
‭CS/ECE 752 Spring 2025: HOMEWORK # 4‬
‭(Due by‬‭12:30 PM‬‭on‬‭Monday, March 17‬‭, via upload of‬‭PDF to Canvas)‬

‭Contact‬‭Rajesh Srivatsav‬‭(‬‭rsuresh6@wisc.edu‬‭)‬

‭1. Problem 1 (16 points, 3+4+6+3)‬

‭Consider a virtual memory system with the following properties:‬
‭•48 bit virtual address (byte addressable)‬
‭•4 KB pages‬
‭•37 bit physical addresses (byte addressable)‬
‭•128 GB physical memory (byte addressable)‬
‭•64 KB L1 cache that is 4-way set-associative, has a line size of 64 bytes, and is‬
‭accessed with virtual addresses‬
‭•1 MB L2 cache that is 8-way set-associative, has a line size of 64 bytes, and is‬
‭accessed with physical addresses‬
‭•a 64 entry, 4-way set-associative data TLB‬

‭(a) What would be the total size of the page table for each process on this machine,‬
‭assuming that the valid, protection, dirty, and use bits take a total of 4 bits, and that‬
‭all of the virtual pages are in use? (Assume that disk addresses are not stored in the‬
‭page table).‬

‭(b) Why might it be infeasible to represent a page table as in (a)? Hierarchical page‬
‭tables have multiple levels of page tables (segregated by groups of bits in the virtual‬
‭address). How do hierarchical page tables help in this situation? What are the‬
‭potential disadvantages of hierarchical page tables?‬

‭(c) Draw a diagram of the hardware in the memory system including the L1 and L2‬
‭caches and data TLB. Make sure you show how different fields of the address (i.e.‬
‭which bits) are used to access the caches and the data TLB.‬

‭(d) Explain how a memory access proceeds through the memory system for each of‬
‭the following scenarios: cache hit, cache miss, TLB hit, and TLB miss.‬

mailto:rsuresh6@wisc.edu

‭2. Problem 2 (10, 4+4+2 points)‬

‭In a virtually indexed, physically tagged cache, the cache set to search is selected‬
‭using only bits of the virtual address, so virtual-to-physical address translation can‬
‭proceed in parallel with reading tags for comparison. In the simplest design, the‬
‭associativity of the cache is large enough so that the cache index and offset bits‬
‭together fit entirely into the page offset bits. However, page size remains relatively‬
‭fixed with architectures while cache size grows with semiconductor technology so‬
‭this may require a high associativity.‬

‭(a) If a processor has 4KB pages and a 64KB level 1 cache, what is the minimum‬
‭associativity required to use the simple virtually-indexed, physically tagged‬
‭optimization?‬

‭(b) Suppose a cache simply forms a longer index using a few of the least significant‬
‭bits from the virtual page number. Describe a page table and access pattern where‬
‭this cache will return incorrect data.‬

‭(c) Does the MIPS R10000 have problems with synonyms or homonyms? If so, how‬
‭does it deal with them? [Refer to the Yeager Micro ‘96 paper on MIPS R10K that you‬
‭had reviewed while answering the question]‬

‭3. Problem 3 (6 points)‬

‭A cache may use a write buffer to reduce the write latency and a victim cache (or‬
‭victim buffer) to hold recently evicted blocks. Would there be any advantages to‬
‭combining the two into a single piece of hardware? Would there be any‬
‭disadvantages?‬

‭4. Problem 4 (18 points, 4+4+4+6)‬

‭Consider the following piece of code that transposes a 64x64 integer matrix A, adds‬
‭it to a 64x64 integer matrix B, and stores the result into a 64x64 integer matrix C.‬
‭The matrices are stored in row major order, i.e., consecutive elements of a row are in‬
‭consecutive memory addresses.‬

‭for (int i = 0; i < 64; i++) {‬
‭for (int j = 0; j < 64; j++) {‬

‭C[j][i] = A[i][j] + B[j][i]‬
‭}‬

‭}‬

‭Assume that this is executed on a system with the following cache:‬

‭•fully associative‬
‭•size 32KB‬
‭•no pre-fetching‬
‭•block size of 64 bytes‬
‭•write allocate and write back‬
‭•LRU replacement policy‬

‭Assume that the size of an integer is 4 bytes.‬

‭(a) Determine the number of cache misses while executing this piece of code. Do‬
‭this separately for both read and write misses.‬

‭(b) Now consider a simple two-block-lookahead prefetcher which operates as‬
‭follows: On a cache miss, the prefetches the next two blocks, in addition to fetching‬
‭the block which missed; on a cache hit the prefetcher does nothing. Determine the‬
‭number of misses if this simple prefetcher is added to the caching operation. Do this‬
‭separately for both read and write misses.‬

‭(c) A‬‭stride prefetche‬‭r fetches a block that is a‬‭stride (S) number of blocks away on‬
‭a cache miss; on a cache hit the prefetcher does nothing. Would a stride prefetcher‬
‭be effective here? If so, what stride (S) would the prefetcher use?‬

‭(d) Could the number of misses be reduced by a multi-way stream buffer strategy as‬
‭described in the paper by Jouppi? If so, how? Describe the strategy and the‬
‭number of misses that would result.‬

