
CS/ECE 752 (Sohi): Main Memory 1

U. Wisconsin CS/ECE 752
Advanced Computer Architecture I

Prof. Guri Sohi

Unit 9: Memory Hierarchy II: Main Memory

Slides developed by Amir Roth of University of Pennsylvania
with sources that included University of Wisconsin slides by
Mark Hill, Guri Sohi, Jim Smith, and David Wood.

Slides enhanced by Milo Martin, Mark Hill, and David Wood
with sources that included Profs. Asanovic, Falsafi, Hoe,
Lipasti, Shen, Smith, Sohi, Vijaykumar, and Wood

CS/ECE 752 (Sohi): Main Memory 2

This Unit: Main Memory
• Memory hierarchy review
• Virtual memory

• Address translation and page tables
• Virtual memory’s impact on caches
• Page-based protection

• Organizing a memory system
• Bandwidth matching
• Error correction

Application
OS

FirmwareCompiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

CS/ECE 752 (Sohi): Main Memory 3

Static Random Access Memory
- Read Sequence

1. address decode
2. drive row select
3. selected bit-cells drive bitlines
4. diff. sensing and col. select
5. precharge all bitlines

- Access latency dominated by steps 2 and 3
- Cycling time dominated by steps 2, 3 and 5

- step 2 proportional to 2m

- step 3 and 5 proportional to 2n

- usually encapsulated by synchronous
(sometime pipelined) interface logic

bit-cell array

2n row x 2m-col

(n≈m to minmize
overall latency)

sense amp and mux
2m diff pairs

2nn

m

1

row select

bi
tli

ne

_b
itl

in
e

n+m

CS/ECE 752 (Sohi): Main Memory 4

Dynamic Random Access Memory
- Bits stored as charges on node

capacitance (non-restorative)
- bit cell loses charge when read
- bit cell loses charge over time

- Read Sequence
1~3 same as SRAM
4. a “flip-flopping” sense amp amplifies

and regenerates the bitline, data bit is
mux’ed out

5. precharge all bitlines
- A DRAM controller must periodically,

either distributed or in a burst, read all
rows within the allowed refresh time
(10s of ms) synchronous interfaces

- various hacks to allow faster repeated
reads to the same row

row enable

_b
itl

in
e

bit-cell array

2n row x 2m-col

(n≈m to minmize
overall latency)

sense amp and mux
2m

2nn

m

1

RAS

CAS
A DRAM die comprises
of multiple such arrays

CS/ECE 752 (Sohi): Main Memory 5

Brief History of DRAM
• DRAM (memory): a major force behind computer industry

• Modern DRAM came with introduction of IC (1970)
• Preceded by magnetic “core” memory (1950s)

• Each cell was a small magnetic “donut”
• And by mercury delay lines before that (ENIAC)

• Re-circulating vibrations in mercury tubes

“the one single development that put computers on their feet was the
invention of a reliable form of memory, namely the core memory… It’s
cost was reasonable, it was reliable, and because it was reliable it
could in due course be made large”

Maurice Wilkes
Memoirs of a Computer Programmer, 1985

DRAM Basics [Jacob and Wang]
• Precharge and Row Access

CS/ECE 752 (Sohi): Main Memory 6

DRAM Basics, cont.
• Column Access

CS/ECE 752 (Sohi): Main Memory 7

DRAM Basics, cont.
• Data Transfer

CS/ECE 752 (Sohi): Main Memory 8

Open v. Closed Pages
• Open Page

• Row stays active until another row needs to be accessed
• Acts as memory-level cache to reduce latency
• Variable access latency complicates memory controller
• Higher power dissipation (sense amps remain active)

• Closed Page
• Immediately deactivate row after access
• All accesses become Activate Row, Read/Write, Precharge

• Complex power v. performance trade off

CS/ECE 752 (Sohi): Main Memory 9

CS/ECE 752 (Sohi): Main Memory 10

DRAM Bandwidth
• Use multiple DRAM chips to increase bandwidth

• Recall, access are the same size as second-level cache
• Example, 16 2-byte wide chips for 32B access

• DRAM density increasing faster than demand
• Result: number of memory chips per system decreasing

• Need to increase the bandwidth per chip
• Especially important in game consoles
• SDRAM DDR DDR2 FBDIMM (DDR3)
• Rambus - high-bandwidth memory

• Used by several game consoles

CS/ECE 752 (Sohi): Main Memory 11

DRAM Evolution
• Survey by Cuppu et al.
1. Early Asynchronous Interface
2. Fast Page Mode/Nibble Mode/Static Column (skip)
3. Extended Data Out
4. Synchronous DRAM & Double Data Rate
5. Rambus & Direct Rambus
6. FB-DIMM

CS/ECE 752 (Sohi): Main Memory 12

Old 64MbitDRAM Example from Micron
Clock Recovery

CS/ECE 752 (Sohi): Main Memory 13

Extended Data Out (EDO)

Row add Column add

Data

Column add

Data

RAS’

CAS’

• Similar to Fast Page Mode
• But overlapped Column Address assert with Data Out

Column add

Data

CS/ECE 752 (Sohi): Main Memory 14

Synchronous DRAM (SDRAM)

Row add
Column add

Data

RAS’

CAS’

Data Data

• Add Clock and Wider data!
• Also multiple transfers per RAS/CAS

CS/ECE 752 (Sohi): Main Memory 15

Enhanced SDRAM & DDR
• Evolutionary Enhancements on SDRAM:
1. ESDRAM (Enhanced): Overlap row buffer access with

refresh

2. DDR (Double Data Rate): Transfer on both clock edges
3. DDR2’s small improvements

lower voltage, on-chip termination, driver calibration
prefetching, conflict buffering

4. DDR3, more small improvements
lower voltage, 2X speed, 2X prefetching,
2X banks, “fly-by topology”, automatic calibration

Wide v. Narrow Interfaces
• High frequency short wavelength data skew issues

• Balance wire lengths

CS/ECE 752 (Sohi): Main Memory 16

DDR-2 serpentine board routing FB-DIMM board routing

CS/ECE 752 (Sohi): Main Memory 17

Rambus RDRAM
• High-frequency, narrow channel

• Time multiplexed “bus” dynamic point-to-point channels
• ~40 pins 1.6GB/s

• Proprietary solution
• Never gained industry-wide acceptance (cost and power)
• Used in some game consoles (e.g., PS2)

CPU
or

Memory
Controller

RDRAM RDRAMRDRAM

Data bus

from_clock

to_clock

16 bits @ 800 Mhz

CS/ECE 752 (Sohi): Main Memory 18

FB-DIMM

CS/ECE 752 (Sohi): Main Memory 19

DRAM Reliability
• One last thing about DRAM technology… errors

• DRAM bits can flip from 01 or 10
• Small charge stored per bit
• Energetic α-particle strikes disrupt stored charge
• Many more bits

• Modern DRAM systems: built-in error detection/correction
• Today all servers; most new desktop and laptops

• Key idea: checksum-style redundancy
• Main DRAM chips store data, additional chips store f(data)

• |f(data)| < |data|
• On read: re-compute f(data), compare with stored f(data)

• Different ? Error…
• Option I (detect): kill program
• Option II (correct): enough information to fix error? fix and go on

CS/ECE 752 (Sohi): Main Memory 20

DRAM Error Detection and Correction

• Performed by memory controller (not the DRAM chip)
• Error detection/correction schemes distinguished by…

• How many (simultaneous) errors they can detect
• How many (simultaneous) errors they can correct

4M
x

2B

4M
x

2B

4M
x

2B

4M
x

2B
0 1 2 3

4M
x

2B
f

f

errordataaddress

CS/ECE 752 (Sohi): Main Memory 21

• Divide memory into M banks and “interleave” addresses
across them, so word A is
• in bank (A mod M)
• at word (A div M)

Interleaved memory increases memory BW without wider bus
• Use parallelism in memory banks to hide memory latency

Interleaved Main Memory

Bank 0 Bank nBank 2Bank 1

Doubleword in bank Bank Word in doubleword

Copyright © 2002 Falsafi, from Sohi,
Smith, Sohi, Vijaykumar, and Wood

word 0
word n
word 2n

word 1
word n+1

word 2n+1

word 2
word n+2

word 2n+2

word n-1
word 2n-1
word 3n-1

PA

CS/ECE 752 (Sohi): Main Memory 22

Block interleaved memory systems

CPU MC MCMC

Data bus

MC

B B+64 B+128 B+192

• Cache blocks map to separate memory controllers
• Interleave across DRAMs w/i a MC
• Interleave across intra-DRAM banks w/i a DRAM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

D
R

AM

CS/ECE 752 (Sohi): Main Memory 23

row buffer

Research: Processing in Memory
• Processing in memory

• Embed some ALUs in DRAM
• Picture is logical, not physical

• Do computation in DRAM rather than…
• Move data to from DRAM to CPU
• Compute on CPU
• Move data from CPU to DRAM

• Will come back to this in “vectors” unit

• E.g.,: IRAM: intelligent RAM
• Berkeley research project
• [Patterson+,ISCA’97]

DRAM
bit array

row buffer

data

address

CS/ECE 752 (Sohi): Main Memory 24

Memory Hierarchy Review
• Storage: registers, memory, disk

• Memory is the fundamental element

• Memory component performance
• tavg = thit + %miss * tmiss
• Can’t get both low thit and %miss in a single structure

• Memory hierarchy
• Upper components: small, fast, expensive
• Lower components: big, slow, cheap
• tavg of hierarchy is close to thit of upper (fastest) component

• 10/90 rule: 90% of stuff found in fastest component
• Temporal/spatial locality: automatic up-down data movement

CS/ECE 752 (Sohi): Main Memory 25

Concrete Memory Hierarchy
• 1st/2nd levels: caches (I$, D$, L2)

• Made of SRAM
• Last unit

• 3rd level: main memory
• Made of DRAM
• Managed in software
• This unit

• 4th level: disk (swap space)
• Made of magnetic iron oxide discs
• Manage in software
• Next unit

CPU

D$

L2

Main
Memory

I$

Disk

CS/ECE 752 (Sohi): Main Memory 26

Memory Organization
• Paged “virtual” memory

• Programs want a conceptual view of a memory of unlimited size
• Use disk as a backing store when physical memory is exhausted
• Memory acts like a cache, managed (mostly) by software

• How is the “memory as a cache” organized?
• Block size? Pages that are typically 4KB or larger
• Associativity? Fully associative
• Replacement policy? In software
• Write-back vs. write-through? Write-back
• Write-allocate vs. write-non-allocate? Write allocate

CS/ECE 752 (Sohi): Main Memory 27

Low %miss At All Costs
• For a memory component: thit vs. %miss tradeoff

• Upper components (I$, D$) emphasize low thit
• Frequent access → minimal thit important
• tmiss is not bad → minimal %miss less important
• Low capacity/associativity/block-size, write-back or write-thru

• Moving down (L2) emphasis turns to %miss
• Infrequent access → minimal thit less important
• tmiss is bad → minimal %miss important
• High capacity/associativity/block size, write-back

• For memory, emphasis entirely on %miss
• tmiss is disk access time (measured in ms, not ns)

CS/ECE 752 (Sohi): Main Memory 28

Memory Organization Parameters
Parameter I$/D$ L2 Main Memory
thit 1-2ns 5-15ns 100ns
tmiss 5-15ns 100ns 10ms (10M ns)
Capacity 8–64KB 256KB–8MB 256MB–1TB
Block size 16–32B 32–256B 8–64KB pages
Associativity 1–4 4–16 Full
Replacement Policy LRU/NMRU LRU/NMRU working set
Write-through? Either No No
Write-allocate? Either Yes Yes
Write buffer? Yes Yes No
Victim buffer? Yes Maybe No
Prefetching? Either Yes Software

CS/ECE 752 (Sohi): Main Memory 29

Software Managed Memory
• Isn’t full associativity difficult to implement?

• Yes … in hardware
• Implement fully associative memory in software

• Let’s take a step back…

CS/ECE 752 (Sohi): Main Memory 30

Virtual Memory
• Idea of treating memory like a cache…

• Contents are a dynamic subset of program’s address space
• Dynamic content management transparent to program

• Original motivation: capacity
• Atlas (1962): Fully-associative cache of pages, called one-level store
• 16K words of core memory; 96K words of drum storage

• Successful motivation: compatibility
• IBM System 370: a family of computers with one software suite
+ Same program could run on machines with different memory sizes

• Caching mechanism made it appear as if memory was 2N bytes
• Regardless of how much there actually was

– Prior, programmers explicitly accounted for memory size

• Virtual memory
• Virtual: “in effect, but not in actuality” (i.e., appears to be, but isn’t)

CS/ECE 752 (Sohi): Main Memory 31

Virtual Memory
• Programs use virtual addresses (VA)

• 0…2N–1
• VA size also referred to as machine size
• E.g., Pentium4 is 32-bit, SPARC is 64-bit

• Memory uses physical addresses (PA)
• 0…2M–1 (typically M<N, especially if N=64)
• 2M is most physical memory machine supports

• VA→PA at page granularity (VP→PP)
• By “system”
• Mapping need not preserve contiguity
• VP need not be mapped to any PP
• Unmapped VPs live on disk (swap)

…

…

Disk

Program

Main Memory

code heap stack

CS/ECE 752 (Sohi): Main Memory 32

Uses of Virtual Memory
• Virtual memory is quite a useful feature

• Automatic, transparent memory management just one use
• “Functionality problems are solved by adding levels of indirection”

• Example: program isolation and multiprogramming
• Each process thinks it has 2N bytes of address space
• Each thinks its stack starts at address 0xFFFFFFFF
• System maps VPs from different processes to different PPs

+ Prevents processes from reading/writing each other’s memory

…

…

Program1 … Program2

CS/ECE 752 (Sohi): Main Memory 33

More Uses of Virtual Memory
• Isolation and Protection

• Piggy-back mechanism to implement page-level protection
• Map virtual page to physical page

… and to Read/Write/Execute protection bits in page table
• In multi-user systems

• Prevent user from accessing another’s memory
• Only the operating system can see all system memory

• Attempt to illegal access, to execute data, to write read-only data?
• Exception → OS terminates program

• Inter-process communication
• Map virtual pages in different processes to same physical page
• Share files via the UNIX mmap() call

CS/ECE 752 (Sohi): Main Memory 34

Address Translation

• VA→PA mapping called address translation
• Split VA into virtual page number (VPN) and page offset (POFS)
• Translate VPN into physical page number (PPN)
• POFS is not translated
• VA→PA = [VPN, POFS] → [PPN, POFS]

• Example above
• 64KB pages → 16-bit POFS
• 32-bit machine → 32-bit VA → 16-bit VPN
• Maximum 256MB memory → 28-bit PA → 12-bit PPN

POFS[15:0]virtual address[31:0] VPN[31:16]

POFS[15:0]physical address[25:0] PPN[27:16]
translate don’t touch

CS/ECE 752 (Sohi): Main Memory 35

Mechanics of Address Translation
• How are addresses translated?

• In software (now) but with hardware acceleration (a little later)
• Each process allocated a page table (PT)

• Managed by the operating system
• Maps VPs to PPs or to disk (swap) addresses

• VP entries empty if page never referenced
• Translation is table lookup

struct {
 union { int ppn, disk_block; }
 int is_valid, is_dirty;
} PTE;
struct PTE pt[NUM_VIRTUAL_PAGES];

int translate(int vpn) {
 if (pt[vpn].is_valid)
 return pt[vpn].ppn;
}

PT

vp
n

Disk(swap)

CS/ECE 752 (Sohi): Main Memory 36

Page Table Size
• How big is a page table on the following machine?

• 4B page table entries (PTEs)
• 32-bit machine
• 4KB pages

• 32-bit machine → 32-bit VA → 4GB virtual memory
• 4GB virtual memory / 4KB page size → 1M VPs
• 1M VPs * 4B PTE → 4MB

• How big would the page table be with 64KB pages?
• How big would it be for a 64-bit machine?

• Page tables can get big
• There are ways of making them smaller
• PA = f(VA) many different data structures possible

CS/ECE 752 (Sohi): Main Memory 37

Multi-Level Page Table
• One way: multi-level page tables

• Tree of page tables
• Lowest-level tables hold PTEs
• Upper-level tables hold pointers to lower-level tables
• Different parts of VPN used to index different levels

• Example: two-level page table for machine on last slide
• Compute number of pages needed for lowest-level (PTEs)

• 4KB pages / 4B PTEs → 1K PTEs/page
• 1M PTEs / (1K PTEs/page) → 1K pages

• Compute number of pages needed for upper-level (pointers)
• 1K lowest-level pages → 1K pointers
• 1K pointers * 32-bit VA → 4KB → 1 upper level page

CS/ECE 752 (Sohi): Main Memory 38

Multi-Level Page Table
• 20-bit VPN

• Upper 10 bits index 1st-level table
• Lower 10 bits index 2nd-level table

1st-level
“pointers”

2nd-level
PTEs

VPN[9:0]VPN[19:10]

struct {
 union { int ppn, disk_block; }
 int is_valid, is_dirty;
} PTE;
struct {
 struct PTE ptes[1024];
} L2PT;
struct L2PT *pt[1024];

int translate(int vpn) {
 struct L2PT *l2pt = pt[vpn>>10];
 if (l2pt && l2pt->ptes[vpn&1023].is_valid)
 return l2pt->ptes[vpn&1023].ppn;
}

pt “root”

CS/ECE 752 (Sohi): Main Memory 39

Multi-Level Page Table (PT)
• Have we saved any space?

• Isn’t total size of 2nd level tables same as single-level
table (i.e., 4MB)?

• Yes, but…

• Large virtual address regions unused
• Corresponding 2nd-level tables need not exist
• Corresponding 1st-level pointers are null

• Example: 2MB code, 64KB stack, 16MB heap
• Each 2nd-level table maps 4MB of virtual addresses
• 1 for code, 1 for stack, 4 for heap, (+1 1st-level)
• 7 total pages = 28KB (much less than 4MB)

CS/ECE 752 (Sohi): Main Memory 40

Alternative: Inverted/Hashed Page Tables

hashPID
Table
Offset

Base of Table

VPN
+ PA of IPTE

Physical
Memory

VPN PID PTE

Inverted
Page Table

Size of Inverted Page table only needs to be
proportional to the size of the physical memory

Each VPN can only be mapped to a small set
of entries according to a hash function

To translate a VPN, check all allowed table
entries for matching VPN and PID

How many memory lookups per translation?

CS/ECE 752 (Sohi): Main Memory 41

Address Translation Mechanics
• The six questions

• What? address translation
• Why? compatibility, multi-programming, protection
• How? page table
• Who performs it?
• When do you translate?
• Where does page table reside?

• Conceptual view:
• Translate virtual address before every cache access
• Walk the page table for every load/store/instruction-fetch
• Disallow program from modifying its own page table entries

• Actual approach:
• Cache translations in a “translation cache” to avoid repeated lookup

CS/ECE 752 (Sohi): Main Memory 42

Translation Lookaside Buffer
• Functionality problem? add indirection
• Performance problem? add cache
• Address translation too slow?

• Cache translations in translation lookaside
buffer (TLB)

• Small cache: 16–512 entries
• Small TLBs often fully associative (<64)

+ Exploits temporal locality in page table (PT)
• What if an entry isn’t found in the TLB?

• Invoke TLB miss handler

VPN PPN
VPN PPN
VPN PPN

“tag” “data”

CPU

D$

L2

Main
Memory

I$

TLB

PA

PA

VA VA

PA PA
TLB

CS/ECE 752 (Sohi): Main Memory 43

TLB Misses and Miss Handling
• TLB miss: requested PTE not in TLB, search page table

• Software routine, e.g., Alpha, SPARC, MIPS
• Special instructions for accessing TLB directly
• Latency: one or two memory accesses + trap

• Hardware finite state machine (FSM), e.g., x86
• Store page table root in hardware register
• Page table root and table pointers are physical addresses
+ Latency: saves cost of OS call

• In both cases, reads use the the standard cache hierarchy
+ Allows caches to help speed up search of the page table

• Nested TLB miss: miss handler itself misses in the TLB
• Solution #1: Allow recursive TLB misses (very tricky)
• Solution #2: Lock TLB entries for page table into TLB
• Solution #3: Avoid problem using physical address in page table

TLB Performance
• TLB Reach = # TLB entries * Page size

= 64 * 4KB = 256KB << L2 cache size
Solution #1: Big pages (e.g., 4MB)

TLB Reach = 256MB, but internal fragmentation
How to support both big and small pages?

Solution #2: Two-level TLB
L1: 64-128 entries, L2: 512-2048 entries

Solution #3: Software TLB (aka TSB)
in memory TLB: 32K entries (or more)

low-associativity (e.g., 2-way), longer hit time
Much faster than page table access

CS/ECE 752 (Sohi): Main Memory 44

CS/ECE 752 (Sohi): Main Memory 45

Page Faults
• Page fault: PTE not in page table

• Page is simply not in memory
• Starts out as a TLB miss, detected by OS handler/hardware FSM

• OS routine
• Choose a physical page to replace

• “Working set”: more refined software version of LRU
• Tries to see which pages are actively being used
• Balances needs of all current running applications

• If dirty, write to disk
• Read missing page from disk

• Takes so long (~10ms), OS schedules another task
• Treat like a normal TLB miss from here

CS/ECE 752 (Sohi): Main Memory 46

Physical (Address) Caches
• Memory hierarchy so far: physical caches

• Indexed and tagged by Pas
• Physically Indexed (PI)
• Physically Tagged (PT)

• Translate to PA to VA at the outset
+ Cached inter-process communication works

• Single copy indexed by PA
– Slow: adds at least one cycle to thit

CPU

D$

L2

Main
Memory

I$

TLB

PA

VA VA

PA PA
TLB

PA

CS/ECE 752 (Sohi): Main Memory 47

Virtual Address Caches (VI/VT)
• Alternative: virtual caches

• Indexed and tagged by VAs (VI and VT)
• Translate to PAs only to access L2
+ Fast: avoids translation latency in common case
– Problem: VAs from different processes are

distinct physical locations (with different values)
(call homonyms)

• What to do on process switches?
• Flush caches? Slow
• Add process IDs to cache tags

• Does inter-process communication work?
• Synonyms: multiple VAs map to same PA

• Can’t allow same PA in the cache twice
• Also a problem for DMA I/O

• Can be handled, but very complicated

CPU

D$

L2

Main
Memory

I$

TLB

PA

PA

VA

VA VA

CS/ECE 752 (Sohi): Main Memory 48

Parallel TLB/Cache Access (VI/PT)
• Compromise: access TLB in parallel

• In small caches, index of VA and PA the same
• VI == PI

• Use the VA to index the cache
• Tagged by PAs
• Cache access and address translation in parallel
+ No context-switching/aliasing problems
+ Fast: no additional thit cycles

• Common organization in processors today

CPU

D$

L2

Main
Memory

I$TLB

PA

PA

VA VA

TLB

Itanium Prevalidated tags

• I$ tag is bit vector, not address tag
• match TLB location for hit

• TLB miss I$ miss
• TLB size tag size (32 entries/32 bits in Itanium 2)

CS/ECE 752 (Sohi): Main Memory 49

I$TLB

VA

CS/ECE 752 (Sohi): Main Memory 50

Parallel Cache/TLB Access
• Two ways to look at VA

• Cache: tag+index+offset
• TLB: VPN+page offset

• Parallel cache/TLB…
• If address translation

doesn’t change index
• VPN/index don’t overlap

[4:0]virtual tag [31:12]

data

index [11:5]

address

==

TLB hit/miss

==

==
==

VPN [31:16] page offset [15:0]

cache

TLB

cache hit/miss

Fully associative TLB

CS/ECE 752 (Sohi): Main Memory 51

Cache Size And Page Size

• Relationship between page size and L1 cache size
• Forced by non-overlap between VPN and IDX portions of VA

• Which is required for TLB access
• Rule: (cache size) / (associativity) ≤ page size
• Result: associativity increases allowable cache sizes
• Systems are moving towards bigger (64KB) pages

• To use parallel translation with bigger caches
• To amortize disk latency

• Example: Pentium 4, 4KB pages, 8KB, 2-way SA L1 data cache
• If cache is too big, same issues as virtually-indexed caches

• Other tricks can help (e.g., set-associative main memory)

[4:0][31:12] index [11:5]
VPN [31:16] page offset [15:0]

?

CS/ECE 752 (Sohi): Main Memory 52

TLB Organization
• Like caches: TLBs also have ABCs

• Capacity
• Associativity (At least 4-way associative, fully-associative common)
• What does it mean for a TLB to have a block size of two?

• Two consecutive VPs share a single tag

• Like caches: there can be L2 TLBs
• Why? Think about this…

• Rule of thumb: TLB should “cover” L2 contents
• In other words: (#PTEs in TLB) * page size ≥ L2 size
• Why? Think about relative miss latency in each…

CS/ECE 752 (Sohi): Main Memory 53

Virtual Memory
• Virtual memory ubiquitous today

• Certainly in general-purpose (in a computer) processors
• But even many embedded (in non-computer) processors support it

• Several forms of virtual memory
• Paging (aka flat memory): equal sized translation blocks

• Most systems do this
• Segmentation: variable sized (overlapping?) translation blocks

• x86 used this rather than 32-bits to break 16-bit (64KB) limit
• Makes life hell

• Paged segments: don’t ask

• How does virtual memory work when system starts up?

CS/ECE 752 (Sohi): Main Memory 54

Memory Protection and Isolation
• Most important role of virtual memory today

• Virtual memory protects applications from one another
• OS uses indirection to isolate applications
• One buggy program should not corrupt the OS or other programs
+ Comes “for free” with translation
– However, the protection is limited

– What about protection from…
• Viruses and worms?

• Stack smashing
• Malicious/buggy services?

• Other applications with which you want to communicate

CS/ECE 752 (Sohi): Main Memory 55

Stack Smashing via Buffer Overflow

• Stack smashing via buffer overflow
• Oldest trick in the virus book
• Exploits stack frame layout and…
• Sloppy code: length-unchecked copy to stack buffer
• “Attack string”: code (128B) + &buf[0] (4B)
• Caller return address replaced with pointer to attack code

• Caller return…
• …executes attack code at caller’s privilege level

• Vulnerable programs: gzip-1.2.4, sendmail-8.7.5

int i = 0;
char buf[128];
while ((buf[i++] = getc()) != ’\n’) ;
return;

buf[128]

ra

ra

attack
code

ra

&buf[0]

CS/ECE 752 (Sohi): Main Memory 56

Page-Level Protection

• Page-level protection
• Piggy-backs on translation infrastructure
• Each PTE associated with permission bits: Read, Write, eXecute

• Read/execute (RX): for code
• Read (R): read-only data
• Read/write (RW): read-write data

• TLB access traps on illegal operations (e.g., write to RX page)
• To defeat stack-smashing? Set stack permissions to RW

• Will trap if you try to execute &buf[0]
+ X bits recently added to x86 for this specific purpose
– Unfortunately, hackers have many other tricks

struct {
 union { int ppn, disk_block; }
 int is_valid, is_dirty, permissions;
} PTE;

CS/ECE 752 (Sohi): Main Memory 57

Safe and Efficient Services
• Scenario: module (application) A wants service B provides

• A doesn’t “trust” B and vice versa (e.g., B is kernel)
• How is service provided?

• Option I: conventional call in same address space
+ Can easily pass data back and forth (pass pointers)
– Untrusted module can corrupt your data

• Option II: trap or cross address space call
– Copy data across address spaces: slow, hard if data uses pointers
+ Data is not vulnerable

• Page-level protection helps somewhat, but…
• Page-level protection can be too coarse grained
• If modules share address space, both can change protections

CS/ECE 752 (Sohi): Main Memory 58

Alternative to VM: base/bound registers
• Each process is given a non-overlapping, contiguous

physical memory region
• When a process is swapped in, OS sets base to the start of

the process’s memory region and bound to the end of the
region

• On memory references, HW translation & protection check
• PA = EA + base
• provided (PA < bound),
• else violations

physical mem.

active process’s
region

another process’s
region

Base

Bound
privileged control

registers

CS/ECE 752 (Sohi): Main Memory 59

Also Segmented Address Space
• segment == a base and bound pair
• segmented addressing gives each process multiple segments

• initially, separate code and data segments
- 2 sets of base-and-bound reg’s for inst and data fetch
- allowed sharing code segments

• became more and more elaborate: code, data, stack, etc.
• also (ab)used as a way for an ISA with a small EA space to address

a larger physical memory space
SEG # EA

segment
table

+,<base
&

bound

PA
&

okay?

segment tables
must be 1.

privileged data
structures and 2.
private/unique to

each process

CS/ECE 752 (Sohi): Main Memory 60

Backups

CS/ECE 752 (Sohi): Main Memory 61

RAM
• RAM: large storage arrays
• Basic structure

• MxN array of bits (M N-bit words)
• This one is 4x2

• Bits in word connected by wordline
• Bits in position connected by bitline

• Operation
• Address decodes into M wordlines
• High wordline → word on bitlines
• Bit/bitline connection → read/write

• Access latency
• #ports * √#bits

ad
dr

es
s

wordline0
bi

tli
ne

1

bi
tli

ne
0

? ?

wordline1

? ?

wordline2

? ?

wordline3

? ?

0/1

0/1

0/1

0/1 0/1

0/1

0/1

0/1

data

CS/ECE 752 (Sohi): Main Memory 62

SRAM
• SRAM: static RAM

• Bits as cross-coupled inverters (CCI)
– Four transistors per bit
– More transistors for ports

• “Static” means
• Inverters connected to pwr/gnd
+ Bits naturally/continuously “refreshed”

• Designed for speed

ad
dr

es
s

? ?

? ?

? ?

? ?

data

CS/ECE 752 (Sohi): Main Memory 63

DRAM
• DRAM: dynamic RAM

• Bits as capacitors
+ Single transistors as ports
+ One transistor per bit/port

• “Dynamic” means
• Capacitors not connected to pwr/gnd
– Stored charge decays over time
– Must be explicitly refreshed

• Designed for density
• Moore’s Law

ad
dr

es
s

data

CS/ECE 752 (Sohi): Main Memory 64

Moore’s Law

• Commodity DRAM parameters
• 16X every 8 years is 2X every 2 years

• Not quite 2X every 18 months but still close

Year Capacity $/MB Access time
1980 64Kb $1500 250ns
1988 4Mb $50 120ns
1996 64Mb $10 60ns
2004 1Gb $0.5 35ns

CS/ECE 752 (Sohi): Main Memory 65

DRAM Operation I
• Read: similar to cache read

• Phase I: pre-charge bitlines to 0.5V
• Phase II: decode address, enable wordline

• Capacitor swings bitline voltage up(down)
• Sense-amplifier interprets swing as 1(0)

– Destructive read: word bits now discharged

• Write: similar to cache write
• Phase I: decode address, enable wordline
• Phase II: enable bitlines

• High bitlines charge corresponding capacitors

– What about leakage over time?

ad
dr

es
s

data

sa sa
write

CS/ECE 752 (Sohi): Main Memory 66

DRAM Operation II
• Solution: add set of D-latches (row buffer)

• Read: two steps
• Step I: read selected word into row buffer
• Step IIA: read row buffer out to pins
• Step IIB: write row buffer back to selected word
+ Solves “destructive read” problem

• Write: two steps
• Step IA: read selected word into row buffer
• Step IB: write data into row buffer
• Step II: write row buffer back to selected word

+ Also solves leakage problem

ad
dr

es
s

data

sa sa

DL DL

r-I

r/w-I
r/w-II

r

CS/ECE 752 (Sohi): Main Memory 67

DRAM Refresh
• DRAM periodically refreshes all contents

• Loops through all words
• Reads word into row buffer
• Writes row buffer back into DRAM array

• 1–2% of DRAM time occupied by refresh

ad
dr

es
s

data

sa sa

DL DL

CS/ECE 752 (Sohi): Main Memory 68

DRAM Parameters
• DRAM parameters

• Large capacity: e.g., 64–256Mb
• Arranged as square
+ Minimizes wire length
+ Maximizes refresh efficiency

• Narrow data interface: 1–16 bit
• Cheap packages → few bus pins

• Narrow address interface: N/2 bits
• 16Mb DRAM has a 12-bit address bus
• How does that work?

DRAM
bit array

row buffer

data

address

CS/ECE 752 (Sohi): Main Memory 69

Two-Level Addressing
• Two-level addressing

• Row decoder/column muxes share
address lines

• Two strobes (RAS, CAS) signal which
part of address currently on bus

• Asynchronous access
• Level 1: RAS high

• Upper address bits on address bus
• Read row into row buffer

• Level 2: CAS high
• Lower address bits on address bus
• Mux row buffer onto data bus

4K x 4K
bits

row buffer

[23:12] [11:2]

data

address

4 1Kto1 muxes

12
to

4K
 d

ec
od

er

CAS

RAS

CS/ECE 752 (Sohi): Main Memory 70

Access Latency and Cycle Time
• DRAM access much slower than SRAM

• More bits → longer wires
• Buffered access with two-level addressing
• SRAM access latency: 2–3ns
• DRAM access latency: 30–50ns

• DRAM cycle time also longer than access time
• Cycle time: time between start of consecutive accesses
• SRAM: cycle time = access time

• Begin second access as soon as first access finishes
• DRAM: cycle time = 2 * access time

• Why? Can’t begin new access while DRAM is refreshing row

CS/ECE 752 (Sohi): Main Memory 71

DRAM Latency and Power Derivations
• Same basic form as SRAM

• Most of the equations are geometrically derived
• Same structure for decoders, wordlines, muxes

• Some differences
• Somewhat different pre-charge/sensing scheme
• Array access represents smaller part of total access
• Arrays not multi-ported

CS/ECE 752 (Sohi): Main Memory 72

Building a Memory System
• How to build an efficient main memory

out of standard DRAM chips?

• How many DRAM chips?
• What width/speed (data) bus to use?

• Assume separate address bus

• Main memory interface: L2 miss blocks
• What do you want tmiss-L2 to be?

CPU

D$

L2

Main
Memory

I$

Disk(swap)

CS/ECE 752 (Sohi): Main Memory 73

An Example Memory System
• Parameters

• 32-bit machine
• L2 with 32B blocks
• 4Mx16b DRAMs, 20ns access time, 40ns cycle time
• 100MHz (10ns period) data bus
• 100MHz, 32-bit address bus

• How many DRAM chips?
• How wide to make the data bus?

CS/ECE 752 (Sohi): Main Memory 74

First Memory System Design

• 1 DRAM + 16b bus
• Access time: 630ns

• Not including address
• Cycle time: 640ns

• DRAM ready to handle another miss

4M
x

2B

T (ns) DRAM Data Bus
10 [31:30]
20 [31:30]
30 refresh [31:30]
40 refresh
50 [29:28]
60 [29:28]
70 refresh [29:28]
80 refresh
… … …
600 refresh
610 [1:0]
620 [1:0]
630 refresh [1:0]
640 refresh

2B

CS/ECE 752 (Sohi): Main Memory 75

Second Memory System Design

• 1 DRAM + 4b bus
• One DRAM chip, don’t need 16b bus
• Balanced system → match bandwidths
• DRAM: 2B / 40ns → 4b / 10ns

• Access time: 660ns (30ns longer, 4%)
• Cycle time: 640ns (same)
+ Much cheaper

4M
x

2B

T (ns) DRAM Bus
10 [31:30]
20 [31:30]
30 refresh [31H]
40 refresh [31L]
50 [29:28] [30H]
60 [29:28] [30L]
70 refresh [29H]
80 refresh [29L]
… … …
600 [1:0] [2H]
610 [1:0] [2L]
620 refresh [1H]
640 refresh [1L]
650 [0H]
660 [0L]

4b

CS/ECE 752 (Sohi): Main Memory 76

Third Memory System Design

• How fast can we go?
• 16 DRAM chips + 32B bus

• Stripe data across chips
• Byte M in chip (M/2)%16
• Access time: 30ns
• Cycle time: 40ns
– 32B bus is very expensive
– 128MB of memory isn’t, but you may not want that much

4M
x

2B

T (ns) DRAM0 DRAM1 DRAM15 Bus
10 [31:30] [29:28] [1:0]
20 [31:30] [29:28] [1:0]
30 refresh refresh refresh [31:0]
40 refresh refresh refresh

32B

4M
x

2B

4M
x

2B
…

4M
x

2B
0 1 2 15

CS/ECE 752 (Sohi): Main Memory 77

Latency and Bandwidth
• In general, given bus parameters…

• Find smallest number of chips that minimizes cycle time
• Approach: match bandwidths

CS/ECE 752 (Sohi): Main Memory 78

Fourth Memory System Design

• 2B bus
• Bus b/w: 2B/10ns
• DRAM b/w: 2B/40ns
• 4 DRAM chips
• Access time: 180ns
• Cycle time: 160ns

4M
x

2B

T (ns) DRAM0 DRAM1 DRAM2 DRAM3 Bus
10 [31:30] [29:28] [27:26] [25:24]
20 [31:30] [29:28] [27:26] [25:24]
30 refresh refresh refresh refresh [31:30]
40 refresh refresh refresh refresh [29:28]
50 [23:22] [21:20] [19:18] [17:16] [27:26]
60 [23:22] [21:20] [19:18] [17:16] [25:24]
… … … … … …
110 refresh refresh refresh refresh [15:14]
120 refresh refresh refresh refresh [13:12]
130 [7:6] [5:4] [3:2] [1:0] [11:10]
140 [7:6] [5:4] [3:2] [1:0] [9:8]
150 refresh refresh refresh refresh [7:6]
160 refresh refresh refresh refresh [5:4]
170 [3:2]
180 [1:0]

2B

4M
x

2B

4M
x

2B

4M
x

2B
0 1 2 3

CS/ECE 752 (Sohi): Main Memory 79

More Bandwidth From One DRAM
• EDO: extended data out

• Multiple row buffer reads/writes
• Send only column addresses

• SDRAM: synchronous DRAM
• Read/write row buffer chunks on clock edge

• No need to send column addresses at all
• DDR SDRAM: double-data rate SDRAM

• Read/write on both clock edges
• Popular these days

• RDRAM: aka RAMBUS
• Multiple row buffers, “split” transactions, other complex behaviors
• Very expensive, high end systems only

CS/ECE 752 (Sohi): Main Memory 80

Memory Access and Clock Frequency
• Nominal clock frequency applies to CPU and caches

• Memory bus has its own clock, typically much slower
• DRAM has no clock (SDRAM operates on bus clock)

• Careful when doing calculations
• Clock frequency increases don’t reduce memory or bus latency
• May make misses come out faster

• At some point memory bandwidth may become a bottleneck
• Further increases in clock speed won’t help at all

CS/ECE 752 (Sohi): Main Memory 81

Memory/Clock Frequency Example
• Parameters

• 1GHz CPU, base CPI = 1
• I$: 1% miss rate, 32B blocks (ignore D$, L2)
• Data bus: 100MHz, 8B (ignore address bus)
• DRAM: 10ns access, 20ns cycle, #chips to match bus bandwidth

• What are CPI and MIPS including memory latency?
• Bus: frequency = 100MHz → latency = 10ns (for 8B)
• Memory system cycle time = bus latency to transfer 32B = 40ns
• Memory system access time = 50ns (10ns DRAM access + bus)
• 1GHz clock → 50ns = 50 cycles
• CPI+memory = 1 + (0.01*50) = 1 + 0.5 = 1.5
• MIPS+memory = 1GHz / 1.5 CPI = 1000MHz / 1.5 CPI = 667

CS/ECE 752 (Sohi): Main Memory 82

Memory/Clock Frequency Example
• What are CPI and MIPS if clock speed is doubled?

• Memory parameters same: 50ns access, 40ns cycle
• 2GHz clock → 50ns = 100 cycles
• CPI+memory = 1 + (0.01*100) = 1 + 1 = 2
• MIPS+memory = 2GHz / 2 CPI = 2000MHz / 2 CPI = 1000

• What is the peak MIPS if we can only change clock?
• Available bandwidth: 32B/40ns = 0.8B/ns
• Needed bandwidth: 0.01*32B/cycle = 0.32B/cycle * X cycle/ns
• Memory is a bottleneck at 0.8/0.32 cycle/ns = 2.5GHz

• No sustained speedup possible after that point
• 2.5GHz clock → 50ns = 125 cycles
• CPI+memory = 1 + (0.01*125) = 1 + 1.25 = 2.25
• MIPS+memory = 2.5GHz / 2.25 CPI = 2500MHz / 2.5 CPI = 1111

CS/ECE 752 (Sohi): Main Memory 83

Digital Rights Management
• Digital rights management

• Question: how to enforce digital copyright?
• Electronically, not legally

• “Trying to make bits un-copiable is like trying to make water un-wet”

• Suppose you have some piece of copyrighted material ©…
– You can easily make a copy of ©

• But, what if © is encrypted?
• In order to use ©, you must also have the decryptor
– Can hack decryptor to spit out unencrypted ©
– Or hack OS to look at decryptor’s physical memory

CS/ECE 752 (Sohi): Main Memory 84

Aside: Public-Key Cryptography
• Public-key cryptography

• Asymmetric: pair of keys
• Kpub: used for encryption, published
• Kpriv: used for decryption, secret
• acrypt(acrypt(M, Kpub), Kpriv) = acrypt(acrypt(M, Kpriv), Kpub) = M
• Well-known example: RSA

• Two uses
• Encryption

• Someone sends you encrypted message M: C = acrypt(M, Kpub)
• You are the only one that can decrypt it

• Authentication/Digital Signature
• You send someone a chosen plaintext M
• They “sign” it by sending back DS = acrypt(M, Kpriv)
• If acrypt(DS, Kpub) = M, then they are who Kpub says they are

CS/ECE 752 (Sohi): Main Memory 85

Research: XOM

• eXecute Only Memory (XOM)
• Stanford research project [Lie+, ASPLOS’00]
• Two registers: Kpriv, Kpub different for every chip (Flash program)

• Software can get at Kpub, but Kpriv is hardware’s secret
• Hardware encryption/decryption engine on L2 fill/spill path
• Vendor sells you acrypt(©, Kpub)

+ Even if someone copies it, they won’t have Kpriv to decrypt it
• Plaintext © only exists on-chip
+ Even OS can never see plaintext ©

CPU L2 ©
Kpubencrypt

Kpub

Kpriv
decrypt © ©

Kpub encrypt

$

you vendor

CS/ECE 752 (Sohi): Main Memory 86

XOM: Not Quite
• Performance consideration

• Asymmetric en-/de-cryption is slow, symmetric (one key) faster
• E.g., DES, AES (Rijndael)
– Problem: can’t publish encryption key without also...

• XOM Take II
• Vendor chooses random symmetric key Ksym
• Sells you scrypt(©, Ksym) + acrypt(Ksym, Kpub)
• Two-stage decryption

• Decrypt Ksym using Kpriv: slow (but for one piece of data)
• Decrypt © using Ksym: fast

• Note: SSL does the same thing
• Uses asymmetric cryptography to choose symmetric session key

CS/ECE 752 (Sohi): Main Memory 87

Error Detection: Parity
• Parity: simplest scheme

• f(dataN–1…0) = XOR(dataN–1, …, data1, data0)
+ Single-error detect: detects a single bit flip (common case)

• Will miss two simultaneous bit flips…
• But what are the odds of that happening?

– Zero-error correct: no way to tell which bit flipped

CS/ECE 752 (Sohi): Main Memory 88

Error Correction: Hamming Codes
• Hamming Code

• H(A,B) = number of 1’s in A^B (number of bits that differ)
• Called “Hamming distance”

• Use D data bits + C check bits construct a set of “codewords”
• Check bits are parities on different subsets of data bits

• ∀codewords A,B H(A,B) ≥ α
• No combination of α–1 transforms one codeword into another
• For simple parity: α = 2

• Errors of δ bits (or fewer) can be detected if α = δ + 1
• Errors of β bits or fewer can be corrected if α = 2β + 1
• Errors of δ bits can be detected and errors of β bits can be

corrected if α = β + δ + 1

CS/ECE 752 (Sohi): Main Memory 89

SEC Hamming Code
• SEC: single-error correct

• C = log2D + 1
+ Relative overhead decreases as D grows

• Example: D = 4 → C = 3
• d1 d2 d3 d4 c1 c2 c3 → c1 c2 d1 c3 d2 d3 d4
• c1 = d1 ^ d2 ^ d4 , c2 = d1 ^ d3 ^ d4 , c3 = d2 ^ d3 ^ d4
• Syndrome: ci ^ c’i = 0 ? no error : points to flipped-bit

• Working example
• Original data = 0110 → c1 = 1, c2 = 1, c3 = 0
• Flip d2 = 0010 → c’1 = 0, c’2 = 1, c’3 = 1

• Syndrome = 101 (binary 5) → 5th bit? D2
• Flip c2 → c’1 = 1, c’2 = 0, c’3 = 0

• Syndrome = 010 (binary 2) → 2nd bit? c2

CS/ECE 752 (Sohi): Main Memory 90

SECDED Hamming Code
• SECDED: single error correct, double error detect

• C = log2D + 2
• Additional parity bit to detect additional error

• Example: D = 4 → C = 4
• d1 d2 d3 d4 c1 c2 c3 → c1 c2 d1 c3 d2 d3 d4 c4
• c4 = c1 ^ c2 ^ d1 ^ c3 ^ d2 ^ d3 ^ d4
• Syndrome == 0 and c’4 == c4 → no error
• Syndrome != 0 and c’4 != c4 → 1-bit error
• Syndrome != 0 and c’4 == c4 → 2-bit error
• Syndrome == 0 and c’4 != c4 → c4 error

• Many machines today use 64-bit SECDED code
• C = 8 (one additional byte, 12% overhead)
• ChipKill - correct any aligned 4-bit error

• If an entire DRAM chips dies, the system still works!

	U. Wisconsin CS/ECE 752�Advanced Computer Architecture I
	This Unit: Main Memory
	Static Random Access Memory
	Dynamic Random Access Memory
	Brief History of DRAM
	DRAM Basics [Jacob and Wang]
	DRAM Basics, cont.
	DRAM Basics, cont.
	Open v. Closed Pages
	DRAM Bandwidth
	DRAM Evolution
	Old 64MbitDRAM Example from Micron
	Extended Data Out (EDO)
	Synchronous DRAM (SDRAM)
	Enhanced SDRAM & DDR
	Wide v. Narrow Interfaces
	Rambus RDRAM
	FB-DIMM
	DRAM Reliability
	DRAM Error Detection and Correction
	Interleaved Main Memory
	Block interleaved memory systems
	Research: Processing in Memory
	Memory Hierarchy Review
	Concrete Memory Hierarchy
	Memory Organization
	Low %miss At All Costs
	Memory Organization Parameters
	Software Managed Memory
	Virtual Memory
	Virtual Memory
	Uses of Virtual Memory
	More Uses of Virtual Memory
	Address Translation
	Mechanics of Address Translation
	Page Table Size
	Multi-Level Page Table
	Multi-Level Page Table
	Multi-Level Page Table (PT)
	Alternative: Inverted/Hashed Page Tables
	Address Translation Mechanics
	Translation Lookaside Buffer
	TLB Misses and Miss Handling
	TLB Performance
	Page Faults
	Physical (Address) Caches
	Virtual Address Caches (VI/VT)
	Parallel TLB/Cache Access (VI/PT)
	Itanium Prevalidated tags
	Parallel Cache/TLB Access
	Cache Size And Page Size
	TLB Organization
	Virtual Memory
	Memory Protection and Isolation
	Stack Smashing via Buffer Overflow
	Page-Level Protection
	Safe and Efficient Services
	Alternative to VM: base/bound registers
	Also Segmented Address Space
	Backups
	RAM
	SRAM
	DRAM
	Moore’s Law
	DRAM Operation I
	DRAM Operation II
	DRAM Refresh
	DRAM Parameters
	Two-Level Addressing
	Access Latency and Cycle Time
	DRAM Latency and Power Derivations
	Building a Memory System
	An Example Memory System
	First Memory System Design
	Second Memory System Design
	Third Memory System Design
	Latency and Bandwidth
	Fourth Memory System Design
	More Bandwidth From One DRAM
	Memory Access and Clock Frequency
	Memory/Clock Frequency Example
	Memory/Clock Frequency Example
	Digital Rights Management
	Aside: Public-Key Cryptography
	Research: XOM
	XOM: Not Quite
	Error Detection: Parity
	Error Correction: Hamming Codes
	SEC Hamming Code
	SECDED Hamming Code

