
‭CS/ECE 752 Spring 2025: HOMEWORK # 3‬
‭(Due by‬‭12:30 PM‬‭on‬‭Friday, March 7‬‭, via upload of‬‭PDF to Canvas)‬

‭Contact‬‭Rajesh Srivatsav‬‭(‬‭rsuresh6@wisc.edu‬‭)‬

‭1. Problem 1 (20 points)‬

‭For this problem you will be implementing a 3-bit branch predictor and evaluating its‬
‭performance relative to some other branch predictors. A 3-bit predictor has eight‬
‭states and it is a natural extension of the 2-bit predictor (implemented as the bimodal‬
‭predictor in ChampSim).‬

‭Edit‬‭bimodal.cc‬‭to support the 3-bit prediction scheme‬‭with BHT consisting of 4096‬
‭entries, direct mapped. For each entry in the prediction buffer, the state of the branch‬
‭predictor entries should be set to an initial value of ‘‬‭000‬‭’ (strongly not taken). The‬
‭predictor is going to predict dynamic values from ‘‬‭000‬‭’ through ‘‬‭010‬‭’ (3 values) as not‬
‭taken, and ‘‬‭011‬‭’ through ‘‬‭111‬‭’ (5 values) as taken.‬

‭(a)‬‭Run the 3-bit predictor with ChampSim’s default configuration (‬‭champsim.json‬‭)‬
‭using the following three benchmarks:‬

‭456.hmmer-191B.champsimtrace.xz, 433.milc-127B.champsimtrace.xz and‬
‭410.bwaves-1963B.champsimtrace.xz434‬

‭Run 50M instructions for each benchmark (after a warmup of 1M instructions‬
‭as in HW2).‬

‭Similarly, run the (i) built-in 2-bit and (ii) hashed perceptron branch prediction‬
‭schemes. Compare and comment on your results of the three different branch‬
‭predictors in terms of IPC and the branch MPKI.‬

‭(b)‬‭Include a print-out of the changes to‬‭bimodal.cc‬‭and‬‭champsim.json‬‭with‬
‭your changes highlighted.‬

‭(c)‬‭Now modify the bimodal predictor implementing a 2-bit prediction scheme‬‭with‬
‭the BHT consisting of 1024 entries‬‭and which selects‬‭the BHT entry in the‬
‭1024-entry prediction table by EXORing bits 19-10 of the branch instruction‬
‭address with the low-order bits (bits 9-0) and report the IPC and branch MPKI‬
‭results for the three benchmarks above.‬

mailto:rsuresh6@wisc.edu

‭2. Problem 2 (20 points)‬
‭Consider the following piece of code.‬

‭ldf Y(r2),f2‬
‭mulf f2,f3,f0 ; <f0 = f2*f3>‬
‭ldf X(r1),f1‬
‭addf f1,f0,f2 ; <f2 = f1 + f0>‬
‭stf f2,X(r2)‬
‭addi r1,4,r1‬
‭addi r2,4,r2‬
‭slt r1,r3,r4‬

‭Assume that the above code is being run on MIPS R10K like out-of-order‬
‭processors.‬

‭(a) Construct and fill out the following tables after 9 cycles and in the last cycle of the‬
‭program's execution.‬

‭1) ROB‬
‭2) Reservation Stations‬
‭3) Map Table‬
‭4) Free List‬

‭(b) For how many cycles does this program run? That is the number of cycles until‬
‭the last instruction in the program retires.‬

‭Assumptions‬‭:‬
‭1) The processor can dispatch, issue, complete and retire one instruction at a time.‬
‭2) Floating point multiplication operations take 5 cycles, floating point add takes 3‬
‭cycles, load operations take 3 cycles, store operations take 2 cycles, and integer‬
‭operations take 1 cycle to execute. The execute cycles do not include other cycles‬
‭of processing.‬
‭3) Functional units are fully pipelined.‬
‭4) There are only 16 physical registers and they can be used to store both floating‬
‭point and integer values.‬
‭5) There are 6 ROB slots available and 5 reservation stations.‬

‭The tables' status at the end of cycle 2 is as below:‬

‭ROB‬‭:‬
‭ht‬ ‭#‬ ‭Inst‬ ‭T‬ ‭Told‬ ‭S‬ ‭X‬ ‭C‬ ‭R‬
‭h‬ ‭1‬ ‭ldf Y(r2),f2‬ ‭PR#9‬ ‭PR#2‬ ‭c2‬
‭t‬ ‭2‬ ‭mulf f2,f3,f0‬ ‭PR#10‬ ‭PR#1‬

‭3‬

‭Reservation Stations:‬
‭#‬ ‭FU‬ ‭Busy‬ ‭op‬ ‭T‬ ‭T1‬ ‭T2‬
‭1‬ ‭ALU‬ ‭N‬
‭2‬ ‭L/S1‬ ‭Y‬ ‭ldf‬ ‭PR#9‬ ‭-‬ ‭PR#5+‬
‭3‬ ‭L/S2‬ ‭N‬
‭4‬ ‭FP1‬ ‭Y‬ ‭mulf‬ ‭PR#10‬ ‭PR#9‬ ‭PR#4+‬
‭5‬ ‭FP2‬ ‭N‬

‭Map Table:‬
‭f0‬ ‭PR#10‬
‭f1‬ ‭PR#2+‬
‭f2‬ ‭PR#9‬
‭f3‬ ‭PR#4+‬
‭r1‬ ‭PR#5+‬
‭r2‬ ‭PR#6+‬
‭r3‬ ‭PR#7+‬
‭r4‬ ‭PR#8+‬

‭Free List:‬
‭PR#11, PR#12, PR#13, PR#14, PR#15, PR#16‬

