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Abstract We consider a certain class of hierarchical decision problems that can be viewed as single-leader
multi-follower games, and be represented by a virtual market coordinator trying to set a price system for
traded goods, according to some criterion that balances supply and demand. The objective function of the
market coordinator involves the decisions of many agents, which are taken independently by solving convex
optimization problems that depend on the price configuration and on realizations of future states of the econ-
omy. One traditional way of solving this problem is via a mixed complementarity formulation. However, this
approach can become impractical when the numbers of agents and/or scenarios become large. This work con-
cerns agent-wise and scenario-wise decomposition algorithms to solve the equilibrium problems in question,
assuming that the solutions of the agents’ problems are unique, which is natural in many applications (when
solutions are not unique, the approximating problems are still well-defined, but the convergence properties of
the algorithm are not established). The algorithm is based on a previous work of the authors, where a suitable
regularization of solution mappings of fully parameterized convex problems is developed. Here, we show one
specific strategy to manage the regularization parameter, extend some theoretical results to the current setting,
and prove that the smooth approximations of the market coordinator’s problem converge epigraphically to the
original problem. Numerical experiments and some comparisons with the complementarity solver PATH are
shown for the two-stage stochastic Walrasian equilibrium problem.

Keywords Stochastic Equilibrium · Decomposition Algorithms · Bilevel Optimization · Smoothing
Methods · Interior Penalty Methods · Tikhonov Regularization.

1 Introduction and motivation

The so-called setting of multiple optimization problems with equilibrium constraints (MOPEC) serves as a
broad framework to encompass various types of hierarchical problems that arise often in applications, most
notably in energy optimization; see [PFW16], [Sag12], and references therein. Here, we consider a certain
class of MOPECs that can be viewed as single-leader multi-follower games.

We are interested in problems where, for a given parameter p ∈ Rq , agents a in a set A determine their
decisions xA(p) = (xa(p) ∈ Rna , a ∈ A) by solving independently convex optimization problems of the
form

xa(p) = arg min
x
{fa(x, p) : Ba(p)x = ba(p), ga(x, p) ≤ 0}. (1)

The convex objective function fa and the affine equality and convex inequality constraints are such that in (1)
the minimizer xa(p) is unique. The goal is to find the optimal parameter p∗, a price signal that is observed
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when coupling all the agents’ decisions, by minimizing a criterion F : RN → R where N =
∑
a na over a

set Π:
p∗ ∈ Arg min

p
{F (xA(p)) : p ∈ Π} . (2)

The notation Arg min in (2) refers to a set, while arg min in (1) is a singleton.
Finding the optimal price p∗ and decisions xA(p∗) that solve (1)-(2) gives a particular instance of a

MOPEC. We do not address the MOPEC setting in all of its generality, in which the agents behave strate-
gically, taking into account the other agents’ decisions in their individual optimization problems, as in a
generalized Nash game. But the solution approach presented below, based on a special smoothing of the so-
lution mappings of the agents’ problems, should still be applicable for a general MOPEC. To simplify the
presentation, we focus on the specific framework (1)-(2), suitable for the applications we have in mind. One
example is the stochastic Walrasian Equilibrium Problem (WEP); see [DJW17; JJBW02].

As it occurs often in hierarchical optimization, in the WEP the agents’ decisions are only defined for
parameters in the set Π . This is because for such problems the feasible set is given by certain price system,
specific to the considered economy. The willingness of the agents to trade the goods available in the economy
is cost-minimizing, based on the price of the goods and possibly subject to budget constraints. Agents’ deci-
sions are taken only for positive prices, and the solution set in (1) is empty if p 6∈ Π . In order to determine the
equilibrium price, in problem (2) a virtual market coordinator minimizes the mismatch between supply and
demand.

Even in the setting of (1), less general than MOPEC, the global problem (2) can be nonsmooth and
nonconvex, and computing a local minimizer is a difficult task. Our proposal considers the agent’s problem
(1) as a convex smooth program parameterized by the price, and applies the smoothing and regularization
procedure of [BSS20] to the possibly nonsmooth solution mappings of (1). The idea, simple to explain (but
not so simple to analyze theoretically), boils down to replacing in (2) the agents’ decisions xa(p) (which may
fail to have classical derivatives at all points) with approximating functions that are smooth. Accordingly,
for the given smoothing parameter ε > 0 and regularization parameter µ = µ(ε) ≥ 0, we build functions
xεa(p) = x

ε,µ(ε)
a (p) that are well-defined at least on Π , are smooth on a certain related set Π̃ , and converge in

the following sense:

lim
ε↘0,p′∈Π,p′→p

xεa(p′) = xa(p) for all p ∈ Π and a ∈ A . (3)

The regularization parameter µ = µ(ε) ≥ 0 is, in general, a function of the smoothing parameter ε > 0,
bounded around zero. There are three important cases: µ = 0, µ > 0 but fixed, and variable µ > 0 tending to
zero as ε ↘ 0 (e.g., µ =

√
ε). The crucial property (3) connects our approach with some classical concepts

from variational analysis. Epigraphical convergence [RW09, Chapter 7] implies approximation properties for
solutions of problem (2). In particular, when (3) holds, the approximating functions define a smoothing, in the
sense of [Che12].

An important feature of our approach is that the derivatives of the approximating functions can be com-
puted numerically. This is important to efficiently solve the approximations of the global problem (2). For an
appropriate sequence of parameters (εk ↘ 0, µk = µ(εk) ≥ 0) and smooth functions xεkA (p) = xεk,µkA (p),
our method computes a sequence pk of approximate local solutions for the smooth problems

min
p
{F (xεkA (p)) : p ∈ Π ∩ Π̃} . (4)

Depending on how the approximating functions are built, the smoothness set can be larger or smaller than Π .
Having access to the derivatives of xεkA (p), first-order information for the objective function in (4) is available
and a stationary point can be computed, for example using Ipopt [WB05]. In our numerical experiments in
Section 5.2 we identified two issues that impact the performance of the method. First, a low accuracy in the
output of the smoothed problems results in low quality derivatives for the smooth mappings xεkA (p) and this
sometimes hinders the solution process. Second, the parameter εk > 0 defining the smoothing needs to be
carefully chosen, so that the objectives of (2) and (4) are sufficiently close across iterations.

When compared with the method in [BSS20] for nonconvex two-stage stochastic programming problems,
the most important conceptual difference of the current proposal is the following. In [BSS20], there is a
master problem akin to (2) and subproblems like (1). The smoothing [BSS20] inserts in the master problem
the optimal value function of the smoothed subproblems. By contrast, in (4), we rather use the smoothed
solution mappings. This makes the situation much different for the convergence analysis of (2), because
approximation properties for solution mappings are weaker than those available for optimal value functions.
There are also important differences for computational implementations. For example, a single value for
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the smoothing parameter ε > 0 (sufficiently small), was often sufficient in the computational experience of
[BSS20]. By contrast, for problem (2) a proper management of the sequence of the values of εk becomes
crucial.

Our approach is particularly well suited for decomposition. When solving (4), an agent-wise decom-
position is readily available because the approximating functions are defined independently across agents.
Furthermore, when the agents’ problems (1) are two-stage stochastic programs, our construction allows for a
decomposition method across both agents and scenarios. Decomposition methods for variational inequalities
with Dantzig-Wolfe and Benders-type structure were developed in [LSS13], [LSS12], [LSS16]; extending
[FC05], [CF10], [GF10]. For generalized Nash games, we refer to [FPS11] and [KS12]; and for sparse affine
variational inequalities, see [KHF17] and [KF19]. Other agent-wise decomposition methods with applications
in communications engineering are given in [ASP14; Scu+13; Scu+11].

Regarding the direct solution of a problem like (1)-(2), there are at least four major classes of meth-
ods. These are the complementarity-based or the variational inequality algorithms using PATH [FM99], the
augmented Lagrangian methods [And+08], [Sch12], [KS16], the more recent derivative-free approach in
[DJW17], and the smoothing techniques [XY13], [XWY14], [XYZ14], [XYZ15], relying on a smoothing
given by an integral in a multidimensional space. Although not clear how to implement them efficiently in
practice, integral-based smoothings are gradient consistent in the sense of [Che12], [BHK13]. This property
guarantees that limits of stationary points of the smoothed problems are stationary points of the original prob-
lem (with stationarity being understood in the generalized sense of nonsmooth analysis). We do not show that
our method is gradient consistent, which is the reason we focus only on the epigraphical convergence of the
approximating problems. However, the property of gradient consistency is not a necessary condition for the
method to work well in practice, as is also clear from the theory.

The rest of the paper is organized as follows. In Section 2, we give some preliminary results and notation.
In Section 3, we adapt and extend some properties of the smoothing in [BSS20] to the current equilibrium
setting. In Section 3.3, we describe our agent-wise decomposition method. Section 4 discusses the same two-
stage WEP found in [DJW17]. Numerical experiments for the decomposition across agents are reported in
Section 5.2. The agent-wise and scenario-wise decomposition method is shown in 5.3. Concluding remarks
and comments are given in Section 6.

2 Background material

Notation-wise, we mostly follow [RW09], with R being the extended real numbers, B(u, δ) the ball around u
of radius δ > 0, and with all norms being Euclidean (the respective spaces are always clear from the context).
The symbol o(t) denotes any expression such that t−1o(t)→ 0 whenever t↘ 0. The symbol conv D stands
for the convex hull of the set D.

2.1 Properties of set-valued mappings

The set-valued map X : Rq ↪→ Rn is pointwise bounded if X (p) is a bounded set for all p ∈ Rq . It is locally
bounded around p if there exists an open set V ⊂ Rq containing p and such that ∪p′∈V X (p′) is a bounded set.
The domain of the set-valued map X is dom X := {p ∈ Rq : X (p) 6= ∅}. The outer closure of the set-valued
map X at p ∈ Rq is

lim sup
p′→p

X (p′) :=

{
x ∈ Rn : ∃pk → p, xk ∈ X (pk) s.t. xk → x

}
.

If the set-valued map X is a singleton over dom X , we represent it by a function over its domain, using a
lower case letter. For example, if X (p) = {x(p)} for all p, we more often use x(p).

The effective domain, or the domain, of a function v : Rq → R is dom v := {p ∈ Rq : v(p) < +∞}.
A function v is said to be continuous relative to V ⊂ Rq if for all p ∈ V we have v(p′) → v(p) whenever
p′ → p such that p′ ∈ V . For instance, we could say that v is continuous relative to its domain, or relative to
the interior of its domain, or relative to the interior of the domain of some set-valued map.

For a function v : Rq → R continuous at a point p ∈ Rq , the regular subdifferential at p is defined by

∂̂v(p) :=

{
ψ ∈ Rq : v(p′) ≥ v(p) + ψ>(p′ − p) + o(‖p′ − p‖)

}
,
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and the limiting subdifferential by
∂v(p) := lim sup

p′→p
∂̂v(p′) .

If v is locally Lipschitz at p, then the Clarke subdifferential is given by

∂Cv(p) := conv ∂v(p).

The following proposition, specializing [RW09, Theorems 9.13 and 9.2] to our setting, characterizes local
boundedness of subdifferentials.

Proposition 1 Given an open set V , for any function v : V → R the following properties are equivalent:

(i) v is locally Lipschitz at p;
(ii) ∂̂v is locally bounded at p;

(iii) ∂Cv is locally bounded at p.

As is well known, if p is an unconstrained local minimizer of v, then 0 ∈ ∂̂v(p) and 0 ∈ ∂Cv(p).

2.2 Properties of smoothing functions and epigraphical convergence

Let v : V → R be continuous on the open set V ⊂ Rq , and assume that for ε > 0 we are given smooth
functions vε : V → R such that their lower semicontinuous closure, defined as

lsc vε(p) := lim inf
ε↘0,p′→p

vε(p′) ,

satisfies the identity
lsc vε(p) = v(p) for all p ∈ V . (5)

As is well known, see [BHK13], it holds that

∂v(p) ⊂ conv

{
lim sup
ε↘0,p′→p

∇vε(p′)

}
for all p ∈ V .

The smoothing functions vε are said to be gradient consistent with v, when ε↘ 0, if

∂Cv(p) ⊃ conv

{
lim sup
ε↘0,p′→p

∇vε(p′)

}
for all p ∈ V .

For more details about smoothing functions, see [BHK13], [BH16]. The next result, that holds inde-
pendently of the property of gradient consistency, shows that “unexpected” things may happen only when
the Lipschitz constants of the smoothing gradients diverge. The result gives an indication that the parameter
ε > 0 should be managed carefully. Notice also that, at points of nonsmoothness of the function, the Lipschitz
constants of the gradient of the smoothings indeed “explode”.

Proposition 2 Let v and vε be given as above. Fix p ∈ V . Assume that there exists a constant L > 0, called
a uniform Lipschitz constant for the gradients of vε at p, and there exists δ > 0, such that

‖∇vε(p1)−∇vε(p2)‖ ≤ L‖p1 − p2‖ for all p1, p2 ∈ B(p, δ) and ε ∈ (0, δ).

Then, ∇v(p) exists at p ∈ V and
lim

ε↘0,p′→p
∇vε(p′) = ∇v(p).

In particular, if v is not differentiable at p, there is no uniform Lipschitz constant for the gradients of vε at p,
independently of how the smoothing sequence vε is constructed.

Proof Using the uniform Lipschitz constant, the Newton-Leibniz formula (e.g., [IS14, Lemma A.11]) implies,
for t ∈ (− δ2 ,

δ
2 ) and p′ close to p and d ∈ Rq such that ‖d‖ ≤ 1, that

|vε(p′ + td)− vε(p′)− t∇vε(p′)>d| ≤ Lt2

2
for all ε ∈ (0, δ). (6)

Also, because there is a local uniform Lipschitz constant, the smoothing gradients∇vε(p′) are locally bounded
for small ε > 0 and p′ close to p. This implies that there is v ∈ lim supε↘0,p′→p∇vε(p′). Taking limits on
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(6) when ε ↘ 0, p′ → p and using (5), we conclude that all partial derivatives of v exist at p and that v is
unique and is the gradient vector of v at p. ut

For an extended-valued function v : Rq → R and a parameter ε ≥ 0, we define the set-valued mapping of
ε-approximate unconstrained minimizers of the function v as

ε− Arg min
p
v := {p ∈ Rq : v(p) ≤ ε+ inf

p
v}.

A sequence of functions vk : Rq → R is said to converge epigraphically, see [RW09, Proposition 7.2], to
v : Rq → R if the following two conditions hold for all p ∈ Rq:

lim inf
k

vk(pk) ≥ v(p) for all pk → p ,

and
lim sup

k
vk(pk) ≤ v(p) for some pk → p .

The notion of epigraphical convergence of functions is tightly related to the convergence of minimizers thanks
to the following theorem, adapted from [RW09, Theorem 7.31].

Theorem 1 For a sequence of extended-valued functions vk converging epigraphically to v, the following
holds.

(i) inf vk → inf v if and only if for all ε > 0 there is a compact set B ⊂ Rq such that infB vk ≤ inf v + ε
for all k large enough,

(ii) lim supk{εk − Arg min vk} ⊂ Arg min v for all εk → 0.

3 Decomposition method induced by our smoothing technique

The approach outlined in this section was introduced in [BSS20] as a tool to smooth, approximate, and reg-
ularize value functions of fully parameterized convex optimization problems. Here, we revisit/adapt those
results under the light of smoothed solution mappings (rather than the value function), considering a proto-
typical problem, dropping the subindex a in (1) and the assumption about uniqueness of solutions. Thanks to
the continuity and differentiability properties of the smoothing, the decomposition method presented below
generates an epigraphically convergent sequence, as in Theorem 1.

3.1 Defining the smoothed problems

The conditions necessary for the theory in [BSS20] are gathered below; for their precise role and use see
[BSS20].

Assumption 2 In the prototypical problem

X ∗(p) := Arg min
x
{f(x, p) : B(p)x = b(p), gi(x, p) ≤ 0 for i = 1, . . . ,m} , (7)

the functions f(·, p) and gi(·, p), i = 1, . . . ,m, are convex for all p ∈ Rq , and all the data is sufficiently
smooth both in x and in p. Also, the rows of the matricesB(p) are linearly independent for all p and the Slater
condition holds for all p: for each p there exists x̂(p) such that B(p)x̂(p) = b(p) and gi(x̂(p), p) < 0 for
i = 1, . . . ,m.

Since problem (1) is not assumed to have a solution for all p, we may have dom X ∗ ( Rq . Note that while
we allow the solution set X ∗(p) to be empty, the feasible set of problem (7) cannot be empty.

In what follows, we adopt the convention that logα = −∞ if α ≤ 0. Given the parameters ε > 0 and
µ ≥ 0, a parametric Tikhonov-regularized log-barrier penalty function is used to approximate problem (7) by

xε,µ(p) := arg min
x
{f(x, p) + εφµ(x, p) : B(p)x = b(p)} , (8)

where

φµ(x, p) := −
m∑
i=1

log{−gi(x, p)}+
µ

2
‖x‖2 .
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The regularized solution xε,µ(p) is written in lower case, because it is unique when it exists (under our
assumptions). If µ = 0, the solution xε,µ(p) exists if X ∗(p) is bounded [DS99], [MZ98]. The solution always
exists if µ > 0 (even when X ∗(p) = ∅), because in that case the objective function of (8) is strongly convex
and problem (8) is assumed to have a nonempty feasible set.

Theorem 3 (Proposition 2 in [BSS20]) Let v(p) and vε,µ(p) be the optimal value functions of problems (7)
and (8), respectively. Under Assumption 2, for all p ∈ D := dom X ∗ ∩ dom xε,µ it holds that:

v(p) ≤ vε,µ(p) ≤ v(p) +mε+
εµ

2
min

x∈X∗(p)
‖x‖2, (9)

and
µ

2
min

x∈X∗(p)
‖x‖2 +m ≥ µ

2
‖xε,µ(p)‖2 . (10)

Remark 1 The inequality v(p) ≤ vε,µ(p) always holds, even if xε,µ(p) is not well-defined or X ∗(p) = ∅. If
xε,µ(p) is not well-defined, then vε,µ(p) is understood as an infimum. It should also be noted that the domain
D is independent of both ε > 0 and µ ≥ 0.

We are naturally interested in conditions under which the lower semicontinuous closure of the smoothing
coincides with v, i.e., (5) holds. Theorem 3 is instrumental to identify a path to follow. We would first have
to guarantee boundedness of the term minx∈X∗(p) ‖x‖2. Second, we would need to show that v is continuous
relative to subsets of dom X ∗. Then, condition (5) would follow from taking limits in (9).

The first requirement depends on the following weak assumption, called restricted inf-compactness condi-
tion in [Guo+14] (later rediscovered independently in [BSS20], through an unrelated computationally oriented
approach):

lim sup
p′∈dom X∗,p′→p

{
min

x∈X∗(p′)
‖x‖2

}
< +∞ for all p ∈ dom X ∗ . (11)

Condition (11) means that the solution mapping X ∗ has a locally bounded selection over its domain. Note that
(11) holds automatically if the feasible sets in (7) are uniformly bounded for p ∈ dom X ∗ (which by itself is
a rather natural assumption, holding in many cases of interest).

When the regularization parameter µ ≥ 0 is taken as a function of the smoothing parameter ε, we shall
use the computational version of (11), given by

lim sup
ε↘0,p′∈D,p′→p

‖xε,µ(ε)(p′)‖ < +∞ for all p ∈ D := dom X ∗ ∩ dom xε,µ(ε). (12)

Note that assumption (12) does not need εµ(ε) → 0 to make sense. It refers only to boundedness, not to
convergence of the regularized solutions to the actual solution.

Regarding the second issue above, related to continuity of the value functions, the following simple ex-
ample shows the behaviour of the lower semicontinuous closure of the smoothing for parameters outside of
dom X ∗.

Example 1 Consider the problem

X ∗(p) = Arg min
x
{px : x ≥ 0} =

∅ if p < 0,
{x : x ≥ 0} if p = 0,
{0} if p > 0 .

The value function v(p) = infx{px : x ≥ 0} fails to be lower semicontinuous at p = 0. Let us consider
µ > 0 fixed. Regarding the smoothing, it holds that

lsc vε,µ(p) =

{
−∞ if p ≤ 0,
0 if p > 0 .

As is easy to see, if µ > 0, for all problems satisfying Assumption 2 we have that

lsc vε,µ(p) = −∞ for all p ∈ int (Rq \ dom X ∗).

The lower semicontinuous closure lsc v of the value function coincides with v at all points except at p = 0,
where lsc v(0) = −∞.

Since under Assumption 2 the value function v can fail to be lower semicontinuous, it may not coin-
cide with its lower semicontinous closure. Analyzing how smoothing behaves for the example above led
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us to the following interesting result, that reveals the role of our smoothing as a tool to change a problem
like minp∈P v(p), which can fail to have a solution, to a sequence of problems minp∈P v

ε,µ(p), all having
solutions.

Theorem 4 (On lower semicontinuous closures) Under Assumption 2 and (11), for µ > 0 fixed, it holds
that

lsc vε,µ(p) = lsc v(p) := lim inf
p′→p

v(p′) for all p ∈ Rq.

Proof If p ∈ int dom X ∗ or p ∈ int (Rq \ dom X ∗), the statement is trivial because the following stronger
property holds:

lim
ε↘0,p′→p

vε,µ(p′) = v(p) = lsc v(p).

Take p on the boundary of dom X ∗. Note that lsc v(p) = −∞. Take sequences εk ↘ 0 and pk → p. We
trivially have that lim infk v

εk,µ(pk) ≥ −∞ = lsc v(p). Now note that there is a sequence pk → p such that
v(pk) = −∞. Recall that for all fixed p ∈ Rq we have vε,µ(p) → v(p) when ε ↘ 0. Therefore, for each k
we can find εk > 0 such that vεk,µ(p) < −k. We just proved that there are sequences εk ↘ 0 and pk → p
such that lim supk v

εk,µ(pk) = −∞ ≤ v(p). ut

Our next two examples illustrate the fact that non-convex value functions may not be continuous on the
interior of their domain.

Example 2 Take v(p) = minx{px : x ≥ 0}. Note that v(p) = 0 if p ≥ 0 and v(p) = −∞ if p < 0
and that −v is a convex function. Now note that the effective domain of v is R, while the one of −v is
{p : p ≥ 0}. The function −v is continuous on the interior of its domain, because it is convex. But the
example shows that the same statement is false for a concave function. However, looking at the solution
mapping X ∗(p) = Arg minx{px : x ≥ 0} we can realize that both v and −v are continuous relative to
the domain of the solution mapping, which is {p : p ≥ 0}. In general, we are only able to prove Lipschitz
continuity locally, on int dom X ∗, and continuity relative to compact subsets of dom X ∗.

Example 3 Consider the problem min{x : x ≥ 0}. Let us look at the dual function ψ(p) as a value function.
Then, ψ(p) = infx{(1 − p)x} is such that ψ(p) = 0 if p = 1 and ψ(p) = −∞ otherwise. Again, ψ is not
continuous on the interior of its domain, but is so relative to the domain of the solution mapping X ∗(p) of the
dual problem, which is {1}. For this example, int dom X ∗ = ∅, while the claim about continuity on compact
subsets of the domain is useful.

3.2 Continuity and differentiability of the objects induced by smoothing

We proceed by stating further continuity/differentiability properties of our smooth approximations.

Theorem 5 (Continuity of smoothed value function and solution mapping) Under Assumption 2, we have:

(i) If condition (11) holds, the value function of problem (7) is locally Lipschitz continuous relative to
int dom X ∗, and continuous relative to any compact subset of dom X ∗.

(ii) Suppose the solution mapping of (7) is a singleton (X ∗(p) = x(p) for all p ∈ dom X ∗). Assume, in
addition, that:

(a) either µ = 0 and the feasible set of problem (7) is uniformly bounded on dom X ∗,
(b) or µ > 0 is fixed and condition (11) holds,
(c) or, most generally, conditions (11) and (12) hold, and µ(ε) is bounded for small ε > 0.
Then for any compact set D ⊂ dom X ∗ ∩ dom xε,µ(ε), it holds that

lim
ε↘0,p′∈D,p′→p

xε,µ(ε)(p′) = x(p) for all p ∈ D. (13)

Proof Let us prove the first assertion in item (i). Fix any µ > 0. Note that dom vε,µ = Rq , and that the local
boundedness of ∇pvε,µ(·) for small ε > 0 on int dom X ∗ follows from [BSS20, Theorem 2]. Then the claim
follows from [Che12] and Proposition 1, noting that for p ∈ int dom X ∗ we have

∂Cv(p) ⊂ conv

{
lim sup
ε↘0,p′→p

∇pvε,µ(p′)

}
.
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For the second assertion in item (i), fix again any µ > 0. Note that dom vε,µ = Rq and vε,µ is a smooth
function on Rq (see [BSS20, Corollary 1]). Formulas (9) and (11) imply that vε,µ(p) converges uniformly to
v(p) over compact subsets of dom X ∗. Because v(p) is the uniform limit of the smooth functions vε,µ(p) on
compact regions of dom X ∗, it has to be continuous relative to the compact subset of dom X ∗ taken.

Regarding item (ii), the first step is to show that (12) holds. This is the case if (a) holds, or if (b) holds
via (10) or if (c) holds. In other words, the conditions (a), (b) or (c) imply that no subsequence of xε,µ(ε)(p′)
becomes unbounded when ε ↘ 0 and p′ → p for p′ ∈ D. Then, condition (9) and the continuity of v on
D (shown in item (i)) imply that all subsequences of xε,µ(ε)(p′) accumulate on the singleton X ∗(p). In other
words, (9) implies that

v(p′) ≤ f(xε,µ(ε)(p′), p′) ≤ v(p′) +mε+
εµ(ε)

2
min

x∈X∗(p′)
‖x‖2.

Taking limits on the last inequality under (a), (b) or (c) shows that xε,µ(ε)(p′) converges as claimed. Note that
the continuity of v over D is used. ut

The multipliers of the affine equality constraints in (7) and (8), denoted respectively by λ(p) and λε,µ(p),
play an important role in the calculations of the first-order derivatives of the value function and solution
mapping. Because B(p) has linearly independent rows, λε,µ(p) exists and is unique whenever xε,µ(p) exists.

Differentiability properties of the regularization, relevant to solving problems (8) (and thus eventually (4))
computationally, are summarized below. In particular, explicit formulas for the derivatives of the primal-dual
solutions of (8) are given. To this end, in the optimality conditions for (8) the sign of the Lagrange multiplier
λε,µ(p) is taken so that the following identity holds:

∇xf(xε,µ(p), p) + ε∇xφµ(xε,µ(p), p)−B(p)>λε,µ(p) = 0.

Theorem 6 (Theorem 1 in [BSS20]) Under Assumption 2, the following holds.

(i) If µ > 0, then xε,µ(p) and λε,µ(p) are well-defined and are continuously differentiable in p, for all p ∈ Rq .
(ii) If µ = 0 and the constraints x ≥ 0 are present in problem (7), suppose that X ∗(p) is pointwise bounded

on dom X ∗. Then xε,µ(p) and λε,µ(p) are well-defined on dom X ∗, and are continuously differentiable
in p, for all p ∈ int dom X ∗.

(iii) Whenever xε,µ(p) and λε,µ(p) are well-defined and their partial derivatives with respect to the r-th coor-
dinate of p ∈ Rq exist, they are given as the solution of the linear system below:[

Jε,µ(p) −B(p)>

B(p) 0

] [
∂rx

ε,µ(p)
∂rλ

ε,µ(p)

]
=

[
θε,µr (p) + εϕε,µr (p)

βε,µr (p)

]
, (14)

where, for r = 1, . . . , q,

Jε,µ(p) :=∇2
xxf(x, p) + ε∇2

xxφ
µ(x, p)

∣∣∣∣∣
x=xε,µ(p)

,

θε,µr (p) :=− ∂∇xf(x, p)

∂pr

∣∣∣
x=xε,µ(p)

+
∂B(p)>

∂pr
λε,µ(p) ,

ϕε,µr (p) :=− ∂∇xφµ(x, p)

∂pj

∣∣∣
x=xε,µ(p)

βε,µr (x) :=
∂b(p)

∂pr
− ∂B(p)

∂pr
xε,µ(p) .

3.3 Decomposition method across the agents

When in our problem (1)-(2) the total number |A| of agents is large, a direct solution approach can become
too time consuming, and possibly even impossible. Having laid out the elements of our proposal, we are now
in position to give our solution method, that converges epigraphically and allows for decomposition across
agents. The method is first described conceptually, and then each step is explained further. Details of the actual
implementation are not discussed, for now.
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Algorithm 7 (Smoothing decomposition of equilibrium problems)

Input and initialization. Choose p1 ∈ Rq , σ1 > 0, ε1 > 0 and µ1 ≥ 0. Set k := 1.
Step 1: Price Iterate. Find pk+1 as an approximate local solution of

Arg min
p
{F (xεk,µkA (p)) : p ∈ Π ∩ Π̃} ,

taking pk as the starting point for the solver applied (for instance, Ipopt). During this solve, when the
value and gradient of the objective function F are needed (at points p̂ 6= pk), e.g., when the callbacks for
the objective are made, solve the subproblem below to get the required information.

Step 1.1: Smoothed Subproblems. For each a ∈ A solve (for instance, with Ipopt)

min
x

{
fa(x, p̂)− εk

m∑
i=1

log{−gai(x, p̂)}+
εkµk

2
‖x‖2 : Ba(p̂)x = ba(p̂)

}
.

Let xεk,µka (p̂) denote the unique minimizer in this problem, with the associated unique Lagrange
multiplier λεk,µka (p̂). Compute the Jacobians of xεk,µka (p̂) and λεk,µka (p̂), and use this information to
compute the gradient of F (xεk,µkA (p̂)).

Step 2: Stopping Test. If F (xεk,µkA (pk+1)) stabilized relative to previous iterations, Stop.
Step 3: Update Smoothing Parameters. Determine σk+1, εk+1 > 0 and µk+1 ≥ 0, so that

|F (x
εk+1,µk+1

A (pk+1))− F (xA(pk+1))| ≤ σk+1 .

Step 4: Loop. Set k := k + 1 and go back to Step 1.

In practice, the rule to choose the parameters εk, µk has to be computationally inexpensive. In our case,
once εk is determined, possible options are taking a fixed µk = µ > 0 or setting µk =

√
εk, or some

similar simple choice. We use a one-dimensional bisection procedure to select εk, and therefore having a one-
dimensional relation for µk is useful. For simplicity, in what follows we take µk = µ > 0. Other situations
are dealt with by means of the parameterization just explained. In order to define a proper management of the
sequence εk ↘ 0, we define the quantity

dε(p) := |vε,µ(p)− v(p)|, µ = µ(ε),

where

vε,µ(p) :=

{
F (xε,µA (p)) p ∈ Π,
+∞ p 6∈ Π,

and v(p) :=

{
F (xA(p)) p ∈ Π,
+∞ p 6∈ Π .

The need to handle dynamically εk appeared because the output can be very poor when using some fixed
sequence determined beforehand. This fact was confirmed by some runs in which εk = 1/k resulted in
slow convergence, while setting εk = 1/(k2) decreased the parameter too fast, making numerical errors
dominate the iterative process. Fixing a priori exogenous values for that sequence appeared not to be suitable,
particularly regarding accuracy. In some experiments, for a given pk, we noticed that εk = 10−6 is the
maximal value for which dεk(pk) ≤ 10−2. As a result, setting εk = 1/k would require 106 iterations to bring
the regularized agent’s problem sufficiently close to the original one.

For these reasons, in Step 3 of Algorithm 7 we use the available information, and manage the parameter
so that εk is about the largest value possible for which dεk(pk) ≤ σk, for σk a decreasing sequence going
to zero, depending only on certain available past information. Of course, we also do not want to spend an
unreasonable amount of time calibrating εk based on the last point pk. The values p1 ∈ Π and ε1, µ1, σ1 > 0
are an input of the algorithm. We take ε1 “large”. Given pk+1 ∈ Π and εk > 0, for k ≥ 1 we set

σk+1 = min

{
0.5dεk(pk+1)

k + 1
, σk

}
.

The value εk+1 > 0 is obtained as follows. We know that setting ε = 0 yields dε(pk+1) = 0 and want to
find εk+1 such that dεk+1(pk+1) ≤ σk+1 taking into account that dε(p) is continuous in ε. The interval to make
this search is [0, Ck+1] with Ck+1 = 1.3εk. We allow for εk+1 > εk. Then, we start a bisection procedure on
[0, Ck+1] trying to match the value σk+1, and stop once we find a value εk+1 such that dεk+1(pk+1) ≤ σk+1,
or the maximal number of trials is reached, or dεk+1(pk+1) is close enough to σk+1. Note that close enough
here is understood loosely. For example, with distance between 0.1σk+1 and 0.3σk+1. The point is that this
calculation does not need to be precise. However, it has to be precise enough to guarantee that dεk+1(pk+1)



10 Pedro Borges et al.

decreases to zero, hence ensuring that the regularized models get closer and closer to the true model near an
accumulation point of the sequence pk+1.

Another relevant issue for implementation is when to stop the minimization process when solving prob-
lems in Step 1. In order not to blindly rely on the stopping criteria of the solver, the focus should be put
on robust decrease. If the price sequence converges, then dεk(pk) yields a current estimate of how close the
regularized model is to the true model. If while solving (4) consecutive iterates have objective function values
differing in less than 0.5dεk(pk), this hints that the current εk, µk may not be meaningful in providing solu-
tions for the original problem. These rules are based on comparison of functional values and not on gradient
information (with our epigraphical convergence approach to the problem, the unknown property of gradient
consistency cannot be exploited algorithmically).

We finish with some useful practical considerations for the implementation. In practice we want to avoid
being subject to numerical instabilities associated with εk > 0 being too small. To circumvent this issue, we
add triggers to store the record (the best iterate while solving one instance of the price problem in Step 1) as
well as the best iterates between different instances of that problem. Also, while building the matrix of the
linear system (14), we have to make sure that the iterate lies in the interior of the feasible set with some safe-
guards, because factors like gai(xε,µa (p), p)−2 appear in the diagonal (and so numerical errors are amplified
to the square). For instance, if gai(xε,µa (p), p) = −10−5 < 0, the term in the diagonal is 1010. Currently,
the management of these numerical errors is done the simplest way possible, because it is enough for the
applications we tried. However, as Algorithm 7 may need to solve thousands of optimization problems, being
robust to failure is essential. These safeguards are not detailed in our description, but the guiding principles
are listed below:

1. use an adaptive rule for εk, µk and σk so that problems in Step 1 are closer and closer to the model (2),
2. early stop the subproblem solution in Step 1 if the difference in objective function values on consecutive

iterations is smaller than a fraction of dεk(pk), and
3. carefully manage numerical errors and failures, taking into account that the algorithm is solving thousands

of optimization problems, and that even if a fraction of those fail, the algorithm has to keep running.

The convergence result below is based on relation (13) holding for the solution mappings xε,µA (p) and
xA(p). There are two qualitatively distinct cases to keep in mind, these are: lim inf µk > 0 and lim inf µk = 0.
The assumption that the feasible sets of the problems are uniformly bounded is enough for both cases. Note
that if lim inf µk > 0, we can allow for unbounded solution sets as well, enforcing condition (ii)(b) or (ii)(c)
of Theorem 5.

Theorem 8 (Convergence result for Algorithm 7) Fix a compact set K ⊂ Π . Let Assumption 2 for the
agents’ problems (1) hold, and assume in addition that

(i) either the feasible sets of problems (1) are uniformly bounded for all p ∈ K,
(ii) or if in Algorithm 7 we have lim inf µk > 0, the solution mappings of problems (1) have locally bounded

selections for all p ∈ K,
(iii) or, most generally, conditions (12) and (11) hold, and K ⊂ domX ∗a ∩ domxεk,µka for all a ∈ A.

Then, the sequence of functions vεk,µk converges epigraphically to v over K.

Proof Recall that {µk} is bounded. If (i) holds, then conditions (12) and (11) hold. Therefore, (ii)(c) of
Theorem 5 holds and the conclusion follows. If (ii) holds, then (12) holds because of (10) and the fact that
solution mappings have locally bounded selections, which is condition (11). Therefore, the conclusion follows
again. Finally, (iii) easily implies (ii)(c) of Theorem 5. ut

The importance of the set D considered in (13) lies in ensuring epigraphical convergence on a feasible
region containing an accumulation point of the sequence pk. For instance, for the WEP defined below the
epigraphical convergence result does not apply on the boundary of Π . Also note that condition in item (ii) of
the theorem above is equivalent to requiring satisfaction of (11) for problems (1), uniformly over p ∈ K.

4 Solving deterministic equilibrium problems

As mentioned in the introduction, PATH [FM99] is an established code to solve equilibrium problems. Being
a Newton-type method (see, e.g., [IS14, Chapter 5.2.2]), when PATH works, it tends to get higher precision
than our smoothing. However, when solving Walrasian equilibrium problems, it appears that one needs to
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calibrate PATH parameters very carefully, because certain utility functions in the agent’s problems (1) are ill-
conditioned and degeneracies occur (singular-basis, using PATH-related language). Even with careful tuning,
this leads to failures with a certain frequency, especially for larger instances.

We next describe a first family of problems employed in our experiments, and then benchmark the perfor-
mance of Algorithm 7 against PATH.

4.1 Deterministic Walrasian equilibrium problems

A Walrasian Equilibrium Problem is defined for an economy with agents in a set A, of cardinality |A|. There
are n goods whose prices form a vector p ∈ Rn. The agent’s consumption is a vector x ∈ Rn+, so in (1)-(2)
the dimensions are q = n and na = n for all a ∈ A. Each agent has at its disposal an initial amount of goods
ea ∈ Rn, called endowment, that is worth p>ea. The consumption benefit is measured using some strictly
concave utility function ua(·). Accordingly, given a price p, the agent’s optimal decisions are

xa(p) := arg max
x≥0
{ua(x) : p>x ≤ p>ea}. (15)

With respect to problem (1), the objective function therein is fa(x, p) := −ua(x). As explained below, for
some utilities the budget constraint can be replaced by an equality constraint, so the only inequalities in (1)
refer to non-negativity of the decision variable. These are handled by the penalty φµ introduced in (8).

The global problem (2) minimizes the excess supply, which results in the following:

p∗ ∈ arg min
p∈∆

1

|A|2

∥∥∥∥∥∑
a∈A

xa(p)−
∑
a∈A

ea

∥∥∥∥∥
2

, where ∆ := {τ > 0 :

n∑
j=1

τj = 1} . (16)

In particular, ∆ is the unit simplex of strictly positive prices. Notice that letting

x̄A(p) :=
1

|A|
∑
a∈A

xa(p) and ēA(p) :=
1

|A|
∑
a∈A

ea(p) , (17)

the objective function in (16) amounts to measuring the distance between consumption and endowment, av-
eraging over all agents in the economy. If the price succeeds in clearing the market, the optimal value in (16)
is zero, the information that we employ to assess the quality of the output of the solution methods compared
in our experiments.

As already mentioned above, the solution set in (15) is empty for some p 6∈ ∆. This depends on a property
of the utility function, said to be non-satiable. In economics, non-satiation is the assumption that a consumer
will always benefit from additional consumption. In consumer theory, the utility refered to as having constant
elasticity of substitution (CES) satisfies the property of non-satiation. This strictly concave function combines
in one number the preference of consuming n types of goods, assuming they have an elasticity of substitution
1 6= b > 0 and that a number γj > 0 indicates the preference for the j-th good:

CES(x) :=

 n∑
j=1

γ
1
b
j x

b−1
b

j

 b
b−1

for all x > 0 . (18)

When b → ∞ the goods behave like perfect substitutes and as b ↘ 0 they behave like perfect complements.
The property that CES(αx) = αCES(x) for α > 0 and x > 0 reflects the belief that the intrinsic utility of a
vector of goods lies on the proportion between the goods, rather than on their magnitude. This is confirmed
by the fact that the consumption xa(p) solving problem (15) written with utility CES satisfies the relation
xa(αp) = xa(p) for any α > 0 and p ∈ ∆. The domain of the CES utility function is the whole space for
b > 1.

The deterministic WEP model (15)-(16) represents an exchange economy, without production. Agents
cannot spend more than the worth of the initial endowment. When the price of some good becomes non-
positive, the feasible set in (15) gets unbounded. In this case, if the utility ua(x) is of non-satiable type, the
agent will try to spend more and more, yielding decisions xa(p) that are not well-defined.

These issues with the utility functions would result in failure for methods that need the problem data to
be defined, and have Lipschitz derivatives, on the whole space. By contrast, they do not affect our method,
because the smooth regularized solutions of problem (8) use the utility derivatives only locally, near the
smoothed consumption of the agents. Another advantage of our approach is that, in practice, larger values of
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ε > 0 tend to imply less abrupt changes on the functions involved in (20). As a result, the agents’ problems
are somehow easier to solve. Computationally, as the method moves ε > 0 from larger to smaller values, the
agent problem (15) goes from easier to harder.

4.2 First numerical benchmark

For non-satiable utilities, the budget inequality constraint in (15) can be changed by an equality without
changing the solution set. The agents’ problems take the form

xa(p) = arg max
x≥0
{CESa(x) : p>x = p>ea} ,

and so our smoothing penalizes the non-negativity constraint. The problems in Step 1.1 of Algorithm 7 are
given by

xεk,µka (pk) := arg min
x
{−CESa(x, pk)− εk

n∑
i=1

log(xi) +
εkµk

2
‖x‖2 : p>kx = p>k ea} .

These problems are solved with Ipopt [WB05], setting the mu-target option available for the solver so that
xεk,µka (pk) is automatically computed instead of xa(p). An optimized build of Ipopt with state-of-the-art
linear algebra software Pardiso [KFS18] is essential for reproducing performance. Otherwise, speed may be
sacrificed. See [KFS18] for one of the advanced applications of Pardiso.

Our smoothing method, denoted by Alg. 7 in the tables, was coded in CPP (g++ 7.5.0) with the initial
value ε1 = 1 and keeping µk = 1 fixed. All experiments are run on an Intel i7 1.90GHz machine, but using
only one thread when comparing with PATH. The operating system is Ubuntu 18.04.3 LTS.

We start with an example from [DJW17], with the same CES utility for all the agents, taking in (18) the
preferences γj = 1.0 and the power b = 0.5. Endowments are also the same, ea = (1, . . . , 1) for all a ∈ A.

In this setting, the equilibrium price is unique and known, p∗ = ( 1
n , . . . ,

1
n ), where n is the number of

goods. In other words, if all agents have the same buying power and the same preferences, all the goods have
the same price at equilibrium.

We consider |A| = 2 agents exchanging n ∈ {2, 10, 20, 30} goods. Notice that the objective function
in (16) measures the capacity of the economy in clearing the market. Hence, the columns “Initial/Clearing”
(both for Alg. 7 and PATH-Clearing) correspond, respectively, to the initial and final objective function values
(found with our approach and with PATH). For each column, the output in Table 4.1 reports the average and
standard deviation, computed by repeating the experiments of each configuration four times. For this case,
four repetitions is enough because the standard deviation is small, as can be seen in Table 4.1.

n Initial Clearing Alg. 7-Time (sec) Alg. 7-Clearing PATH-Time (sec) PATH-Clearing
2 0.03 / 0.04 0.03 / 0.01 10−6 / 10−6 0.01 / 0.00 10−33 / 10−33

10 2.67 / 1.96 0.13 / 0.01 10−5 / 10−5 0.57 / 1.09 10−33 / 10−33

20 3.43 / 1.79 0.16 / 0.02 10−4 / 10−4 0.07 / 0.00 10−32 / 10−32

30 4.19 / 0.83 0.21 / 0.02 10−4 / 10−4 0.13 / 0.00 10−32 / 10−32

Table 4.1: Comparison between Alg. 7 and PATH for deterministic WEP with symmetric agents.

Except for the experiments with n = 10, where PATH seems to have struggled for one run, the Newtonian
updates in PATH make the output more precise and faster for this set of problems, as expected.

The second experiment, originally from [Sca73] and also reported in [DJW17], has |A| = 5 agents and
n = 10 goods. In (18), the CES utilities for the agents are defined with the following values for the power

b1 = 2.0 , b2 = 1.3 , b3 = 3.0 , b4 = 0.2 , b5 = 0.6 ,

and the coefficients γ reported in Table 4.2. The table also contains the initial endowments of the agents.
We sampled ten prices in ∆, and both algorithms were executed starting from these prices. The average

and standard deviation for the quantities of interest are reported in Table 4.3. The final prices agree with
those found in [DJW17]. Note that while PATH is still more precise, the smoothing approach is now faster (to
termination).
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a γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10
1 1.0 1.0 3.0 0.1 0.1 1.2 2.0 1.0 1.0 0.7
2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
3 9.9 0.1 5.0 0.2 6.0 0.2 8.0 1.0 1.0 0.2
4 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
5 1.0 13.0 11.0 9.0 4.0 0.9 8.0 1.0 2.0 10.0
a ea,1 ea,2 ea,3 ea,4 ea,5 ea,6 ea,7 ea,8 ea,9 ea,10
1 0.6 0.2 0.2 20.0 0.1 2.0 9.0 5.0 5.0 15.0
2 0.2 11.0 12.0 13.0 14.0 15.0 16.0 5.0 5.0 9.0
3 0.4 9.0 8.0 7.0 6.0 5.0 4.0 5.0 7.0 12.0
4 1.0 5.0 5.0 5.0 5.0 5.0 5.0 8.0 3.0 17.0
5 8.0 1.0 22.0 10.0 0.3 0.9 5.1 0.1 6.2 11.0

Table 4.2: CES utility coefficients and initial endowments for the agents.

Initial Clearing Alg. 7-Time (sec) Alg. 7-Clearing PATH-Time (sec) PATH-Clearing
Avg. 7056.23 2.30 10−5 10.24 10−10

Std. 3401.70 1.76 10−2 5.45 10−8

Table 4.3: Comparison between Alg. 7 and PATH for [Sca73] problem.

4.3 Scaling capabilities of Algorithm 7

In order to explore decomposition with respect to the number of agents, we extend the previous example to
an economy with n = 80 goods, for |A| ranging from 2 to 640 agents.

|A| Initial Clearing Alg. 7-Clearing Alg. 7-Time (sec)
2 15.56 / 5.11 0.66 / 0.21 10.26 / 2.63
4 10.00 / 10.59 0.12 / 0.08 8.74 / 4.45
8 5.17 / 1.28 0.02 / 0.01 22.77 / 13.47
10 5.43 / 0.61 0.02 / 0.00 18.20 / 9.98
20 6.79 / 2.15 0.01 / 0.02 17.61 / 9.32
40 5.79 / 2.05 0.01 / 0.01 45.70 / 38.24
80 4.45 / 1.79 0.00 / 0.00 37.21 / 26.06

160 3.91 / 0.92 0.01 / 0.01 53.06 / 15.26
320 4.90 / 0.58 0.04 / 0.01 246.49 / 168.07
640 4.36 / 0.50 0.06 / 0.02 654.76 / 387.20

Table 4.4: Illustration of the decomposition properties of the smoothing with respect to the number of agents.

We sample the γ coefficients of the utilities in the box [0.1, 1]n, and sample b in [0.1, 0.9] for all agents.
For each configuration we start from four random initial prices. The results, reported as average / standard
deviation, are shown in Table 4.4 and in Figure 4.1. We use eight threads.

5 Decomposition of stochastic hierarchical problems

Another model for the WEP represents an economy with production subject to uncertain delivery, that we
handle in two stages. We give the corresponding formulation, then solve some instances using Algorithm 7,
and finish with a decomposition method that exploits the two-stage structure of the agents’ problems.

5.1 Stochastic Walrasian Equilibrium

In this model, consumption decisions taken in the first stage are x0
a as well as another vector za of production

activity levels. The production effort takes place in the first stage and the resulting goods are delivered in the
second stage in uncertain amounts, represented with a set S of equiprobable scenarios, of cardinality |S|. The
consumption decided in the second stage for the s-th scenario is xsa.
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Fig. 4.1: In log scale, the running times grow linearly with respect to the number of agents. Each dot is one
experiment. (We use log scale because the total number of agents grows exponentially.)

In the first stage, we need B0
az goods to start the production, so that the resulting amount of goods for

each second-stage scenario is Bsaz. The cost of the production effort in the first stage is (p0)>B0
az, and the

profit in the s-th scenario is (ps)>Bsaz. The resulting stochastic version of the agent’s problem (taken from
[DJW17]) with CES utilities and corresponding equality in the budget constraint is

(
za(p), x0

a(p), x1a(p), . . . , x|S|a (p)
)

=



arg max
z,x0,x1,...,x|S|

CES
0
a(x0) +

1

|S|
∑
s∈S

CES
s
a(xs)

s.t. (p0)>x0 = (p0)>e0
a − (p0)>B0

az,

(ps)>xs = (ps)>esa + (ps)>Bsaz for s ∈ S,
z, x0, x1, . . . , x|S| ≥ 0.

(19)

Again, we need to analyze whether the feasible set of problem (19) is bounded near a strictly positive
price p. By examining the first constraint of (19), it suffices to take the matrices Bsa so that all production
activities za have a positive cost if the prices of all goods are positive. Under this condition, feasible sets are
uniformly bounded and each agent problem (19) satisfies Assumption 2 because the equality constraints are
indeed linearly independent.

In (19), uniqueness of the optimal consumption follows from strict concavity of the utility functions.
Uniqueness of the production levels za(p) depends on the existence of a unique solution in z to the system

z ≥ 0, (p0)>B0
az = (p0)>e0

a − (p0)>x0, (ps)>Bsaz = −(ps)>esa + (ps)>xs for s ∈ S ,

for fixed values x0
a, . . . , x

|S|
a . This issue is related to market completeness. In an incomplete market, the total

of activities (sometimes called financial instruments) is less than the amount of scenarios (or future states of
the world). In this case, the system above is over-determined and uniqueness of the production levels depends
on the scenario realizations. If the market is complete (there are at least as many activities as scenarios), za(p)
may be non-unique because the system above is under-determined. In any case, the smoothing of the solution
mappings is always well-defined. The assumption on the single-valuedness of xa(p) is used only for the
convergence analysis. In practice, independently of assumptions, the algorithm will minimize the objective.

The price that best balances demand and supply is determined similarly to (16), considering the expected
value of the clearing for the second stage

p∗ ∈ arg min
p∈Π

{
‖x̄0
A(p)− ē0

A +B
0
zA(p)‖2 +

1

|S|
∑
s∈S
‖x̄sA(p)− ēsA −B

s
zA(p)‖2

}
. (20)
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Similarly to (17), in this problem we defined the mean consumption, endowment and production transfers,
averaged for all the economy, for each scenario s ∈ {0} ∪ S:

ēsA :=
1

|A|
∑
a∈A

esa , x̄sA(p) :=
1

|A|
∑
a∈A

xsa(p) , B
s
zA(p) :=

1

|A|
∑
a∈A

Bsaza(p)

(for simplicity, the first-stage is referred to as the 0th scenario).

5.2 Numerical experiments

We report on performance of the proposed method for some examples found in the literature [Sca73; DJW17;
Sch12], and analyze the impact of properly managing the parameter εk. Since the method described in
[DJW17] is of derivative-free type, it needs to solve many subproblems to estimate the derivatives, and thus is
not comparable with our approach. The stochastic setting leads to larger problems, and PATH starts to fail too
often to collect meaningful information. Thus, PATH results are not reported. As for the method in [Sch12],
it cannot be used to obtain decomposition.

The results for the deterministic Scarf’s instance are shown in Figure 5.1. It reports the probability of
each strategy delivering a reduction of x% of the initial clearing within the normalized budget time in [0, 1].
Because the strategy 1/k does not drive εk to zero fast enough, it lacks precision.

Fig. 5.1: Data profile showing the impact on performance of the management of the parameter εk for the
Scarf’s instance.

In the second test-case, our smoothing method is applied to the stochastic WEP described in [DJW17]. It
has |S| = 9 scenarios, |A| = 5 agents, n = 7 goods, all with production. The problem data for the stochastic
instance was obtained directly from the authors of [DJW17]. For this example we also use only one thread.
The results are reported in Table 5.2. Note that the final clearing is not as close to zero as in the deterministic
setting (for instance, see Table 4.4). Here, the algorithm converged to a price with positive clearing. This can
happen, since the method is guaranteed to find only local solutions. Moreover, for the stochastic setting the
equilibrium is not guaranteed to exist due to issues with complete and incomplete markets.

Initial Clearing Alg. 7-Time (sec) Alg. 7-Clearing
Avg. 28512.10 81.27 5.41
Std. 60275.63 14.54 1.61

Table 5.1: Results for the stochastic WEP from [DJW17].

Fig. 5.2: Data profile showing the impact on performance of the management of the parameter εk for the
stochastic instance.
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We finish our computational analysis with showing that it is worth to invest some effort in the choice of
the smoothing parameter εk in Step 3 of Algorithm 7. The strategy described in Section 3.3 is inner/outer
iteration scheme. In the inner step we minimize the smooth approximation and in the outer step we measure
the quality of the approximation and calibrate εk. In this case k is the number of outer iterations. For the
strategy εk = 1/k to make practical sense, the meaning of k is different. In this case, it is the number of times
the objective function oracle of the smooth approximation is called by Ipopt. Due to these differences, we
compare both strategies using time budgets in a data profile.

More precisely, for a given instance of WEP, we run both algorithms recording the price iterates of the
smooth approximations and the time when the iterate is generated. After the runs finish, we compute separately
the true clearing for the price iterates. This procedure is repeated for ten random initial prices for each instance.
We then make data profiles [MW09; DM02] reporting the probability of the best results until a certain time
delivering a percentage decrease of the initial clearing. The instances are the ones from [Sca73] reported
above, and the stochastic instance is from [DJW17], also used above. Those results are reported in Figure 5.2.
Note that again the 1/k strategy is not as accurate, and also that the bisection strategy for εk finds a good
solution early in the process.

5.3 Inducing decomposition across scenarios

For simplicity, we consider the regularization parameter µ > 0 fixed during this section, and all feasible sets
in consideration uniformly bounded. The previous developments assume that the agents solve a parameterized
convex problem with no special structure. In this section, we show how a two-stage stochastic structure can
be used to obtain decomposition across scenarios. Computational implementation of this additional decom-
position is a technically more involved topic, which we do not pursue here. But the proof of convergence can
be done with the tools already developed in this paper.

The agents’ problems are given by
min

x0,...,x|S|
f0a (x0, p) + 1

|S|
∑
s∈S f

s
a(xs, p)

s.t. Bia(p)xi + Cia(p)x0 = bia(p) for i = 0, . . . , |S|,
gia(xi, p) + hia(x0, p) ≤ 0 for i = 0, . . . , |S|.

(21)

In particular, if the problem above is the stochastic WEP, the inequalities are only z ≥ 0 and xs ≥ 0 for
s ∈ {0, . . . , |S|}. In spite of some abuse of notation, the first stage variables of the current two-stage problem
would be x0 := (z, x0w), where x0w is the first stage consumption of the stochastic WEP. In other words,
the activities are first stage decisions for the stochastic WEP. One has to map carefully the constraints of the
general problem to that of the stochastic WEP. The objective function would be given by

fsa(xs, p) = −CESsa(xs) for all s ∈ {0, . . . , |S|}.

Now, there is one price for each scenario/stage configuration. This implies that Π has the form

Π = ∆1+|S|, where ∆ = {τ > 0 :
∑
j

τj = 1}.

To write the optimal value reformulation it is useful to define the first stage feasible set

X0
a(p) := {x0 ∈ Rna : B0

a(p)x0 = b0a(p), g0a(x0, p) ≤ 0}.

The last problem, when written using the usual value function reformulation becomes

x0a(p) := arg min
x0
{f0a (x0, p) +

1

|S|
∑
s∈S

Qsa(x0, p) : x0 ∈ X0
a(p)} , (22)

where xsa(x0, p) and Qsa(x0, p) are the unique solution and value function of the scenario subproblem:

min
xs
{fsa(xs, p) : Bsa(p) + Csa(p)x0 = bsa(p), gsa(xs, p) + hsa(x0, p) ≤ 0}. (23)

Note that Qsa(x0, p) is convex in x0 for a fixed p, because: (i) x0 influences the right-hand side of the
equality constraints in a linear manner, and (ii) the function gsa(xs, p) + hsa(x0, p) is jointly convex in xs and
x0 (since (21) is convex for all p).
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The idea is to parameterize the second stage decisions of the agent’s problem, denoted by xsa(x0, p), as
functions of both the first stage decision x0 and the price vector p ∈ Π . As usual, to get a smooth approxima-
tion to this function we define, for s = 1, . . . , S, the Tikhonov-regularized log-barrier penalty for the problem
(23) by

φs,µa (xs, p, x0) := −
msa∑
i=1

log{−gsai(xs, p)− hsai(x0, p)}+
µ

2
‖xs‖2.

If the scenario subproblems have only the inequalities xs ≥ 0, then

φs,µa (xs, p, x0) := −
msa∑
i=1

log{xsi}+
µ

2
‖xs‖2.

Then, for any ε > 0, the smoothed approximation of xsa(x0, p) and the associated smoothing for the value
function of the scenario subproblems are given by

xsa(ε, x0, p) := arg min
xs
{fsa(xs, p) + εφs,µa (xs, p, x0) : Bsa(p) + Csa(p)x0 = bsa(p)} (24)

and
Qsa(ε, x0, p) := fsa(xsa(ε, x0, p), p).

Although Qsa(x0, p) is convex in x0 for a fixed p, the smoothed value function Qsa(ε, x0, p) is only “ap-
proximately” convex [BSS20, Lemma 3]. The approximation of Qsa(x0, p) which is guaranteed to be convex
in x0 is given by

P sa (ε, x0, p) := Qsa(ε, x0, p) + εφs,µa (xsa(ε, x0, p), p, x0).

By [BSS20, Lemma 3], we know that εφs,µa (xsa(ε, x0, p), p, x0)→ 0 in a controlled manner when ε↘ 0.

Because of the stated blanket assumptions, problems (24) satisfy the Slater condition for all p and x0,
the rows of Bsa(p) are linearly independent, and problem (24) is convex. Therefore, if µ > 0, it follows that
xsa(ε, x0, p) is well-defined and smooth, even if xsa(x0, p) is not. The same holds for P sa (ε, x0, p). Note now
that one smooth approximation (not necessarily from above) for the objective function of master problem (22)
is given by

x0a(ε, p) := arg min
x0
{f0a (x0, p) +

1

|S|
∑
s∈S

P sa (ε, x0, p) : x0 ∈ X0
a(p)}. (25)

Note that in (25) we need to use P sa (ε, x0, p) instead of Qsa(ε, x0, p), so that problem (25) is smooth and
convex for all p, our assumptions hold and the results apply.

The solution mapping x0a(ε, p) is not guaranteed to be a smooth function of p. For this reason, we have to
deal with the Tikhonov-regularized log-barrier for the first stage problem, given by

φ0,µa (x0, p) := −
m0
a∑

i=1

log{−g0ai(x0, p)}+
µ

2
‖x0‖2.

Again, when the first stage problem is linear and the only inequality constraints are x0 ≥ 0, we see that

φ0,µa (x0, p) := −
m0
a∑

i=1

log{x0i }+
µ

2
‖x0‖2.

The smooth approximation x0a(δ, ε, p) for the first stage decision x0a(ε, p) is given by

x0a(δ, ε, p) := arg min
x0
{f0a (x0, p) +

1

|S|
∑
s∈S

P sa (ε, x0, p) + δφ0,µa (x0, p) : B0
a(p)x0 = b0a(p)}. (26)

For s = 1, . . . , S, the approximations of the second stage decisions are given by the composition

xsa(ε, p) := xsa(ε, x0a(ε, ε, p), p).

Note that we take δ = ε above for simplicity. The whole vector xεa(p) is thought of as the concatenation

xεa(p) := (x0a(ε, p), x1a(ε, p), . . . , xSa (ε, p)).
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If µ > 0 and the functions defining the agents’ problems are sufficiently smooth, the regularized solu-
tion mappings xsa(ε, p) above are smooth. The numerical issue is that to compute their derivatives based on
formulas (14), we need higher-order derivatives of the problem’s data.

Convergence of the joint agent-wise and scenario-wise decomposition is still based on proving that prop-
erty (3) holds. For this purpose, denote by Q0

a(p) the objective function of problem (22), by Q0
a(ε, p) the

objective function of problem (25), and by Q0
a(δ, ε, p) the objective function of problem (26). Inequality (9)

applied to the scenario subproblems yields, for s = 1, . . . , S,

Qsa(p, x0) ≤ Qsa(ε, p, x0) ≤ Qsa(p, x0) + εms
a + ε

µ

2
‖xsa(x0, p)‖2 for all p ∈ p, x0 ∈ X0

a(p).

Then, because (11) is a blanket assumption if µ > 0, we can use (10) to find K > 0 such that for all
p ∈ Π and x0 ∈ X0

a(p) we have

f0a (x0, p) +
1

|S|
∑
s∈S

Qsa(x0, p) ≤ f0a (x0, p) +
1

|S|
∑
s∈S

Qsa(ε, x0, p) ≤ f0a (x0, p) +
1

|S|
∑
s∈S

Qsa(x0, p) + εK.

(27)
Note that we usedQsa(ε, x0, p) in (27). To take into account P sa (ε, x0, p), we have (see [BSS20, Lemma 3]) to
recall that for any κ > 0 it holds that |Qsa(ε, x0, p)−P sa (ε, x0, p)| ≤ κ for all ε > 0 small enough, uniformly
on x0 and p, since we are assuming uniformly bounded feasible sets. Then, for ε = ε(κ) > 0 small enough
we have that

f0a (x0, p) +
1

|S|
∑
s∈S

Qsa(x0, p)− κ ≤ f0a (x0, p) +
1

|S|
∑
s∈S

P sa (ε, x0, p)

≤ f0a (x0, p) +
1

|S|
∑
s∈S

Qsa(x0, p) + εK + κ.

Taking the infimum on the last inequality over x0 ∈ X0
a(p), we obtain that

Q0
a(p)− κ ≤ Q0

a(ε, p) ≤ Q0
a(p) + εK + κ for all p ∈ Π.

Applying inequality (9) and condition (11) to problem (26), and possibly modifying K > 0, we obtain that

Q0
a(ε, p) ≤ Q0

a(δ, ε, p) ≤ Q0
a(ε, p) + δK for all p ∈ Π.

The last inequality combined with (5.3) gives

Q0
a(p)− κ ≤ Q0

a(δ, ε, p) ≤ Q0
a(p) + εK + δK + κ for all p ∈ Π.

We now take limits on the last inequality in ε and δ for a fixed κ. Then, we take let κ↘ 0. It follows that

lim
ε,δ↘0,p′∈p,p′→p

x0a(δ, ε, p′) = x0a(p) for all p ∈ Π.

Therefore, we also have that

lim
ε↘0,p′∈p,p′→p

xsa(ε, p′) = xsa(p) for all p ∈ Π.

We conclude that property (3) holds, which ensures convergence of the presented agent-wise and scenario-
wise decomposition scheme.

6 Concluding remarks

We finish commenting on some issues related to gradient consistency, decomposition, and risk.
Gradient consistency for the smoothing technique in question was proven in [BSS20] in the case when

the value function is convex. For nonconvex value functions, the issue is considerably more involved and still
open. But under second-order sufficient conditions for the subproblems, classical statements can be made,
because the nonregularized solution mappings are smooth themselves. However, this is not our focus indeed
and we do not assume second-order conditions or strict complementarity.

Augmented Lagrangian methods for usual optimization problems with general lower-level constraints
are considered in [And+08], and generalizations of such methods for GNEPs in [KS16]. The augmented
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Lagrangian method in [Sch12] solves essentially the same WEP as we deal with here, and solution times
much better than in [DJW17] are reported. One issue with these methods though, is that decomposition is
not possible because of the quadratic penalizations of the constraints. For instance, in [Sch12] experiments
with up to thirty agents only are reported. With our method, subject to memory limitations and distributed
computing capabilities, in principle we can solve problems with as many agents as required. The same holds
for the number of scenarios. Decomposition techniques are important for this type of problems, because the
number of variables for an equivalent formulation is the product of the number of agents, scenarios, and goods
(thus, potentially huge).

Issues related to the existence of equilibrium prices for social welfare problems where agents solve risk-
averse multistage stochastic optimization problems are considered in [PF18], and their relation to the classical
first and second welfare theorems from economics are explored under some circumstances. This problem
class is the same that we deal with here, the difference being that we aim to compute efficiently the best
price possible according to the function F above, independently whether this is an equilibrium price or not.
Following [PF18], we could consider a risk measure for the stochastic WEP, proceeding as in in [BSS20],
with the decisions of the agents that go in (2) being risk-averse. Therefore, conceptually, there is no difference
and the algorithm we present here remains essentially the same, with the same decomposition properties. For
instance, if F stands for a measure of excess supply like in our numerical section, an equilibrium price p∗

could be characterized by F (p∗) := F (xA(p∗)) = 0. On the other hand, if with risk measures and incomplete
risk-markets it becomes impossible to perfectly balance supply and demand, the best p∗ would be such that
F (p∗) > 0. The non-existence of an equilibrium price is not an impediment to run a minimization procedure
to find a price with a smaller associated objective function value (or with a smaller clearing) than what we
currently have (the starting guess).
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