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We develop a unified framework for convergence analysis of subgradient and subgradient projection
methods for minimization of nonsmooth convex functionals in Banach spaces. The important novel
features of our analysis are that we neither assume that the functional is uniformly or strongly convex,
nor use regularization techniques. Moreover, no boundedness assumptions are made on the level sets of
the functional or the feasible set of the problem. In fact, the solution set can be unbounded. Under
very mild assumptions, we prove that the sequence of iterates is bounded and it has at least one weak
accumulation point which is a minimizer. Moreover, all weak accumulation points of the sequence of
Cesaro averages of the iterates are solutions of the minimization problem. Under certain additional
assumptions (which are satisfied for several important instances of Banach spaces), we are able to exhibit
weak convergence of the whole sequence of iterates to one of the solutions of the optimization problem. To
our knowledge, this is the first result of this kind for general nonsmooth convex minimization in Banach
spaces.
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1. Introduction

We consider the problem

min f(z) (1.1)
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of minimizing a convex functional f : B — R over a convex closed subset C of a uniformly
smooth and uniformly convex Banach space B. We assume that the solution set S of (1.1)
is nonempty.

Let B* be the dual space to B, and let J : B — B* be the normalized duality mapping
determined by the following relations :

2
(Jz,2) = [|Jz||p+llz|l B = ||=]|’5, (1.2)
where (-, -) denotes the duality pairing of B* and B, and || - ||, || - ||+ denote norms in
B and B*, respectively (when it is clear from the context, we will use || - || to denote the

norm in B). Similarly, J* will denote the normalized duality mapping from B* to B. In
a Hilbert space H, J is the identity operator, i.e. J = Igy. Under our assumptions on
the Banach space B (and, more generally, in any reflexive strictly convex Banach space
with a strictly convex dual), it holds that JJ* = Ig« and J*J = Ig. By pg(-) and dp(-)
we will denote the moduli of smoothness and convexity, respectively, of a Banach space
B [10, 13, 14]. Duality mappings and moduli of smoothness and convexity will play an
important role in this paper, and we will elaborate more on their properties in Section 2.
Suppose first that C' = B, i.e. the problem (1.1) is unconstrained. Let 0f(x) be the
subdifferential of f(-) at = € B, that is

8f () = {u € B | f(y) - f(&) > (u,y - z) for all y € B}.

We shall consider the following iterative method for solving (1.1): having z*, a current
approximation to a solution, compute

%

= J*yi where ¢ = Ju' — oy , ' e df(ah), (1.3)

[lu?]| g

with the stepsizes {«;} chosen according to the rule

(0.0) o0
Zai = o0, ZpB* () < 0. (1.4)
=0 =0

Note that by the properties of pp=(-) (see Section 2), it follows that there exist choices of
{a;} such that the two conditions in (1.4) are satisfied. It also follows that lim;_,~, a;; = 0.
In the case of an unconstrained problem in a Hilbert space H (i.e. C = B = H), it is
relatively easy to show that, if the solution set is nonempty, then the sequence of iterates
{2'} generated by the subgradient method is bounded, and it is a “minimizing” sequence

in the sense that liminf; ,o f(2*) = infyep f(z). Results along those lines in Euclidean
and Hilbert spaces have been obtained in [15, 8, 9]. It then follows that the sequence

{z'} has a weak accumulation point which is a minimizer. The proof of convergence of

the whole sequence {z'} to a weak limit in a Hilbert space (i.e. uniqueness of a weak
accumulation point) is considerably more involved and was obtained only recently [2]. It
can be claimed that the results reported in [2] made the analysis of subgradient methods in
a Hilbert space complete. As we shall see, things become more difficult in a Banach space
(even for unconstrained problems, and even more so for problems with constraints). In a
Banach space, a method related to (1.3)—(1.4) was studied in [4, 7] under the considerably
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stronger assumption of f(-) being uniformly convex (or, in the case of operator equations,
the operator being uniformly monotone). In that case, the problem solution is unique,
and strong convergence of the iterates is established in [4, 7]. We emphasize that, in the
setting of this paper, the solution of (1.1) needs not be unique. Moreover, the solution
set S may even be unbounded.

In the constrained case (i.e. when C' # B), it is clear that iteration (1.3) should be
modified by applying some kind of projection operator which forces the sequence to stay
in the feasible set C'. However, the metric projection operator Pp : B — ', defined as

P, = i — 1.5
clz] arggggﬂy ||, (1.5)

seems to be unsuitable for the task. The reason is that, in a general Banach space, the
metric projection operator does not appear to have certain “nice” properties, such as
nonexpansiveness and monotonicity (see the discussion in [1]). In this paper, we employ
the generalized projection operator introduced in [1]. The following function V' : B*xB —
R is central in the subsequent analysis:

1 *
Vip,z) = §(||90||123* —2p,z) +||zll}), =€ B, g€ B (1.6)

In a Hilbert space H, V(¢,z) = 27Y|p — z||% where x € H, ¢ € H. Other properties of
this function are summarized in Section 2. We define the generalized projection operator
mo @ B* — C as follows:

mole] = argminV(p, z). (1.7)

In a Hilbert space H, the generalized projection reduces to the standard metric projection,
that is m¢ = Pp. In the case when C' = B, it holds that 7¢ = J*. It turns out that
this projection operator has properties (these are summarized in Section 2) sufficient for

convergence of the following iterative algorithm: having 2?, a current approximation to
the solution of (1.1), compute

. i
i+1 Oﬁ?j
[u?]l -

T =mo Jzt —

} ,u' € af(zh), (1.8)

where the stepsizes {«;} are chosen according to (1.4). This scheme is similar to the one
considered in [1] for uniformly monotone variational inequalities.

We will also consider a modified method with a metric projection in Banach space. This
algorithm is of the following form: having 2%, a current approximation to the solution of
(1.1), compute

_ : . . u J(z* — 7%
i+l _ g P T2t — u 2 i 1.9
X ) Yy 4y %) <||uz||B* + ||$l_i-l|| ! ( )

where . _ . .
' = Polz'], u'e€df(T)

with the the stepsizes {a;} chosen according to (1.4). A similar algorithm was proposed in
[5] to solve uniformly monotone variational inequalities. We note that in the case studied
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here, the subdifferential operator df(-) is merely monotone. Another related technique
is considered in [3], where no uniform convexity assumption is made but a regularization
term is added at every iteration.

2. Preliminary results

This section contains some definitions and preliminary results that have to do with the
properties and geometry of Banach spaces [14, 10, 11, 13, 4, 6].

Definition 2.1. A Banach space B is said to be uniformly convex if for any € > 0 there
exists 0 > 0 such that for all x € B, y € B satisfying ||z|| =1, |ly|]| =1, ||z —y|| = ¢, it
holds that ||(z 4+ y)/2|| <1 —6.

The function

op(e) == inf{l —[l(z +y)/2|| | [l«ll = 1, [lyll = 1, llz —yll = €}

is called the modulus of convexity of B. Banach space B is uniformly convex if and only
if 0p(e) > 0 for all e > 0.

Example 2.2. The Banach spaces [P, L? and the Sobolev spaces W4, are uniformly
convex for all p € (1,00). Let B be any of those spaces. Then

For p € [2,00), dp(e) > p~127PeP.
For pE (17 2]7 63(5) > (p - 1)8_162‘
Definition 2.3. A Banach space B is said to be uniformly smooth if for any ¢ > 0

there exists 6 > 0 such that for all x € B, y € B satisfying ||z|| = 1, ||y|| < 9, it holds
that [|(z +y)/2[| + [[(z — y)/2]| = 1 < elly]l.

The function

p(7) = sup{||(z +y) /2 + [|(z — y)/2| = 1 | [l«]| = 1, [lyl| = 7}

is called the modulus of smoothness of B. Banach space B is uniformly smooth if and
only if lim, o7 1pp(r) = 0.
Example 2.4. The Banach spaces [P, LP and Sobolev spaces W}, are uniformly smooth
for all p € (1,00). Let B be any of those spaces. Then

For p € [2,00), pg(1) < (p—1)7%

For p € (]-a 2]5 PB(T) < p_lTp-

It is known that for any Hilbert space H and any uniformly smooth and uniformly convex
Banach space B,

pB(7) 2 pu(7) and dp(e) < 0m(e)-

Furthermore, the moduli of smoothness and convexity of any Hilbert space H are given
by (see [10])

par(m)=(1+7)Y2 -1 and ég(e) =1—(1—(/2)})"2
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Therefore, for any uniformly smooth and uniformly convex Banach space B,
2

-
1+ (1472342

pB(7) 2 (2.1)

These facts will be used in the sequel.
We next give examples of the duality mapping J(-) in the uniformly smooth and uniformly

convex Banach spaces [P, LY and Wk, p e (1,00).
Example 2.5. (See [1])
For P, Jr = ||:c||l2p_py € 19, where z = {x1,79,...} and y = {z1|71|P72, 22|20 [P72,.. .}
with 1/p+1/¢ =1.
For I?, Jz = ||z||3,”|z[P~%z € LY, where 1/p+1/q = 1.
For Wk, Jx = ||x||f};£Z(—1)|t|Dt(\Dtaj|p_2Dt$) e Wi, ., where 1/p+1/q=1.
The following two lemmas are proved in [4, 6, 1].

Lemma 2.6. Let B be a uniformly smooth and uniformly conver Banach space. The
following properties hold:

1. J(-) is a uniformly monotone operator on any bounded set. More precisely, for all
reB, ye B

|z — yl|
Jo —Jy,x —y) > Ci(l|z, llyl)s <— |
( ) 2 Callell 1ios \ 56

where
2 2 /9\1/2
Cr(llll, lll) = lll*/2 + llylI*/2)">.
If ||z|| < C1 and ||y|| < C1, where C1 is constant, then

012 ||37_y||
—_ —_ > = a2 20
(Jo — Jy,x —y) > 2L5B < 20, ,

1 < L < 3.18 is the Figiel constant [11].
2. Forallrze B, ye B

(Jo = Jy,x —y) < 8||Jz = Jy||B- + Calllzll, lyl)pp+ (12 = Tyl ),

where
Co[l]] lyll) < 4max{2L; ||lz[| + [|y||}-

3. Forallz € B, y€ B, such that ||z|| < C and ||y|| < C1,
Iz —y|| < 2C1g5" (4CT LI J2 — Tyl B+),

where gp(e) = dp(e)/e.

Note that if x and y are contained in some bounded set, then C7; and Cy are absolute
constants.
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Lemma 2.7 summarizes the properties of V(-,-) defined by (1.6), and 7¢|-| defined by
(1.7) which will be used later.

Lemma 2.7. The following properties hold:
1. V(- z) is differentiable for each x € B and V,V (p,z) = J*¢ — x;
2. V(- x) is convex for each x € B. Therefore, for allz € B, y € B, z € B

3. Forallze B, p € B*

(lellz~ + lll)?*.

DN | —

1
Ulells- — lz]1)? < V(p,2) <

In particular, V(p,x) is nonnegative and finite, and V(Jy,xz) = 0 for some y €
B, x € B if and only if y = x.
4. For every x € B, y € B, such that ||z|| < C1 and |ly|| < Ch,

_ - _ 4llz — |l
91102 ||95 y|| < < AL 102 .

5. The generalized projection operator mc[-], given by (1.7), is well-defined.
6. The following property of absolutely best approximation holds: for any ¢ € B* and
any x € C

V(Jrclel, ) < Vg, z) — V(e, mcle]).

In particular, this implies the property of “conditional” nonexpansiveness:
V(Jrclel,x) < V(g z).
7. Forany ¢ € B* and any x € C
(¢ — Jmclel, mele] — z) = 0.
8.  The operator mg[] is J-fized in every point x € C, i.e.
molJz] = x.

9. Let R>0 and T :={p € B* | ||nc[¢]|l| < R}. Then for any 1 € T and p3 € T,

_1 (4L
Irclia] = meleall < 25 (G lles = ol

The following lemma is of independent interest. It can be thought of as a generalization
of the result on quasi-Fejér convergent sequences in a Hilbert space [2, Proposition 1]. In
particular, the generalization is two-fold. First of all, quasi-Fejér relation (2.2) is written
with respect to the functional V(-,-) defined by (1.6). This functional arises naturally in
the analysis in Banach spaces and, in a Hilbert space, it reduces to the standard distance
function induced by the norm. The other generalization consists of allowing an additional
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term [; in inequality (2.2) below (8; = 0 was considered in [2]). Lemma 2.8 is the basis
for our convergence analysis.

Lemma 2.8. Let T be a nonempty subset of a Banach space B. Let {x*} be a sequence
in B such that for every & € T there exist two sequences of nonnegative real numbers {5;}

and {v;} satisfying Y2 Bi < 00, Y2 < o0 and
V(Ja™ &) < (L+ )V (I &) + i (2.2)

Then the following properties hold:

1. The sequence {V(Jz',%)} is bounded for all z € T;

2. The sequence {x'} is bounded;

3. The sequence {V (Jx', %)} converges to a nonnegative limit for all z € T;
4

If the set of weak accumulation points W of {x'} belongs to T, and if, in addition,
either T is a singleton, or J(-) is a sequentially weakly continuous operator (on some

bounded set containing {z'}), then {x'} is weakly convergent to a point in T.

Proof. The fact that the sequence {V(Jz? %)} converges to a nonnegative limit follows
from a well known lemma on numerical sequences [16, Lemma 2, p.44]. Thus {V (Jz¢, %)}

is also bounded. Boundedness of the sequence {z°} now follows from Lemma 2.7 (3). So
the first three assertions are established. .
Existence of weak accumulation points of the sequence {z'} follows from Part (2). Let

W # 0 be the set of weak accumulation points of {z?}. It is assumed that W Cc T. If T

is a singleton, i.e. it consists of just one point, it immediately follows that {2’} converges
weakly to this point. In that case, the claim is established. Otherwise suppose that J(-)

is sequentially weakly continuous, i.e. from the fact that {:ck } weakly converges to z it
follows that {J(z*)} weakly converges to Jz. Let # € W, # € W and {z#}, {z'm} be
two subsequences of {x’} weakly converging to Z and Z respectively. Then we have

2V (Ja',2) = ||2'||* - 2(Ja", &) + [|2])*

and _ . .
2V (Ja',7) = ||2']|° — 2(J2", &) + ||E]|.

Since, by Part (3), both {V(Jz*, %)} and {V(Jz*, %)} converge, it follows that
v =2 lim (V(Jz', ) — V(Jz', 7))
1—00
=2 lim (Jo', & — &) + [|2]]* — [|Z]|*.
1—00
Taking the limit as n — oo along the subsequence {z®*}, we obtain
v=2(J&,5 - &) + |12]* - |2,

while taking the limit as m — oo along the subsequence {z™}, we have

v=2J%, — &)+ ||2]* - |17
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Subtracting the last two relations yields

0 =2(Ji—J2,i— &)

. (llz -]
> 1 = U
= 2L63< 20, )’

where the inequality follows from Lemma 2.6 (1). It immediately follows that & = %.
This completes the proof. O

Remark 2.9. We refer the reader to [1] for examples of Banach spaces with sequentially
weakly continuous duality mapping J(-) and a discussion of related issues.

3. Unconstrained minimization

In this section, we consider the iterative method given by (1.3), (1.4), for solving (1.1) in
the unconstrained case when C' = B.

Throughout the rest of the paper, we make the following standing assumptions: the
solution set S is nonempty, and the subdifferential operator df(-) is bounded on bounded
sets. These assumptions are not restrictive. In fact, a sufficient (and also necessary)
condition for 0f(-) to be bounded on bounded sets is boundedness of |f(-)| on bounded
sets. This issue is discussed in more detail in [2].

Our main result of this section is the following.

Theorem 3.1. Let B be a uniformly smooth and uniformly conver Banach space. Let

f: B — R be a conver functional. For any sequence of iterates {'} generated by (1.3),
(1.4) the following statements hold:

1. {z'} is bounded;
2. liminf; yoo f(2') = mingep f(x) =: f*. Moreover, there exists a subsequence {x'} of
. , . -1
{a'} such that f(@) - f* < (Siky5)

There exists T, a weak accumulation point of {ac’}, such that T € S.
4. If, in addition, the modulus of convezity of the Banach space B is such that 0g(e) >

@

D12 for some constant D1 > 0, then lim; o0 f(2*) = f* and all weak accumulation
points of {x'} belong to the solution set S.
5. Ifég(e) > D1e? and either S is a singleton or the duality mapping J(+) is sequentially

weakly continuous (on some bounded set containing {z'}), then {z*} converges weakly
to a pointx € S.

Proof. First of all, by (1.3), we have that
. - . . . . i
Ja = ot = LIy Jat =y — = —ay e,
[[w]| B~

and
| Jz = Jat|| g = a.
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Take any Z € S, and let f* := f(z). By Lemma 2.7 (2), we obtain

V(Jz 7)) < V(J2'3) + (Jo'T — T2t 2t - 7)
= V(Jz', %) + (Jz'tt — Jat 2t — z) + (Jo'T — Jat 2 — ). (3.1)

By convexity of f(-), we have

(Jet — gt 2t — 7)) = — 7”uz||z - (u', z* — 7)
S H—fH<0 3.2

We now turn our attention to the last term in (3.1). By Lemma 2.6 (2),
(Jot — Jat 2 — 2ty < 8|| T2 — Jat||Be + Oo (|l N12°)]) pae (| T2 = Ja'||px)

=807 + C2 (|lz*1, ll2"]]) pp=(e), (3-3)

where _ _ _ _
Co(|l" ], |2°[1) < 4max{2L; ||l="*|| + |||}

Note that

o) = 12 e = Iyl = 1" = ol < o'l + as,

where the last step follows from the triangular inequality. Thus
Call=™ |, [l2*]]) < 4 max{2L; 2[|2"|| + s}
Combining the last relation with (3.1)—(3.3), we obtain
V(J2'™t 7)) < V(J2t, z) + 8a? + 4max{2L; 2||z|| + a;}pp+(y). (3.4)

For every 7, we consider two possible cases:
1. 2|2 + o; < 2L, or
2. 2|2 + i > 2L.

In the first case (3.4) yields
V(J2",2) < V(Ja', 7) + 807 + 8Lpp-(v). (3.5)

By (2.1),
2
o

> d :
T 14 (1+a?)/?

pB= ()

Because {«;} is bounded above, say by some a > 0, it follows that

SN

QL

pB*(0g) >

S
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where Dy := 1+ (1 + @)/2. Hence, by (3.5),

V(J2't 3) < V(J2',7) + 8(D2 + L) pp+ (). (3.6)
In the second case, (3.4) yields

V(Jz 7)

IN

V(Jaci, z) + SOzz2 + 8||3:’.||p34= () + 4aipp+ ()
V(Jz',z) + 803 + 4(as + 2||1z||) pp= (o) + 8(/|2"|| — lz|) ps= (). (3.7)

Taking into account that for any real numbers a and b, 2ab < a? + b?, we further obtain

2(||2*|| = 12N/ pB=* (i) v/ pB= (i)
< (Il2°1l = [1211)? ps+ () + pp=(cv)
2V (J2', T) + 1)pp= (o),

2(|2*ll = Izl 5+ (ev)

IN

where the last inequality follows from Lemma 2.7 (3). Combining the latter relation with
(3.7), we obtain

V(Jz™ 7) < (1 + 8pp+())V (J2*, T) + 8af + 4(c + 2|7 + 1) pB+ (0v). (3.8)
Because pp«(a;) > a?/Ds, it follows that

V(Jz' 7)) < (1 4+ 8pp«(04))V (J2t, Z) + 4(2Ds + & + 2||Z|| + 1) pp= (o). (3.9)

From (3.6) and (3.9) it follows that, for all ¢,

V(J2"™7) < (1+ 8pp(ai))V (Ja', 7) + D3pp=(w), (3.10)

where D3 := max{8(D2 + L);4(2D2 + & + 2||Z|| + 1)}. We are now in position to apply
Lemma 2.8 (with 7 = S, 3; = 8pp~(a;) and v; = D3pp«(c;)). In particular, it follows
that {z'} is bounded, say, by C1.

We now prove the second assertion of the theorem. By (3.1), (3.2) and (3.10), we obtain

Q;

V(in-l_laj) <(1+ SPB*(ai))V(inai) - ||| g+

(f(z") = f*) + D3pp=(ai).

Under our assumptions, from boundedness of {x?} it follows that there exists some positive
constant Dy such that ||u?||g« < D;'. Therefore

V(Jz',Z2) < (14 8pp«(4))V(J2t, ) — Dyci(f(z*) — f*) + D3pp=(as). (3.11)

. -1
-1 . . .
Let s; := (E}:o aj) . For every i, we consider two possible cases.

1. f(z") — f* < s, or
2. f(z) — f* > si.
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We will show that there exists an infinite sequence of indices for which the first case takes
place. Suppose the opposite. Then for 7 sufficiently large, say 7 > ¢, the second inequality

above is satisfied. For any i > ig, by (3.11) and boundedness of {V (Jz?,Z)}, we obtain

V(Jzz) < V(J2t z) - D4ozisi + Dspp= (ozi)

VJa: ,T) D4Zajs]+D5ZpB* oz]

J=t0 J=to

where D5 := D3 + Dg with Dg satisfying 8V (Jz*,z) < Dg for all i. By (1.4) and the
Abel-Dini criterion for divergent series, it follows that the first series above diverges; on
the other hand, the second series above is finite by (1.4). But then the latter inequality

implies that {V (Jz¢,Z)} is unbounded below, which contradicts Lemma 2.8 (1). Hence
there exists an infinite subsequence of indices {ix} for which the first condition holds.
This condition, combined with the fact that lim; o, s; = 0 (because of (1.4)), completes
the proof of the second assertion of the theorem.

Let {z%*} be a subsequence of {z'} such that limj_,. f(2%) = liminf;_, f(z*) = f*.
Since {z'} is bounded (because so is {z'}), it follows that it has some weak accumulation

point Z. Let {z%m} be a subsequence of {z%} whose weak limit is 7. By weak lower
semicontinuity of convex functionals [12], it follows that

f(&) < liminf f(z%m)

m—»00

= lim f(z')
k—o0

= f*.

Therefore z € S. .
We now prove the fourth assertion of the theorem. Denote \; := f(z*) — f* > 0. By
(3.11) we have that

Dy )i < V(J2',z) — V(J2™+1, 2) + Dspp«(ev),
where D5 was defined above. Summing the latter relation from 0 to 7, we obtain
_ J
D4Zaz)\ < Z (Jz', 7) (Jx’+1,i))+D5ZpB*(ai)
i=0
. J
= V(J2,2) = V(J2* 2) + D5 ) ppe(on).

1=0

Letting j — oo, from (1.4) and boundedness of {V (Jz!,Z)} it follows that

oo
D aiki < oo. (3.12)
1=0
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Suppose that {\;} does not converge to zero. Then there exist some 7 > 0 and some
subsequence {\;,, } such that X;,, > 7 for all m. For each m, by k(m) denote the smallest
integer greater than i, such that Ay.,) < 7/2. Note that this is well defined because we
have already established that there exists a subsequence {\;, } such that limg_,o, A;, = 0.
By definition of k(m) we have that \; > 7/2 for all j € {4y,,...,k(m)—1}. By (3.12) we
obtain that

I l.M
ME #1

It follows that

k(m)—1
lim Z aj | =o0. (3.13)
J=tm

By convexity of f(-), the Cauchy-Schwartz inequality and boundedness of {u'}, we have

Ai — Aip1 = f(a') — f(a")
< (uf, 2 — 2
< lu'||g=lla™* = 2|
< DY|le* — 7). (3.14)

By Lemma 2.6 (3),
l2*** — 2"|| < Crgp' (ACT LI T — Ja'| 2.

Therefore
||aEiJrl — x’|| < Clggl(4Cf1Lai).

Assume now that the modulus of convexity of the Banach space B satisfies dg(¢) > D1e?
for some D; > 0. Recall that gg(¢) = dp(¢)/e and gp(0) = 0. Under our assumption, it

follows that gg(¢) > Die and hence g5'(¢) < Dy'e. Therefore

|2+t — 2| < 4D7 Loy, (3.15)
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By the choice of indices 4., and k(m), and by (3.14) and (3.15) we further obtain

< Xim = Ak(m)

N3

k(m)—1
= Z (Aj = Aj+1)
J=im
k(m)—1
<Dt Y It -]
J=tm
k(m)—1
<4D{'LDy' D oy

J=im

which contradicts (3.13). Hence lim; oo A; = 0, that is lim; oo f(2?) = f*. Let # be any

weak accumulation point of {z'} and {z%} be any subsequence which weakly converges
to Z. By weak lower semicontinuity of convex functionals, we have

f(z) < liminf f(z)

k—o0

= lim f(z")

1—00
= f*
It follows that the set of weak accumulation points of {z'} is contained in S, and the

fourth assertion is established.
Now the last assertion follows from Lemma 2.8 (4). The proof is complete. O

Remark 3.2.  Similarly to [2], we could consider the use of inexact subgradients in

(1.3). In particular, we could choose u* from an appropriate set of e-subgradients defined
by
0:f(z) = {u € B* | f(y) - f(z) > (u,y — ) — & for all y € BY,

where ¢ > 0. If u’ € 0;, f(z2') and {e;} are chosen so that
g < pag
for some nonnegative constant u, then Theorem 3.1 is still valid.

Remark 3.3. Similarly to [2], we could treat the case when the solution set S of (1.1)
is empty. In particular, it still holds that liminf; o, f(2!) = infzec f(). It then follows
that if S is empty, then the sequence {x’} must be unbounded.

Remark 3.4. The assumption ég(g) > Die? which is needed in parts 4 and 5 of the

theorem, is satisfied, for example, by P, LP and W} for p € (1,2] (see Example 2.2).
Examples of Banach spaces with sequentially weakly continuous J(-) can be found in [1].

We conclude this section with an interesting result which establishes strong convergence
of the sequence of projections of {2’} onto the solution set S.
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Theorem 3.5. Let B be a uniformly smooth and uniformly convexr Banach space, and
f: B — R be a convex functional. Let {z'} be a sequence generated by (1.3), (1.4) and
let v* .= mg[Jat]. It follows that the sequence {v'} converges strongly to a pointv € S.

Proof. Since v* € S, from the analysis in Theorem 3.1, we have that
V(Jz 0t < V(Jz',v%) + Dpp«(as),

for some D > 0. Hence, for any m > 1,

i+m—1
V(Jztm oty < V(Jzt o)+ D Z pB=(a;)
j=t
< V(J2b ') + s, (3.16)

where s; := D) 22, pp+(;). By Lemma 2.7 (6),
V(J2H™m o) < V(T2 0t — V(Ju™ o).
Combining the latter relation with (3.16), we obtain
V(JZT™ ™Y < V(Jzh ot) — V(JuT™ o) + s (3.17)
< V(Jz',v') + 5.

Because m is arbitrary and lim; o, s; = 0, it now follows that the sequence {V (Jz*,v%)}

converges. By Lemma 2.7 (3) it then follows that the sequence {v’} is bounded. By
(3.17),

V(Jot™m o) < V(Jab, vt) — V(Jz™ o) s,

Since {V(Jx,v*)} converges and {s;} tends to zero, it follows that

lim V (Jv't™, %) = 0.

1—00

By Lemma 2.7 (4), we conlcude that

) ||vi+m_vi|| B
zllg)loéB ( 2C1 =0,

where, by boundedness of {v'}, C; is a constant. Consequently

lim |[o"t™ — '] = 0.
1—00

Since m was arbitrary, {v} C S and S is a closed set, it follows that {v'} converges
strongly to some v € S. O
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4. Constrained minimization

In this section, we consider methods for solving optimization problems with constraints.
In particular, two methods are presented: one makes use of the generalized projection
operator discussed above, and the other utilizes standard metric projection but modifies
the subgradient direction.

4.1. Method with generalized projection

We first consider the algorithm generated according to (1.8), (1.4), for solving constrained
optimization problems in Banach spaces. This method employs generalized projection
operator (1.7) instead of the “standard” metric projection. This novel feature allows us
to prove convergence properties which are not known for the metric projection scheme.

Theorem 4.1. Let B be a uniformly smooth and uniformly convexr Banach space. Let
f: B — R be a convex functional. For any sequence generated by (1.8), (1.4) all the
conclusions of Theorem 3.1 are valid.

Proof. Denote @' := Jz! — a;u’/||uf|| g+. With this definition we have z°+! = 7¢[¢’] and
¢! — Jz'|| g+ = ;. Take any 7 € S. By Lemma 2.7 (2), we obtain

V(' z) < V(J2h, 7) 4+ 2(p" — Jz*, J*¢' — 7).
By Lemma 2.7 (6), V(Jz'*!,z) < V(¢*, 7). Hence
V(J2t 2) < V(J247) + 2(pt — Jxt, J*et — 7). (4.1)
We further obtain

(o' = Jat T —7) = (' — Ja', 2’ — Z) + (¢ — Ja', J* ' — ')

= — ?i (ul, zt — Z) 4 (o' — Jat, J*p' — J* Tzt
[[w]] =
— - (@) = ) + 8]’ = T ||
[[w]| =

+ G717 T2 Do (ll¢* = Ja'll )

=~ il V@) = )+ 8af + Calllell, 'l o (0),

where convexity of f(-) and Lemma 2.6 (2) are used in the inequality. Combining the last
relation with (4.1), we obtain

Qs

V(J2"tz) < V(J2', ) -2—
[[u*]| =

(f(a") = £*) +160; +2C([|" || 5+, " ) = (). (4.2)

Now the first three assertions of the theorem are established exactly the same way as in
the proof of Theorem 3.1.

In the proof of the last two assertions of the theorem, we need to bound the quantity
|z**! — 2?||. Here this has to be done differently from what we did in Theorem 3.1. In
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particular, we have

Iz = 2*|| = limcle’] - mclJa’]]

1 (4L, . -
< 25 (e - Il

1 (AL

where the first equality follows from Lemma 2.7 (8), and the inequality follows from
Lemma 2.7 (9).
The rest of the proof follows the pattern of Theorem 3.1. O

We note that if the sequence {2’} is assumed to be bounded (for example, this is always
true in the case when the feasible region C' is bounded or a certain level set of f(-) is
bounded), then the stepsize rule (1.4) can be relaxed by eliminating the second condition.
In particular, we have the following result.

Theorem 4.2. Let B be a uniformly smooth and uniformly conver Banach space and

f: B = R be a conver functional. Let {x'} be any sequence of iterates generated by (1.8)
with the stepsizes {a;} satisfying

o0
E a; =00, lim a; =0.
=0

1—00

If the sequence {'} is bounded then liminf; .., f(2!) = f* and there exists Z, a weak
accumulation point of {x*'}, such that z € S.

Proof. We consider two possible cases. First, if it holds that Y2, pp+(;) < oo then
the result follows from Theorem 4.1.
Let Y72 pp+(ei) = co and suppose that the result is not true. Then there exists 7 > 0

such that f(z?) — f* > 7 for all i. Let # € S. By the analysis in Theorem 3.1 and
Theorem 4.1, we have for any j > 1

J J
Dy ) i < Dy ai(f(a') = f¥)
i=0 i=0

j
< V(Ja% &) = V(J2 &) + D5 Y ppe(ou)
=0

j
<D+ Ds ZPB*(%’)
i=0

for some D > 0, where boundedness of {z‘} (and hence also of {V (Jz*,%)}) was used in
the last inequality. It follows that

J
Z (D4T — D504,-_1PB* (ozl)) (67 S D.
=0
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Since lim; o0 ozi_lpB* (cj) = 0 by uniform smoothness of B*, we have D5ozl-_1p3* () <
Dy7/2 for i large enough, say i > ig. Then, for j > ig,
Dir &
il a; < D.
i=ig
Letting 7 — oo in the latter relation gives a contradiction. Hence the hypothesis is invalid,
and therefore lim inf; o, f(z°) = f*. O

The next result establishes some interesting properties of Cesaro averages of the sequence
{2'}. We recall that Cesaro averages {z™} of {z'} are defined by the following formula

m m )
2= (Z o)t Zaix’.
=0

=0
Cesaro averages were studied in [17] for methods of solving operator equations.

Theorem 4.3. Let B be a uniformly smooth and uniformly conver Banach space and

f: B — R be a convex functional. Let {z*} be any sequence of iterates generated by (1.8),
(1.4) and let {z™} be the sequence of its Cesaro averages. It follows that limy, oo f(2™) =
f* and all weak accumulation points of {z™} belong to the solution set S. In particular,
if S ={z} then {z™} converges weakly to .

Proof. Let Z € S and f* = f(z). Denote )\; := f(z*) — f*. By (4.2), we have that
Dyaii < V(Ja',z) = V(Jo™*,7) + Dsppe(ai),

where Dy and Dy are determined similarly to Theorem 3.1. Summing the latter relation
from 0 to m, we obtain

D4Za,)\ < Z (Jz, 7) (Ja:”l,i))—i-Dg,ZpB*(ai)

1=0

= V(J2%,2) = V(Jz™ ) + D5 ) ppe ().
=0

Let sp, := (1o i)~ ! Then

m m
0 < Dysp, Zai)\i < sm(V(JxO, z) — V(J$m+1, Z)) + Dssm Z’OB* ().
i=0 i=0
By boundedness of {V (Jz%,Z)} and (1.4), it follows that the right-hand-side, and hence

also the left-hand-side, in the relation above tend to zero as m — oco. By the convexity
of f(-), we further obtain

RSN > O o

mz iNg Z:n(]az
_Zizoaif(x)_ *
O Yiw f
> f(z™) = [,
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where 2™ are the Cesaro averages. It follows that lim,, o f(2™) = f*. Furthermore,
the sequence {z™} is bounded because so is {z'}. Let z be any weak accumulation point
of {z™} and {z™*k} be any subsequence which weakly converges to z. By weak lower
semicontinuity of convex functionals, we have

f(z) < liminf f(2™*)

k—o0

= lim f(z™)

m—00
= f*

It follows that the set of weak accumulation points of {z™} is contained in S. O

4.2. Method with metric projection

We next consider the interesting algorithm given by (1.9), (1.4). This method does make
use of the metric projection, however the iterates generated need not be feasible (i.e.
contained in the feasible set C').

Theorem 4.4. Let B be a uniformly smooth and uniformly conver Banach space. Let
f: B — R be a convex functional. For any sequence generated by (1.9), (1.4) all the
conclusions of Theorem 3.1 are valid.

Proof. First note that, by (1.9),

_ _ _ . _ _ i Tzt — 7
Jr' ™t — Jot = JI — Tt =y — it = —ai_yi — QQiM,
17| B+ [zt — 2|
and, by the triangular inequality,
, , ' J(z* — %)
Jzt — Jz¥| g = il 7= —— || g < 3.
707 = Tl = el g o =

Take any Z € S. By Lemma 2.7 (2),
V(Jz 7)) < V(J2h 1) + (Ja't — T2t 2 - 7)
= V(Jz', )+ (Jzt — Jat 2t — 7Y + (J — Jot 7 - 7)
+ (Jattt — ot gt gy, (4.3)

For the second term in the latter relation, we have

. . . o ai o . o O{,L . o . g
(Jott — gzt gt — 7 = — — (@, 2" — T — 2———(J(a* — TY), 2" — T°)
[[a]] = lz* — 2*]]
(673 ; T (67} . —in2
< et = 2llEtl e = 25— lle* — 2°]]
2] = [t — 2]
= —aqjllz" -7 <0. (4.4)
For the third term in (4.3), we obtain
(Jrt — gt 7t —7) = — —— (@}, 7' — &) - 20— (J(z* — Z%),7" — )
[a]] - [t — 2]
< — (@) = 1), (45)

w5
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where the inequality follows from convexity of f(-) and the properties of the metric pro-
jection operator Pg[-] (in particular, Z' = Pp[z!] = arg mingec ||2° — 2||? implies that for
allz € C, (J(2* —7%),7" — ) > 0). Now consider the last term in (4.3). We have

(Ja'*t = Jat, 2™ —af) < 8| T2 = Jat|Be + Ca(lla™ ) |2t ) ope (12 = T )
< 7207 + Co([la™ ||, 12"l o+ (3cw), (4.6)

where the first inequality follows from Lemma 2.6 (2). Combining (4.3)—(4.6) yields

V(Jr't 7)) <

o o _ ' 4.7
L et = 1) + 7202 + Calla™ ) e (B 0

12| B

Using the same arguments as in the proof of Theorem 3.1, we conclude that {z'} is

bounded. Therefore, for some constant D > 0, ||[u’|| < D and |[@f|| < D for all i. By
convexity of f(-), we have

f@y = < f@EH - - @l 3 - g
< f(@) = f* 4 '] p=ll2’ — 7|
f@ = f*+ D|jz’ — 7.

V(J2' %) — oy (

IN

Combining the latter relation with (4.7), and taking into account that ||zf|| < D, we
obtain

QO

V(Jz 3 < V(J2 i) — 5

- (f(a') = %) + 7207 + Ca(ll"™* ||, 12" 1) o5+ (3cx)-

The rest of the proof follows the pattern of Theorem 3.1. O

5. Concluding remarks

A unified framework for convergence analysis of subgradient projection methods for non-
smooth convex minimization in a Banach space was presented. The important distinctive
features of our analysis are the following:

1. No strong or uniform monotonicity assumptions are made with respect to the sub-
differential operator;

2. No boundedness assumptions are made with respect to the solution set of the problem
or the level sets of the objective function;

3. No iterative regularization techniques are used to solve the problem.

Under very mild assumptions, we proved that the sequence of iterates is bounded and
it has at least one weak accumulation point which is a minimizer. Moreover, all weak
accumulation points of the sequence of Cesaro averages of the iterates are solutions of
the minimization problem. Under certain additional assumptions (which are satisfied for
several important instances of Banach spaces), we are able to exhibit weak convergence
of the whole sequence of iterates to one of the solutions of the optimization problem.
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Finally, we would like to state the following remaining open questions concerning the
convergence properties of subgradient methods in a general Banach space.

1. Is it possible to prove weak convergence of the iterates (i.e. the uniqueness of a weak
accumulation point) without making additional assumptions on the Banach space,
like the ones we made in this paper (see parts 4 and 5 of Theorem 3.1) ?

2. Is it possible to prove weak convergence of the Cesaro averages in a general Banach
space 7

3. Under which conditions (other than boundedness of {z'}) the requirement that
Yoo pB+ () < oo can be relaxed ?
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