
 CS/ECE 752 Spring 2024: HOMEWORK # 2
 (Due by 11:00 AM on Friday, Feb 23 , via upload of PDF to Canvas)

 Contact Rajesh Srivatsav (rsuresh6@wisc.edu)

 1. Problem 1 (6 points)
 Assume that in a particular program, 20% of the dynamic instructions are branches,
 20% are load instructions, and the remaining 60% of the instructions have a CPI of
 1.3. You are considering three microarchitecture designs for handling branches as
 below:

 Design A does not have a branch predictor and has to expend 2 cycles for every
 branch instruction. The CPI of load instructions is 2. Determine the CPI of design A.

 Design B has a branch predictor with an accuracy of 90%. A correctly predicted
 branch requires only 1 cycle, but a mispredicted branch requires 4 cycles to execute.
 For this design the CPI of a load degrades to 2.5. Determine the CPI of design B.

 Design C has a branch predictor with an accuracy of 70%, and a branch execution
 time of 1 cycle for correct prediction and 3 cycles for misprediction. The load CPI is 2.
 Determine the CPI of design C.

 Rank the three designs in order from best to worst.

 2. Problem 2 (14 points, 4+5+5)
 Answer the following questions based on the code sequence below.

 loop: LD F2, 0(R1)
 LD F4, 0(R2)
 MULD F2, F0, F6 # F6 is dest reg.
 ADDD F6, F4, F6 # F6 is dest reg.
 LD F4, 100(R3)
 ADDD F6, F4, F2 # F2 is dest reg.
 SD F2, 20000(R1)
 ADD R1, #8, R1 # R1 is dest reg.
 ADD R2, #8, R2 # R2 is dest reg.
 BLT R1, R4, loop

 The latencies of the different operations are: Integer ADD, SUB = 1 cycle, Memory
 LD = 7 cycles, Memory SD = 3 cycles, Branches = 3 cycles, ADDD = 3 cycles, and
 MULTD = 6 cycles.

mailto:rsuresh6@wisc.edu

 (a) What would be the baseline performance (in cycles, per loop iteration) of the
 code sequence if no new instruction execution could be initiated until the
 previous instruction execution had completed? Ignore front-end fetch and
 decode. Assume for now that execution does not stall for lack of the next
 instruction, but only one instruction/cycle can be issued. Assume the branch is
 taken.

 (b) Consider a multiple-issue design. Suppose you have two execution pipelines,
 each capable of beginning execution of one instruction per cycle, and enough
 fetch/decode bandwidth in the front end so that it will not stall your execution.
 Assume results can be immediately forwarded from one execution unit to
 another, or to itself. Further assume that the only reason an execution pipeline
 would stall is to observe a true data dependence. Now how many cycles does
 the loop require?

 (c) Continuing the above code, unroll the loop once, merge the two iterations, and
 schedule the instructions to eliminate as many bubbles as possible. Now how
 many cycles does the loop require?

 3. Problem 3 (12 points) Introduction to ChampSim
 ChampSim Github Repository - https://github.com/ChampSim/ChampSim

 Step 1: Cloning ChampSim
 Running git clone https://github.com/ChampSim/ChampSim should create a
 directory named ChampSim within your current working directory, with all the files
 and directories. Then you should work from the newly created directory, while
 following the steps below.

 Step 2: Installing Dependencies
 Go through the README of the ChampSim Github repository. It primarily involves
 installation of vcpkg, which is used by ChampSim to manage dependencies.

 NOTE : If you are using CSL machines (highly recommended) , then the necessary
 dependencies may not be installed by default and you will have to install them.
 Installation does not require root privileges.

 Step 3: Compile ChampSim
 Specified in the README. This involves first setting up the configuration (specified
 via config file in JSON), followed by running the make command. Note that there
 exist defaults for all options specified via config file, but feel free to look at
 parameters that are easily configured via the json config file.

https://github.com/ChampSim/ChampSim
https://github.com/ChampSim/ChampSim

 For this assignment, the most important parts are:

 ● downloading and building ChampSim,
 ● Setting up a simple configuration.
 ● how to run ChampSim
 ● how to parse the ChampSim output and understand the statistics, and
 ● using/modifying the default configuration file (champsim.json).

 Step 4: Running Benchmarks on ChampSim
 In this part, we will run a few applications from the SPEC 2017 benchmark suite on
 ChampSim using champsim.json config file.

 - Change directories to your ChampSim directory.
 - Running benchmark traces on ChampSim is specified in the README,

 mentioned again below. (run command from ChampSim directory)
 - bin/champsim --warmup_instructions 2000000

 --simulation_instructions 500000000
 ~/path/to/traces/483.xalancbmk-127B.champsimtrace.xz

 - All SPEC 2017 traces are present in
 /u/s/o/sohi/public/html/cs752/Spring2024/traces

 You will perform a simple characterization of one of
 (a) 483.xalancbmk-127B.champsimtrace.xz [if your last name begins with A-I]
 (b) 459.GemsFDTD-1169B.champsimtrace.xz [if your last name begins with J-Q]
 (c) 434.zeusmp-10B.champsimtrace.xz [if your last name begins with R-Z]

 NOTE: champsim.json has lots of parameters relating to the processor core and the
 memory hierarchy which can be varied. Feel free to explore it.

 Submit the following.
 Report the IPC, L1-Data Cache and L2 Cache Load miss rates for:

 Cache hierarchy for parts (a):
 L1 instruction cache: 16KB 4-way set associative
 L1 data cache: 32KB 4-way set associative
 L2 cache: 512 KB 8-way set associative

 (a) Simulate using the default OOO CPU core with the above cache sizes. (those
 cache sizes not mentioned here can be left as default size, for example LLC)

 Cache hierarchy for parts (b):
 L1 instruction cache: 32KB 4-way set associative
 L1 data cache: 64KB 4-way set associative
 L2 cache: 1MB 8-way set associative

 (b) Simulate using the default OOO CPU core with the above cache sizes. (those
 cache sizes not mentioned here can be left as default size, for example LLC)

 (c) How much time (roughly) did the simulations take for (a) and (b)?

 For all of the above tests, warmup for 1M instructions, and simulate for next 50M
 instructions. These options are specified in the command line used to run ChampSim
 on a particular trace.

 Optional resources :
 1) Paper - https://arxiv.org/pdf/2210.14324.pdf

https://arxiv.org/pdf/2210.14324.pdf

