
‭CS/ECE 752 Spring 2025: HOMEWORK # 2‬
‭(Due by‬‭12:30 PM‬‭on‬‭Friday, Feb 21‬‭, via upload of‬‭PDF to Canvas)‬

‭Contact‬‭Rajesh Srivatsav‬‭(‬‭rsuresh6@wisc.edu‬‭)‬

‭1. Problem 1 (6 points)‬
‭Assume that in a particular program, 20% of the instructions are branches. The‬
‭remaining 80% of the instructions has a CPI of 1.4. Consider a microarchitecture‬
‭design A that does not have a branch predictor and has to expend 2 cycles for every‬
‭branch instruction. Determine the CPI of design A.‬

‭Consider another design B that has a branch predictor with an accuracy of 92%.‬
‭While a correct prediction (in B) requires only 1 cycle, a misprediction requires 3‬
‭cycles for the branch to execute. Determine the CPI of design B.‬

‭Consider yet another design C that has a branch predictor with an accuracy of 95%,‬
‭and a branch execution time of 1 cycle for correct prediction and 5 cycles for‬
‭misprediction. Determine the CPI of design C.‬

‭Rank the three designs in order from best to worst.‬

‭2. Problem 2 (14 points, 4+5+5)‬
‭Answer the following questions based on the code sequence given in Figure 1.‬

‭Figure 1. Code and latencies for Problem 2‬

‭(a)‬‭What would be the baseline performance (in cycles per loop iteration) if no‬
‭new instruction execution could be initiated until the previous instruction‬
‭execution had completed and that only one instruction can be issued per‬
‭cycle. Assume that the loop branch is taken and that execution does not stall‬
‭for fetching an instruction.‬

mailto:rsuresh6@wisc.edu


‭(b)‬‭Now consider a multiple-issue design. Suppose you have two execution‬
‭pipelines, each capable of beginning execution of one instruction per cycle,‬
‭and enough fetch/decode bandwidth in the front end does not stall execution.‬
‭Assume that results can be immediately forwarded from one execution unit to‬
‭another, or to itself. Further assume that the only reason an execution pipeline‬
‭would stall is to observe a true data dependence. Now how many cycles does‬
‭it take to execute a loop?‬

‭(c)‬‭Unroll the loop once, merge the two iterations, and schedule the instructions to‬
‭eliminate as many bubbles as possible. Now how many cycles does the loop‬
‭take for the multiple issue design of part (b)?‬

‭3. Problem 3 (12 points) Introduction to‬‭ChampSim‬
‭ChampSim Github Repository‬‭-‬‭https://github.com/ChampSim/ChampSim‬

‭Step 1: Cloning ChampSim‬
‭Running‬‭git clone‬‭https://github.com/ChampSim/ChampSim‬‭should create a‬
‭directory named ChampSim within your current working directory, with all the files‬
‭and directories. Then you should work from the newly created directory, while‬
‭following the steps below.‬

‭Step 2: Installing Dependencies‬
‭Go through the README of the ChampSim Github repository. It primarily involves‬
‭installation of vcpkg, which is used by ChampSim to manage dependencies.‬

‭NOTE‬‭: If you are using‬‭CSL machines (‬‭highly recommended‬‭)‬‭,‬‭then the necessary‬
‭dependencies may not be installed by default and you will have to install them.‬
‭Installation‬‭does not require‬‭root privileges.‬

‭Step 3: Compile ChampSim‬
‭Specified in the README. This involves first setting up the configuration (specified‬
‭via config file in JSON), followed by running the make command. Note that there‬
‭exist defaults for all options specified via config file, but feel free to look at‬
‭parameters that are easily configured via the json config file.‬

‭For this assignment, the most important parts are:‬

‭●‬ ‭downloading and building ChampSim,‬
‭●‬ ‭Setting up a simple configuration.‬
‭●‬ ‭how to run ChampSim‬
‭●‬ ‭how to parse the ChampSim output and understand the statistics, and‬
‭●‬ ‭using/modifying the default configuration file (‬‭champsim.json‬‭).‬

https://github.com/ChampSim/ChampSim
https://github.com/ChampSim/ChampSim


‭Step 4: Running Benchmarks on ChampSim‬
‭In this part, we will run a few applications from the SPEC 2017 benchmark suite on‬
‭ChampSim using‬‭champsim.json‬‭config file.‬

‭-‬ ‭Change directories to your ChampSim directory.‬
‭-‬ ‭Running benchmark traces on ChampSim is specified in the README,‬

‭mentioned again below. (run command from ChampSim directory)‬
‭-‬ ‭bin/champsim --warmup_instructions 2000000‬

‭--simulation_instructions 500000000‬
‭~/path/to/traces/483.xalancbmk-127B.champsimtrace.xz‬

‭-‬ ‭All SPEC 2017 traces are present in‬
‭/u/s/o/sohi/public/html/cs752/Spring2025/traces‬

‭You will perform a simple characterization of one of‬
‭(a) 400.perlbench-41B.champsimtrace.xz [if your last name begins with A-I]‬
‭(b) 403.gcc-16B.champsimtrace.xz [if your last name begins with J-Q]‬
‭(c) 429.mcf-184B.champsimtrace.xz [if your last name begins with R-Z]‬

‭NOTE: champsim.json‬‭has lots of parameters relating‬‭to the processor core and the‬
‭memory hierarchy which can be varied. Feel free to explore it.‬

‭Submit the following.‬

‭(a)‬‭Simulate using the default OOO CPU core with the following cache sizes‬
‭(those cache sizes not mentioned here can be left as default size, for example‬
‭LLC) and report the IPC, L1-Data Cache and L2 Cache Load miss rates for:‬

‭L1 instruction cache: 32KB 8-way set associative‬
‭L1 data cache: 32KB 2-way set associative‬
‭L2 cache: 256 KB 8-way set associative‬

‭(b)‬‭Simulate using the default OOO CPU core with the following cache sizes and‬
‭report the IPC, L1-Data Cache and L2 Cache Load miss rates for:‬

‭L1 instruction cache: 16KB 4-way set associative‬
‭L1 data cache: 64KB 4-way set associative‬
‭L2 cache: 1MB 8-way set associative‬

‭(c)‬‭How much time (roughly) did the simulations take for (a) and (b)?‬

‭For all of the above tests, warmup for 1M instructions, and simulate for next 50M‬
‭instructions. These options are specified in the command line used to run ChampSim‬
‭on a particular trace.‬

‭Optional resources :‬
‭1)‬ ‭Paper‬‭-‬‭https://arxiv.org/pdf/2210.14324.pdf‬

https://arxiv.org/pdf/2210.14324.pdf

