdata21

wdata1

RD

RS1

RS2

SRAM cell

1

0

0

1

CS/ECE 752 (Sohi): Caches 98

Cache-Style Read/Write Port
• Double-ended bitlines

• Connect to both sides of bit
• Two-phase write

• Just like a register file
• Two phase read

• Phase I: clk = 1
• Equalize bitline pair voltage

• Phase II: clk = 0
• One wordline high
• “1 side” bitline swings up
• “0 side” bitline swings down
• Sens-amp translates swing

addr

wdata1

sense-amplifiersense-amplifier

~wdata1 wdata0~wdata0

rdata1 rdata0

RE&CLK

WE&~CLK

RE&~CLK ||
WE&CLK

0 1

1 1

CS/ECE 752 (Sohi): Caches 99

Read/Write Port in Read Action: Phase I
• Phase I: clk = 1

• Equalize voltage on bitline pairs
• To (nominally) 0.5

ad
dr

sense-amplifiersense-amplifier

rdata1 rdata0

RE&CLK

RE&~CLK
0 1

1 1

0.50.50.50.5

CS/ECE 752 (Sohi): Caches 100

Read/Write Port in Read Action: Phase II
• Phase II: clk = 0

• wordline1 goes high
• “1 side” bitlines swing high 0.6
• “0 side” bitlines swing low 0.4
• Sens-amps interpret swing

ad
dr

sense-amplifiersense-amplifier

rdata1 rdata0

RE&CLK

RE&~CLK
0 1

1 0

0.40.60.60.4

1 0

CS/ECE 752 (Sohi): Caches 101

Cache-Style SRAM Latency
• Assume

• M N-bit words
• Some minimum wire spacing L
• CCIs occupy no space

• 4 major latency components: taken in series
• Decoder: ∝ log2M
• Wordlines: ∝ 2NL (cross 2N bitlines)
• Bitlines: ∝ ML (cross M wordlines)
• Muxes + sens-amps: constant
• 32KB SRAM: red components contribute about equally

• Latency: ∝ (2N+M)L
• Make SRAMs as square as possible: minimize 2N+M

• Latency: ∝ √#bits

sa

0 1
1 0

sa

N

M

CS/ECE 752 (Sohi): Caches 102

Multi-Ported Cache-Style SRAM Latency
• Previous calculation had hidden constant

• Number of ports P
• Recalculate latency components

• Decoder: ∝ log2M (unchanged)
• Wordlines: ∝ 2NLP (cross 2NP bitlines)
• Bitlines: ∝ MLP (cross MP wordlines)
• Muxes + sens-amps: constant (unchanged)

• Latency: ∝ (2N+M)LP
• Latency: ∝ √#bits * #ports

• How does latency scale?

0 1

1 0

sasa

sasa

sa

0 1
1 0

sa

CS/ECE 752 (Sohi): Caches 103

Multi-Ported Cache-Style SRAM Power
• Same four components for power

• Pdynamic = C * VDD
2 * f, what is C?

• Decoder: ∝ log2M
• Wordlines: ∝ 2NLP

– Huge C per wordline (drives 2N gates)
+ But only one ever high at any time (overall consumption low)

• Bitlines: ∝ MLP
– C lower than wordlines, but large
+ Vswing << VDD (C * Vswing

2 * f)
• Muxes + sens-amps: constant
• 32KB SRAM: sens-amps are 60–70%

• How does power scale?

0 1

1 0

sasa

sasa

CS/ECE 752 (Sohi): Caches 104

Multi-Porting an SRAM
• Why multi-porting?

• Multiple accesses per cycle
• True multi-porting (physically adding a port) not good

+ Any combination of accesses will work
– Increases access latency, energy ∝ P, area ∝ P2

• Another option: pipelining
• Timeshare single port on clock edges (wave pipelining: no latches)
+ Negligible area, latency, energy increase
– Not scalable beyond 2 ports

• Yet another option: replication
• Don’t laugh: used for register files, even caches (Alpha 21164)
• Smaller and faster than true multi-porting 2*P2 < (2*P)2

+ Adds read bandwidth, any combination of reads will work
– Doesn’t add write bandwidth, not really scalable beyond 2 ports

CS/ECE 752 (Sohi): Caches 105

Banking an SRAM
• Still yet another option: banking (inter-leaving)

• Divide SRAM into banks
• Allow parallel access to different banks
• Two accesses to same bank? bank-conflict, one waits
• Low area, latency overhead for routing requests to banks
• Few bank conflicts given sufficient number of banks

• Rule of thumb: N simultaneous accesses → 2N banks

• How to divide words among banks?
• Round robin: using address LSB (least significant bits)
• Example: 16 word RAM divided into 4 banks
• b0: 0,4,8,12; b1: 1,5,9,13; b2: 2,6,10,14; b3: 3,7,11,15
• Why? Spatial locality

CS/ECE 752 (Sohi): Caches 106

A Banked Cache
• Banking a cache

• Simple: bank SRAMs
• Which address bits determine bank? LSB of index
• Bank network assigns accesses to banks, resolves conflicts

– Adds some latency too
0

1022

address0

=

1:0[31:12] [11:3] 0

data0 address1

1:0[31:12] [11:3] 1

data1

1

1023

=

<<<<
hit1?hit0?

CS/ECE 752 (Sohi): Caches 107

SRAM Summary
• Large storage arrays are not implemented “digitally”
• SRAM implementation exploits analog transistor properties

• Inverter pair bits much smaller than latch/flip-flop bits
• Wordline/bitline arrangement gives simple “grid-like” routing
• Basic understanding of read, write, read/write ports

• Wordlines select words
• Overwhelm inverter-pair to write
• Drain pre-charged line or swing voltage to read

• Latency proportional to √#bits * #ports

CS/ECE 752 (Sohi): Caches 108

Aside: Physical Cache Layout I
• Logical layout

• Data and tags mixed together
• Physical layout

• Data and tags in separate RAMs

512
513

1022
1023

514

1:0

data

[10:2] <<

address

=

hit?

0
1

510
511

2

=

[31:11]

CS/ECE 752 (Sohi): Caches 109

Physical Cache Layout II
• Logical layout

• Data array is monolithic
• Physical layout

• Each data “way” in separate array

512

513

1022

1023

514

1:0

data

[10:2]

address

0

1

510

511

2

[31:11] <<

CS/ECE 752 (Sohi): Caches 110

word0word1word2word3

Physical Cache Layout III
• Logical layout

• Data blocks are contiguous
• Physical layout

• Only if full block needed on read
• E.g., I$ (read consecutive words)
• E.g., L2 (read block to fill D$,I$)

• For D$ (access size is 1 word)…
• Words in same data blocks are bit-interleaved

• Word0.bit0 adjacent to word1.bit0
+ Builds word selection logic into array
+ Avoids duplicating sens-amps/muxes

512

513

1022

1023

514

1:0

data

[10:2]

address

0

1

510

511

2

[31:11]

CS/ECE 752 (Sohi): Caches 111

Physical Cache Layout IV
• Logical layout

• Arrays are vertically contiguous
• Physical layout

• Vertical partitioning to minimize wire lengths
• H-tree: horizontal/vertical partitioning layout

• Applied recursively
• Each node looks like an H

512

513

1022

1023

767

dataaddress

0

1

510

511

255

256 768

CS/ECE 752 (Sohi): Caches 112

Physical Cache Layout
• Arrays and h-trees make caches easy to spot in µgraphs

CS/ECE 752 (Sohi): Caches 113

Full-Associativity

• How to implement full (or at least high) associativity?
• 1K tag matches? unavoidable, but at least tags are small
• 1K data reads? Terribly inefficient

1 1023

1:0[31:2]

0 1022

= = = =

CS/ECE 752 (Sohi): Caches 114

Full-Associativity with CAMs
• CAM: content associative memory

• Array of words with built-in comparators
• Matchlines instead of bitlines
• Output is “one-hot” encoding of match

• FA cache?
• Tags as CAM
• Data as RAM

0

1

1022

1023

1:0[31:2]

=

• Hardware is not software
• No such thing as software CAM

=
=

=

CS/ECE 752 (Sohi): Caches 115

CAM Circuit
• CAM: reverse RAM

• Bitlines are inputs
• Called matchlines

• Wordlines are outputs
• Two phase match

• Phase I: clk=0
• Pre-charge wordlines

• Phase II: clk=1
• Enable matchlines
• Non-matching bits

dis-charge wordlines

~match1 ~match0match1
CLK

match0

0 1

01

CS/ECE 752 (Sohi): Caches 116

CAM Circuit In Action: Phase I
• Phase I: clk=0

• Pre-charge wordlines

~match1 ~match0match1
CLK

match0

0 1

01

0 1 1 0

1

1

CS/ECE 752 (Sohi): Caches 117

CAM Circuit In Action: Phase II
• Phase II: clk=1

• Enable matchlines
• Note: bits flipped

• Non-matching bit
discharges wordline

• ANDs matches
• NORs non-matches

• Similar technique for
doing a fast OR for hit
detection

~match1 ~match0match1
CLK

match0

0 1

01

0 1 1 0

1

0

CS/ECE 752 (Sohi): Caches 118

CAM Upshot
• CAMs: effective but expensive

– Matchlines are very expensive (for nasty EE reasons)
• Used but only for 16 or 32 way (max) associativity
• Not for 1024-way associativity

– No good way of doing something like that
+ No real need for it, either

	U. Wisconsin CS/ECE 752�Advanced Computer Architecture I
	This Unit: Caches
	Motivation
	Types of Memory
	Storage Technology
	Storage Technology Trends
	The “Memory Wall”
	Locality to the Rescue
	Known From the Beginning
	Exploiting Locality: Memory Hierarchy
	Concrete Memory Hierarchy
	This Unit: Caches
	Looking forward: Memory and Disk
	Basic Memory Array Structure
	Physical Cache Layout
	Physical Cache Layout
	Basic Cache Structure
	Basic Cache Structure
	Calculating Tag Overhead
	Cache Performance Simulation
	Hill’s 3C Miss Rate Classification
	Miss Rate: ABC
	Increase Cache Size
	Block Size
	Effect of Block Size on Miss Rate
	Block Size and Tag Overhead
	Block Size and Performance
	Large Blocks and Subblocking
	Conflicts
	Set-Associativity
	Set-Associativity
	Associativity and Performance
	Increase Associativity
	Replacement Policies
	NMRU and Miss Handling
	Parallel or Serial Tag Access?
	Serial Tag Access
	Best of Both? Way Prediction
	Classifying Misses: 3(4)C Model
	Cache Performance Simulation
	Conflict Misses: Victim Buffer
	Seznec’s Skewed-Associative Cache
	Software Restructuring: Data
	Software Restructuring: Data
	Restructuring Loops
	Software Restructuring: Code
	Miss Cost: Critical Word First/Early Restart
	Miss Cost: Lockup Free Cache
	Prefetching
	Software Prefetching
	Hardware Prefetching
	Address Prediction for Prefetching
	Write Issues
	Tag/Data Access
	Tag/Data Access
	Tag/Data Access
	Write-Through vs. Write-Back
	Write-allocate vs. Write-non-allocate
	Buffering Writes 1 of 3: Store Queues
	Buffering Writes 2 of 3: Write Buffer
	Buffering Writes 3 of 3: Writeback Buffer
	Increasing Cache Bandwidth
	Multi-Port Caches
	Multi-Banking (Interleaving) Caches
	Multiple Cache Copies: e.g. Alpha 21164
	�Evaluation Methods
	�Methods: Hardware Counters
	�Methods: Analytic Models
	Methods: Trace-Driven Simulation
	Methods: Trace-Driven Simulation
	Methods: Execution-Driven Simulation
	Low-Power Caches
	Low-Power Access: Dynamic Resizing
	Dynamic Resizing: When to Resize
	Dynamic Resizing: How to Resize?
	Drowsy Caches
	Memory Hierarchy Design
	Hierarchy: Inclusion versus Exclusion
	Memory Performance Equation
	Hierarchy Performance
	Local vs Global Miss Rates
	Performance Calculation I
	Performance Calculation II
	An Energy Calculation
	Summary
	Backups
	SRAM Technology
	(CMOS) Memory Components
	SRAM: First Cut
	SRAM: Second Cut
	SRAM: Third Cut
	SRAM: Register Files and Caches
	Regfile-Style Read Port
	Read Port In Action: Phase I
	Read Port In Action: Phase II
	Regfile-Style Write Port
	A 2-Read Port 1-Write Port Regfile
	Cache-Style Read/Write Port
	Read/Write Port in Read Action: Phase I
	Read/Write Port in Read Action: Phase II
	Cache-Style SRAM Latency
	Multi-Ported Cache-Style SRAM Latency
	Multi-Ported Cache-Style SRAM Power
	Multi-Porting an SRAM
	Banking an SRAM
	A Banked Cache
	SRAM Summary
	Aside: Physical Cache Layout I
	Physical Cache Layout II
	Physical Cache Layout III
	Physical Cache Layout IV
	Physical Cache Layout
	Full-Associativity
	Full-Associativity with CAMs
	CAM Circuit
	CAM Circuit In Action: Phase I
	CAM Circuit In Action: Phase II
	CAM Upshot

