
‭CS/ECE 752 Spring 2024: HOMEWORK # 4‬
‭(Due by‬‭11:00 AM‬‭on‬‭Monday, April 1‬‭, via upload of‬‭PDF to Canvas)‬

‭Contact‬‭Rajesh Srivatsav‬‭(‬‭rsuresh6@wisc.edu‬‭)‬

‭1. Problem 1 (15 points, 3+3+6+3)‬

‭Consider a virtual memory system with the following properties:‬
‭•50 bit virtual address (byte addressable)‬
‭•4 KB pages‬
‭•40 bit physical addresses (byte addressable)‬
‭•64GB physical memory (byte addressable)‬
‭•64 KB L1 cache that is 4-way set-associative, has a line size of 64 bytes, and is‬
‭accessed with virtual addresses‬
‭•2 MB L2 cache that is 8-way set-associative, has a line size of 64 bytes, and is‬
‭accessed with physical addresses‬
‭•a 64 entry, 8-way associative data TLB‬

‭(a) What is the total size of the page table for each process on this machine,‬
‭assuming that the valid, protection, dirty, and use bits take a total of 4 bits, and that‬
‭all of the virtual pages are in use? (Assume that disk addresses are not stored in the‬
‭page table).‬

‭(b) Why might it be infeasible to represent a page table as in (a)? Hierarchical page‬
‭tables have multiple levels of page tables (segregated by groups of bits in the virtual‬
‭address). Do hierarchical page tables resolve the issue?‬

‭(c) Draw a diagram of the hardware in the memory system including the L1 and L2‬
‭caches and data TLB. Make sure you show how different fields of the address (i.e.‬
‭which bits) are used to access the caches and the data TLB.‬

‭(d) Explain how a memory access proceeds through the memory system for each of‬
‭the following scenarios: cache hit, cache miss, TLB hit, and TLB miss.‬

‭2. Problem 2 (6 points)‬

‭Caches can be either virtually or physically indexed (I), and either virtually or‬
‭physically tagged (T). That is, there are four possible combinations: VI-VT, VI-PT,‬
‭PI-VT, and PI-PT. Briefly explain the advantages and disadvantages of each of‬
‭these.‬

mailto:rsuresh6@wisc.edu

‭3. Problem 3 (5 points)‬

‭Explain in short, the comparative advantages/dis-advantages of FB-DIMM memory‬
‭technology over DDR2/DDR3 technology.‬

‭4. Problem 4 (14 points, 4+4+3+3)‬

‭Consider the following piece of code that transposes an integer matrix A and stores‬
‭the result as the integer matrix A. The matrices are stored in column major order,‬
‭i.e., consecutive elements of a column are in consecutive memory addresses.‬

‭for (int i = 0; i < 64; i++) {‬
‭for (int j = 0; j < 64; j++) {‬

‭B[j][i] = A[i][j]‬
‭}‬

‭}‬

‭Assume that this is executed on a system with the following cache:‬

‭•fully associative‬
‭•size 8KB‬
‭•no pre-fetching‬
‭•block size of 64 bytes‬
‭•write allocate and write back‬
‭•LRU replacement policy‬

‭Assume that the size of an integer is 8 bytes.‬

‭(a) Determine the number of misses while executing this piece of code. Do this‬
‭separately for both read and write misses.‬

‭(b) Now consider a simple one-block-lookahead prefetcher which operates as‬
‭follows: On a cache miss, the prefetches the next block, in addition to fetching the‬
‭block which missed; on a cache hit the prefetcher does nothing. Determine the‬
‭number of misses if this simple prefetcher is added to the caching operation. Do this‬
‭separately for both read and write misses.‬

‭(c) A‬‭stride prefetche‬‭r fetches a block that is a‬‭stride (S) number of blocks away on‬
‭a cache miss; on a cache hit the prefetcher does nothing. Would a stride prefetcher‬
‭be effective here? If so, what stride (S) would the prefetcher use?‬

‭(d) What overall prefetching strategy would you recommend in order to minimize the‬
‭total number of read and write misses?‬

