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A UNIFIED ANALYSIS OF DESCENT SEQUENCES IN WEAKLY
CONVEX OPTIMIZATION, INCLUDING CONVERGENCE RATES
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Abstract. We present a framework for analyzing convergence and local rates of convergence of
a class of descent algorithms, assuming the objective function is weakly convex. The framework is
general, in the sense that it combines the possibility of explicit iterations (based on the gradient or
a subgradient at the current iterate), implicit iterations (using a subgradient at the next iteration,
like in the proximal schemes), as well as iterations when the associated subgradient is specially
constructed and does not correspond neither to the current nor the next point (this is the case
of descent steps in bundle methods). Under the subdifferential-based error bound on the distance
to critical points, linear rates of convergence are established. Our analysis applies, among other
techniques, to prox-descent for decomposable functions, the proximal-gradient method for a sum of
functions, redistributed bundle methods, and a class of algorithms that can be cast in the feasible
descent framework for constrained optimization.
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1. Introduction. We consider algorithmically generated descent sequences that
aim at solving problems of the form

(1.1) min f(x), z€R",

where
f:R" - RU {400} is weakly convex.

The class of weakly convex functions is fairly broad and covers many problems of
interest. It includes convex functions, differentiable functions with Lipschitzian gra-
dient, certain compositions of convex functions with smooth functions, among others.
We refer the readers to the discussion in [11], and below. The case of con-
strained optimization will be handled by including into the objective function the
indicator function of the feasible set.

Nonsmooth optimization problems like (1.1) arise frequently in applications in-
volving big data and large-scale decision making. Many decomposition schemes ex-
ploit separable structures by resorting to Lagrangian or Fenchel duals. Typically,
iterates are defined by means of certain model functions, resulting from some simpli-
fication of the objective function. To ensure convergence, primal and dual objects
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generated by nonsmooth methods must be interwined in very special and sound man-
ner. For this reason, model functions build local approximations not only of the
objective function, but also of its subdifferential. The theory presented below estab-
lishes a short set of conditions, on the family of model functions, on the primal and
dual objects, and on problem (1.1) itself, that provides convergence guarantees for a
large family of nonsmooth optimization methods.

More specifically, we are interested in stating conditions that ensure global con-
vergence and local linear convergence rates for algorithms whose sequence of iterates
{1} involves the Clarke’s subgradient information about f, possibly collected along
iterations. Together with the algorithmically generated sequence {x;} C R™, we shall
also consider a certain theoretical sequence {z;} C R™, with associated perturbation
parameters {e;} C [0,400). These objects are introduced to account for the fact
that, to compute the iterate xj, one often minimizes a model/approximation of f.
This operation yields a subgradient of the model, which for some methods in general
is not a subgradient of f itself at any point in the sequence {z;}. We show that
model subgradients can, however, be “transported” to a nearby point, where they
are subgradients of f. For convex functions, this is the well-known transportation
formula in [24, Ch.XI, § 4.2]. For weakly convex functions, a similar result requires
a delicate construction, given in below. In particular, we think of {z;} as
a (potential) perturbation, not necessarily computed by the algorithm, of the actual
sequence {z} which is computed indeed.

Formally, we shall consider frameworks with the following relations (1.2) valid, for
a fixed along iterations k index i € {0,1}. The index i € {0,1} is used to unify the
analysis for explicit and implicit options in (1.2). Specifically, i = 1 refers to explicit
methods (zx—; = 2z_1, so that gx € df(2k—1)), while 1 = 0 refers to implicit methods
(2k—i = 2k, so that g; € 0f(zx)). This feature would also be made more clear in
comments and examples that follow (1.2). Again, recall that {x} is the generated
sequence, while {2} is a theoretical one.

(1.2a) (@) +all|zp — op—1* + k1) < f(xp_1), for a > 0;
(1.2b)  3Jgi € 0f(zes), llgkll < b<||xk — e |+ ey — zk_i||>, for b > 0;
(1.2¢) both ||z — zx| and {ex} tend to 0 as k — oo.

Some remarks are in order. To start with, notice that condition (1.2a) ensures
that the sequence of functional values {f(zx)} is non-increasing. By contrast, the
theoretical sequence {f(zx)} is not necessarily non-increasing.

To continue, consider first the simplest instance, with zp = x; and €, = 0. Then
the conditions in (1.2¢) are automatic, while (1.2b) becomes

llgrll < bllzr — zp—1]|,

for some subgradient gy of f at either x;_; or zi. In the first case, it is natural to
think of the scheme as being explicit (one obvious example is the gradient descent
iteration, if f is differentiable: zp = zr_1 — txVf(2r_1), with a suitable stepsize
t > 0). In the second case, the scheme is in general implicit, and becomes essentially
that of [2, § 2.3] if further g, € Of(xy) is taken. A prototypical instance is given by
the proximal point iteration:

1
(1.3) xy € argmin f(z) + FHLL‘ —xp_1]]?, for t, > 0,
k
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which means that x, = xp_1 — txgx, for some g € 9f ().

Next, note that in the nonsmooth case, even the convex one, an explicit scheme
with g € 0f(zk-1) and zx—1 = xk—1 in ( ) does not guarantee the descent con-
dition ( ). Indeed, this would be just the basic subgradient method, which is not
of descent. General-purpose algorithms for nonsmooth optimization that build de-
scent sequences are bundle methods [28, 24, 7]. Other nonsmooth methods can also
be of descent, if they use more specific problem structure. Some examples are the
prox-descent method for composite functions [31] and proximal-gradient methods for
sums [4], considered together with the bundle method in below. It is pre-
cisely for treating those type of methods that the theoretical iterate zj, and associated
perturbation e were introduced in our framework (1.2). Essentially, such schemes
compute the proximal point of a convex model of the function f. Thanks to our trans-
portation formula for weakly convex functions, this amounts to performing an explicit
step, using a subgradient of f at a perturbed point, that plays the role of z; in (1.2).
This relation holds as long as the model-functions satisfy general conditions stated in

. Therein, the process is developed in full details for model-based proximal
methods, including serious steps of bundle algorithms for weakly convex functions.

Our convergence analysis recovers, from a unified perspective, various (but not
necessarily all) results in sources like [33], [2], and [11]. We also give new results,
related to bundle methods for weakly convex functions. As stated in the concluding
section of [38], developing a convergence theory along the lines of [2] for bundle meth-
ods based on practical oracles was an open question. We close this gap in
most notably by stating the linear convergence of descent steps of bundle methods
with downshifted models that are typical in the nonconvex setting; we refer to

for details. When the objective in (1.1) is convex, linear rates for bundle-like
methods can be traced back to [27] and [43]; see also the efficiency estimates in [29].
The topic was revisited more recently in [16] and [17], respectively giving complex-
ity estimates for strongly convex functions and multi-cut models, and the classical
proximal bundle method for convex optimization. We should make it clear that our
linear rate of convergence result for bundle methods concerns the descent iterations
only, which themselves are constructed by a subsequence of so-called null steps. The
number of null steps needed to produce descent is not part of our development. For
strongly convex functions and a fixed prox-parameter, [16] shows that the precision of
the solution at null steps is approximately inverse to the number of iterations. Tak-
ing into account null steps in the more general setting considered in this work is a
challenging matter and should be a subject for future research.

The rest of the paper is organized as follows. In we collect some facts on
weakly convex functions, to be used in the sequel. Error bounds are briefly discussed
in . We proceed in with some general global convergence and local
linear rate of convergence properties of the framework given by (1.2). In these
results are applied to model-based algorithms, including prox-descent for composite
functions, proximal-gradient methods for sums, Taylor-based models, and finally the
(serious steps of) bundle methods. In we show how our analysis applies to
the class of feasible descent methods for constrained optimization considered in [33].

We conclude this section with some notation and definitions. By (-,-) we denote
the Euclidean inner product (where the space is always clear from the context), with
| - || being the associated norm. By B(0,€) we denote the closed ball of radius € > 0,
centered at the origin.

For a proper, lower semicontinuous, and locally Lipschitz-continuous function
f: R" - RU {400}, the Clarke subdifferential of f at € dom(f) = {z € R™ |
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f(x) < 400} is given by
Of(x) =conv{g € R" | 3{yr} C Dy : yp — x, Vf(yr) — g},

where Dy is the set of points at which f is differentiable, and where conv D stands
for the convex hull of a set D. For z € dom(f), df(x) is a nonempty closed convex
set, and 9f is an upper semicontinuous mapping; see [8]. Note also that from [37,
Proposition 3.1], [37, Theorem 3.6] and (iv) below, the so-called limit-
ing subdifferential and the Clarke subdifferential coincide for weakly convex functions,
the class of our interest. This is the reason why we define and use the Clarke subdif-
ferential only. If f is a smooth function, df(x) reduces to the gradient V f(z), while
in the case of f being convex, df(z) is the subdifferential of f at x in the usual convex
analysis sense. For f convex and £ > 0, the e-subdifferential of f at € dom(f) is
given by
O:f(z) ={g eR" | f(y) = f(z) + {9,y —x) —eVy eR"}.

For (possibly nonconvex) closed set D, we denote the associated (possibly set-

valued) projection mapping by

P = 1 - .
p(x) = argmin ||y — x|
Then the distance from z to D is given by
d(ﬂ?,D):”Jf—p”, for anypEPD(x)'

For a nonempty closed convex set X C R"™, ix denotes the indicator function of
the set X, i.e., ix(z) =01if z € X and ix(x) = +oo otherwise. The normal cone to
X at z € X is given by Nx(z) = dix(x) ={u e R" | (u,y—z) <0 for all y € X}. If
z € X then Nx(z) = 0.

Denote by S := (0f)~1(0) the set of critical points of f, i.e., points z such that
0 € 9f(z). The following property [33, Condition B] will play a role in our analysis.

DEFINITION 1.1 (Proper separation of isocost surfaces). A closed function f :
R™ — RU{+o0} has properly separated isocost surfaces if there exists € > 0 such that

TeS gel (@) #fW) = lz-yl=e,
where S = (0f)~1(0) is the set of critical points of f.
This property is very natural; we refer the readers to [33] for a discussion and sufficient
conditions for it to hold.
2. Weakly convex functions. We start with the definition.

DEFINITION 2.1 (Weakly convex functions). We say that f : R™ — R U {400}
is p—weakly convez, for p >0, if f(-)+ g” -|I? is a convex function.

The class of weakly convex functions is contained in some larger classes of non-
smooth functions, such as the generalized differentiable functions in the sense of
Norkin [40], or the semismooth functions [35].

The following are some equivalent characterizations of weak convexity; see [10,
Theorem 2.1], [9, Theorem 3.1].

PROPOSITION 2.2 (Alternative characterizations of weak convexity). For a lower
semicontinuous function f:R™ — RU{+o0} and p > 0, the following statements are
equivalent:
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(i) For any z € R™, f(-) + 5| - —z|* is a convex function.
(i1) For any x,y € R™, such that Of(y) # 0, any g(y) € Of(y) satisfies

@)+ (9w),e =) < f@) + 5l =yl

or, equivalently,
p
ly.g (@) < f(2)+ Sle = yll?,

where £y 4, (+) == f(y) +(9(y), - —y) is the linearization of f at the point y.
(iii) For all x,y € R, and A > 0,

pA(1 =)

FO@+ (1= Ny) <A (2) + (L= Nfy) + =5 e =yl
Note that in (i), by taking z = 0, we retrieve ,
which means that f is convex up to a quadratic perturbation. (i) is

completely equivalent to this way of defining weakly convex functions, since it states
that f is convex up to a quadratic perturbation with a linear term. Regarding some
other notions of nonconvexity in the literature, it is important to note that for a
function to be weakly convex, (ii) must hold for all subgradients at
all points. By contrast, for prox-regular functions ([44, Definition 13.27]), also known
as lower-C? functions, the inequality holds only locally for subgradients, points and
functional values. As a result, weak convexity is equivalent to the function being
prox-regular everywhere, and the parameter of prox-regularity being the same for all
points, or simply uniformly prox-regular.

As already commented, the class of weakly convex functions is quite broad and
includes many settings of interest, whose nonconvexity is benign, in the parlance
of [50]. One example is the class of decomposable functions in [46], that contains
max-functions, maximal eigenvalue functions, and norm-1 regularized functions; see
also [31] and [45]. The following definition corresponds to the global version of a
decomposable function of [46].

DEFINITION 2.3 (h o ¢ decomposable functions). Given a continuously differen-
tiable mapping ¢ : R™ — R™ such that ¢(Z) = 0, and a finite-valued sublinear function
h: R™ — R, the real-valued function f is h oc decomposable at T € R™, if for all
r € R,

f(@) = f(Z) + h(c(x)) .

If ¢ is a C' function with Lipschitz-continuous Jacobian, then such f is weakly
convex. To see this, apply [15, Lemma 4.2]. Since h is finite-valued and sublinear,
it is then convex and Lipschitz-continuous (see [24, V(1.2.6)]), while ¢ is C! with
Lipschitz-continuous Jacobian from the assumptions. Therefore the composition hoc
and, hence, the function f(-) = f(Z) + h o ¢(-), are weakly convex.

In association with other notions related to weak convexity, we further remark
that all real-valued prox-regular functions (or, in our terminology, real-valued locally
weakly convex functions) can also be locally decomposed as a sum of a convex con-
tinuous function and a concave quadratic function (in line with ), and
can also be expressed as a composition of a convex continuous function with a dif-
ferentiable function with locally Lipschitz gradient, see [9, Proposition 3.5, Remark
3.6).
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We next give an example of weak convexity for extended real-valued functions,
that will play a role in to include the class of feasible descent methods of
[33] (for constrained optimization) into our framework.

PROPOSITION 2.4. Let f: R™ — R be a continuously differentiable function with
L— Lipschitz continuous gradient on the nonempty closed convex set X C R™. Then,
f+ix is a L—weakly convex function.

Proof. Since f has Lipschitz-continuous gradient with constant L on X, then
(e.g., from [26, Lemma A.11]), for all 2,y € X it holds that

F)+ (VF@)a— )~ Sl —ylP < f(a)

Furthermore, for z € X, and y € R™ such that d(f + ix)(y) # 0, that is, for y € X,
and for all w € Nx(y), we have that Vf(y) +w € d(f +1ix)(y), and

(f +ix) ) + (VI ) + w2~ ) — = yl? < ( +ix)(a).

If © ¢ X, the above inequality holds trivially, because y needs to be an element of X
to ensure that the subdifferential O(f + ix)(y) is nonempty (see (i1)).
Therefore, f +ix is L—weakly convex. ]

3. Error bounds. Error bounds are (upper) estimates of the distance to so-
lutions (or critical points) of a given problem. Their role is paramount for various
reasons, among which is convergence rate analyses; see, e.g., [42, 18, 26, 53].

In this work, we shall mostly employ the following subdifferential-based error
bound. See, however, the end of this section for the so-called natural residual error
bound [18] for constrained problems, and its relation with the subdifferential-based
bound.

DEFINITION 3.1 (Subdifferential error bound). We say that the subdifferential
error bound holds for problem (1.1) where f : R — R U {+o0} is bounded below, if
for every v > inf,crn f(x), there exist €,£ > 0 such that whenever x € R™, f(z) <w,
and w € 0f(x) N B(0,€), the following is true:

d(z,S) < Lll|w||, where S = (0f)~1(0) is the set of critical points of f.

The error bound above is related to various other notions that appear in the
literature, such as the Kurdyka-Lojasiewicz inequality [30, 6], and quadratic growth
of f around the set of its critical points [12, 14], or the set of minimizers when the
function is convex [1, 52]. These conditions assure some regularity of the function
near a critical point. Furthermore, the subdifferential error bound is related to metric
subregularity of df (see [25, Definition 3.17]). Some relationships between regularity
conditions that are commonly used in the literature can be found in [51, Proposition
2] and [3]. Note that the error bound in uses the Clarke subdifferential,
while in [2] the limiting subdifferential appears. As mentioned, for weakly convex
functions these two subdifferentials coincide.

Another comment is that weak convexity, combined with the subdifferential error
bound, entails the Lojasiewicz inequality with exponent 6§ = % [12, Proposition 3.8],
and quadratic growth around the set of critical points [14, Theorem 3.1]. Furthermore,
[12, Theorem 3.7] states that a variant of the Lojasiewicz inequality implies the error
bound. Moreover, for a locally weakly convex function, the Lojasiewicz inequality
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with exponent 6 € (0, 1] is equivalent to a level-set subdifferential error bound, and
also equivalent to having a set of local weak sharp minima (an error bound of order
0) [3, Corollary 2.1]. In the convex setting, the quadratic growth condition is actually
equivalent to the subdifferential error bound [1, Theorem 3.3].

As pointed out by an anonymous referee, possible extensions when using other
Lojasiewicz exponents different from 6 = %, might lead to sublinear or superlinear
rates of convergence guarantees, depending on the value of 8, properties of the model
function used to construct the specific algorithm, and possibly other assumptions.

We next turn our attention to constrained smooth optimization problems, the
framework of [33], dealt with in . Consider the problem
(3.1) min f(z),
where X is a closed convex set, and f : R™ — R is finite-valued and smooth. An
equivalent problem is to handle constraints by adding to f the indicator function
of the feasible set. It turns out that these two equivalent formulations are in fact
different when it comes to error bounds, and some subtle issues arise.

Specifically, as is well known, criticality of a point = in the sense of

0€9(f +ix)(x) = Vf(z) + Nx(z)
is equivalent to the condition
x— Px(z—Vf(z))=0.

Hence, one can attempt to measure the distance to the set of critical points S by the
violation of the projection equality above, or by the violation of the subdifferential
inclusion above. It so happens that, at least in general, these are not the same. We
next review the relations between the corresponding error bounds.
The subdifferential error bound would just read exactly the same as in
, using f+ix instead of f therein (then w € Vf(z)+ Nx(z)). The projection-
based error bound states the following.

DEFINITION 3.2 (Projection error bound).  We say that the projection error
bound holds for problem (3.1) where f : R™ — R is differentiable and bounded be-
low, if for every v > inf,cx f(x), there exist e,£ > 0 such that whenever x € X,
f(z) <w, and ||z — Px(x — Vf(2))| <, the following is true:

d(x, $) <tz — Px(z - V(@)

The projection error bound is a natural way to measure violation of stationarity
in convexly-constrained problems, used in many developments; see, e.g., [33, 49, 48].

Clearly, for problem (3.1) with smooth f, and amount
to the same if X = R™ (or if S is in the interior of X). For constrained problems,
there are two cases when these error bounds are equivalent. The first case is when
the critical point is isolated, see [18, Proposition 6.2.4], [26, Proposition 1.31]. In that
case, the projection error bound means the semistability property [26, Definition 1.29].
The second case when the two bounds are equivalent is when X is a generalized box
in R™, i.e., X is defined by bound constraints on the variables (some bounds can be
infinite), see [19, Theorem 2]. To the best of our knowledge, in other cases the relations
between the subdifferential and projection error bounds are not known. However, the
following simple argument shows that when the gradient of f is Lipschitz-continuous,
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the projection residual is bounded above by a multiple of d(z, S), always. Then, if the
subdifferential error bound holds, the right-hand side of (3.2) is of order no less than
the projection residual. Hence, in principle, the subdifferential error bound can hold
when the projection one does not. Note that this is meant as merely a complmentary
observation, to add to the discussion of the differences between the two error bounds.

LEMMA 3.3. Let f : R®™ — R be a continuously differentiable function with Lip-
schitz continuous gradient of constant L, and X C R™ be a nonempty closed convex
set. Therefore, for any x € R™, the following inequality holds

(3.2) [ = Px(z = V()| <2+ L)d(z,S).
where S = (0f)~1(0) is the set of critical points of f.
Proof. Indeed, for each x let p(x) € Ps(x). Then,
i~ Px(a — V@) = llo — Px(x ~ V() ~ (o(x) ~ Px(p(z) ~ V@)

< [l = p(@)[ + [|1Px (z = Vf(z)) = Px(p(z) — Vf(p(x)))ll
< d(x, S) + [l — Vf(z) - (p(x) — VI (p(2)))]
< (24 L)d(=,9),

where in the first equality we use the fact that p(z) = Px(p(x) — Vf(p(z))), the

second inequality follows from the nonexpansiveness of the projection operator Px,
and the last inequality is by the Lipschitz continuity of the gradient of f. 0

4. General asymptotic relations in the algorithmic pattern. In the se-
quel, we shall need the following technical result.

LEMMA 4.1. Let {ar} C R™ and {by} C [0,+00) be two sequences such that for
all k it holds:
|ar — ak—1]] < a1bg—1

and

b < azbi—1,
where oy > 0 and as € (0,1). B
Then, there exists a* € R™ such that, for any k, there exist r € (0,1) and ¢ > 0,
such that for all k > k,
lax —a*|| < caj

Ozlbo

with ¢ = . In particular, {ay} converges to a* R-linearly.
2

Proof. First, by direct induction, for all k it holds that b, < by(az)*. By making
a telescopic sum, for all j > 1,

k+j k+j

arb a1b
@) s =l < Y on—anal < 2037 (o) < (22 ().

n=k+1 2 n=k+1 1- @2
where to obtain the last inequality we use that

k+j

Y ()" = (a2)" D (02)" < () 2

1-— (65) ’
n=k+1 n=1
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since ag € (0,1). Therefore, {ax} C R™ is a Cauchy sequence, and thus {ax} converges
to some a*. By taking the limit in (4.1) when j — oo, we obtain that |lay —a*|| < cak,
as claimed. |

Regarding our problem of interest, if f in (1.1) is bounded below, the mono-
tonically non-increasing sequence {f(xy)} from (1.2) converges, without any further
assumptions (to some value, not necessarily a critical one). We next show that, for
weakly convex functions satisfying the subdifferential error bound of
and the isocost surfaces condition of , the sequence of functional values
of the projections of the theoretical sequence {z;} onto S stabilizes at a critical value
(value of f at a critical point).

In the statements (iv) and (v) below, the index i € {0,1} is used to unify the
analysis for explicit and implicit options in (1.2). Recall that i = 1 refers to explicit
methods (zx—; = zx—1, so that g € 8f(zx—1)), while 1 = 0 refers to implicit methods
(2k—1 = 2k, so that gx € Of(21)).

LEMMA 4.2 (Convergence to critical points and technical relations). Let f :
R® — RU {+o0} be a p—weakly convex function, such that inf f > —oco. Then for
any algorithmic scheme satisfying (1.2), the following holds:

(i) {f(z1)} monotonically converges to some value f € R.

(i) i —xp—1 — 0, 2 — 2,1 — 0 and g, — 0, as k — +o0.
Suppose, in addition, that f satisfies the proper separation of isocost surfaces condition

) and the subdifferential error bound ( ). Then,
(i11) {f(zx)} converges to f*, where f* € R is a critical value (i.e., f* = f(x) for
some x € S).

(iv) For i € {0,1}, defining pp—i € Ps(zk—:), for all k sufficiently large the
distance from zp_; to S can be estimated as

212
200 Flanon) — Flaw)) + 2020 | ons — 2 s

(v) For the functional value errors vy := f(xg) — f*, it holds that

”Zk—i - ﬁk—z‘”z <

201 , ,
v < T(Uk—l —vg) + 200% || zp—s — Zp—i||* + Or—s,

where p
Ok—s = f(wg—i) — f(zr—i) + §||I5k—¢ — zi—al”.

Proof. In view of (1.2a) and g5, > 0, {f(x)} is non-increasing. Since f is bounded
below, item (i) follows immediately. Then also f(zg_1) — f(zx) — 0.
As, by (1.2a),

(42) ok = x> <~ (Flanr) = Fan)) — e

it follows that xp — xx_1 — 0 in item (ii). Then (1.2b) and (1.2¢) yield that g — 0
and, z — zx—1 = (2 — 2g) + (@ — Tp—1) + (Tg—1 — 2x—1) — 0. Item (ii) is proven.
For the remaining items, we apply the subdifferential error bound at the tail of
the auxiliary sequence {zj}. The starting point is (1.2b), for which we use that f is
a p—weakly convex function, considering the two possibilities i =0 and i = 1 at the
same time. For the rest of the proof, we fix the index i € {0,1}.
Since for all k > 1, gr € 9f(zx—;), it holds that

F(onms) + g, on = 2s) < Fon) + Sllzs — a2
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In view of the fact that f(z)) decreases to f, g =0, o — 2 — 0, 2 — 21 — 0,
and thus 2;—; — xx — 0, we have that for all ¢ > 0, and all sufficiently large £,
flzr—i) < f+eand gk € Of(zk—1) N B(0,€). Thus, by the error bound,
(4.3) loi — Bhill = (240, S) < Lllgnl

Since g — 0, it follows from (4.3) that zx_; — pr—; — 0, and then zx —pr — 0 as
k — 4o00. Combining this with the fact that zy —2zp_1 — 0, yields that py —pr_1 — O.
Moreover, the property of separation of the isocost surfaces implies that f(py) = f*
eventually, for a critical value f* of f. To complete the proof of item (iii), we apply

weak convexity of f for 0 € f(px), obtaining that for all sufficiently large k it holds
that

J* = Fu) + (0,2 = 5u) < F(e) + Sllon — Bl
Hence,
(4.4) sl =Bl < S - s
Notice that, in addition, g € df(zx—;) implies that
(45) F(z) o Phos—ims) < e+ Ikms—zimsl® = £ 45 Bo-s—zis]

where the last equality holds for all £ sufficiently large.
Next, combining (4.4) and (4.5), we obtain that

p ) . oy
_§||Zk_pk”2§f(zk)_f S<gk+iazk_pk>+§||pk_zk”2~

Then, taking the limit as k — oo yields that f(zx) — f*.
Next, weak convexity implies that for any d € 0f(z—;),

F@ims) + (A 2oy = @ims) < Flanms) + Sllans = anms
Also, as g € 0f (z5—1),

F(2ms) + (g Thms = 2hms) < Flonms) + S llans — 2.
Combining the two relations above, we obtain that

(9 s = 21s) = Sllanms = 21-s? < Flanms) = Florms)
< (d@ms = 2nms) + Sllens — ans ]

Taking the limit in the last relation as k — 400, (ii) and (1.2¢) imply that
f(zr—i) — f(zg—i) — 0. Since {f(xy)} is a convergent sequence, and f(zp) — f*,
the sequences {f(zx)} and {f(zx)} both have the same limit. Thus, {f(zx)} is a

non-increasing sequence converging to the critical value f*, and {vy} is a nonnegative
sequence.
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To show statements (iv) and (v), recall that (a + b)? < 2a® + 2b%, for all real

numbers a,b. Then from (1.2b) we obtain that
lgell® < B*(lok — 2r-al + ll2k—s — z5-s)?
< 203 |k — wp—a | + 207 ops — 2 )?

T(f(l’k—l) — f(xr)) + 20%||lzp—s — 2z |?,

IN

where the last inequality follows from (4.2). In this manner, since gy € 9f(zx—3),
from (4.3) and (4.6) it follows that

202p?

zk—s — Pr—s|® < (f(zro1) = f(@n) + 200% |zp—s — 24,
which is statement (iv).
On the other hand, from (4.5), (4.3), and the fact that for all sufficiently large k
it holds that f(px—i) = f*, we obtain that
[

flar—1) = f*

IN

_ Py~
lgrllllzk—1 — Pr—sll + §||pk—i — Zk—i

IN

D~
| grll® + §||Pk—i — 2%

Therefore, combining this inequality with (4.6), yields

20b° -
flzps) = fF < T(f(l“k—l) — fzn)) + 200 |wp—s — zi—sl® + g”pk—i — z—1)?.

Hence, as {vy} is non-increasing,

20b? _
vk < — (Uk—1 — vk) + f(@pos) = fzroi) + 200wy — 2p—s® + g”pk—i ]
This concludes the proof. ]
The relations in lead to the following result, on the convergence speed

of both the sequence of functional values and of iterates. The respective rates are
linear in the quotient (@) and root (R) senses, as defined in [41].
Recall that the index i € {0,1} unifies the explicit and implicit options in (1.2).

THEOREM 4.3 (Asymptotic results for weakly convex functions). Let f: R™ —
RU{+o0} be a p—weakly convex function such that inf f > —oo. Suppose, in addition,

that f satisfies the proper separation of isocost surfaces condition ( ) and
the subdifferential error bound ( ).

Let {x1} and {z} satisfy (1.2), and consider the sequence of functional errors
{vr}, defined in (v). If there exist Cy ,Csy > 0, such that, for all sufficiently
large k it holds that
(4.7) f(@r—s) = fzr—s) < Cr(vp—1 — vg)
and
(4.8) k1 — zr—i]> < Co(ve—1 — vi),

then there exist ¢ € (0,1) and ¢ > 0 such that
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(i) For all k sufficiently large,
Vg < qUE-1 ,
where g = M/(1+ M) € (0,1), and M = Cy + (b*(2 + pf)(1/a + Cy).
(ii) The sequence of functional errors {vi} monotonically converges to 0 with
Q—linear rate.
(iii) The sequence {xy} converges R—linearly to a critical point x* of f, such that
fl@*) = f* =limg_ oo f(xr). More specifically, for all sufficiently large k,

oy — 2*|| < ev/g",

S0

where ¢ = ————.
va(l-a)
Proof. First, convergence of {f(xx)} follows from (iii). The rate of
convergence of { f(x)} is derived from the technical estimates of . Indeed,
combining the definition of ©;_; with (iv) and (4.7), for all sufficiently

large k it holds that

Ori < Cilves —w) + g <2£2b2 (Vh—1 — k) + 20262|| 2y — zk_i||2>
- (a+ ”‘ZQbQ)(uk_l ) + Py — zs |2
Therefore, from (v), it further follows that
v < (01 + gg + p@) (Uh—1 — o) + 022 + pO)||zp—s — 213
< (01 + gm + pz)) (Uh—1 — Vi) + E62(2 + pl)Co(vi_1 — vg) ,

where (4.8) is used to obtain the last inequality. Hence, vy < M (vgp—1 — vi), which
gives item (i) with M specified therein.

Using inductively the inequality of item (i), we conclude that there exists ¢ > 0
such that for ¢ = M /(1 + M) and all sufficiently large k,

vp < vog”.

To see item (iii), the estimate therein follows from . More specifically,
there exists a point #* such that {z)} converges to * R-linearly. In particular, from
(1.2¢), {zgx—1} also converges to z*, for i € {0,1}. Note that, since df is an upper
semicontinuous multifunction, (ii) and (1.2b) imply that 0f(zk—1) > gx —
0, therefore 0 € df(z*), that is, «* is a critical point.

Finally, zx — pr — 0 implies that py — x*, that is, ™ and py are sufficiently
close critical points. Therefore, in view of the proper separation of isocost surfaces
property, f(z*) = f*. Hence, the limit of {x}} is a critical point z* € f~1(f*). d

In the final two sections, is applied to show the linear convergence
rate of two different families of algorithms, proximal model-based ones akin to (the
serious steps of) bundle methods, and the feasible descent framework of [33].

5. Bundle and proximal model-based methods. In nonsmooth optimiza-
tion, satisfaction of (1.2a) is not straightforward. In addition to its role in
, in this section weak convexity is an important ingredient in showing that



DESCENT SEQUENCES IN WEAKLY CONVEX OPTIMIZATION 13

iteratively minimizing appropriate approximating models of f indeed generates se-
quences that are of descent.

Suppose, for the moment, that f is a convex nonsmooth function. In this case,
neither subgradient nor cutting-plane methods [7, Part II] fit the algorithmic pattern
(1.2), because they do not guarantee the descent condition (1.2a). By contrast, as
we shall show, serious steps within a bundle method do satisfy all the requirements.
Bundle methods provide an implementable alternative for functions whose proximal
point computation in (1.3) is difficult (or impossible). Before briefly reviewing the
basic bundling mechanism, we mention that even for smooth functions, computing
proximal points of some approximations of f has proven to be a useful technique
to exploit decomposable structures. This is the basis of a plethora of approaches,
including ADMM, as well as the prox-linear and prox-gradient methods considered
below.

Having at hand a family of convex model functions for which computing proximal
points is computationally implementable, in a bundle method [7, Part II] a candidate
iterate is defined as the proximal point of the model function at xj_;. If the candidate
satisfies a condition of sufficient descent for f, it is labeled a serious step x, and ( )
holds; otherwise the candidate is declared a null step. At a new iteration, the bundling
process improves the model function and/or adjusts the proximal parameter. By this
token, at serious steps the approximation of the proximal point is sufficiently good to
ensure that errors incurred when replacing f by its model satisfy (1.2¢).

For a convex f, a key ingredient in the convergence analysis of bundle methods
is to relate the model subgradient associated with the prox-computation to certain
e-subgradient of f. The nonconvex setting precludes the use of approximate subdiffer-
entials in this part of the analysis. For this reason, different ad-hoc approaches have
been proposed in the literature. Rather than singling out some specific approach,
below we develop a general convergence theory that is applicable to weakly convex
functions. The key is to complement the algorithmic pattern of (1.2) with a suitable
condition on the model functions used to approximate the proximal point of f. Our
proposal unifies the global convergence analysis of a wide variety of methods in the
literature, and also provides their linear rate of convergence.

5.1. Model function assumptions. Approximating the proximal point scheme
(1.3) involves defining a family of simpler (than f) model functions whose proxi-
mal point is computed at each iteration. Often, a trade-off must be found between
simplicity (fast prox-computation) and accuracy (increased chances of accepting the
candidate as a serious step, i.e., satisfying ( ).

Given z € R™, consider modelling the function f — f(x) by a convex function
pz : R — R. Note that f might be extended real-valued, while its model is finite
everywhere. The most synthetic model uses the linearization introduced in

Incidentally, computing the proximal point of this model amounts to one subgradient
iteration, with stepsize given by the inverse of the prox-parameter.

A cutting-plane model is richer, as it takes the maximum over several lineariza-
tions, generated with past iterates x; for i € B, the bundle:

PP = max (L gien() — f(2)} = max {—ei(e) + (glar), — o)) |
where we define e;(z) := f(x) — £y, g(z,)(T) .
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The term e;(x), called linearization error in the bundle terminology, measures the
quality of the linearization with respect to the reference point x. For convex f, the
error is nonnegative and the cutting-plane model satisfies o5 < f — f(z). But for
nonconvex f this inequality cannot be ensured. To address this problem, a common
approach is to downshift negative linearization errors, making them nonnegative. This
can be done in different ways; typically, the error term

e;(x) is replaced by e(z) := max { e;(x), d x; —x||*} for ¢ > 0 sufficiently large;
! 2

see [36, 28] and, more recently, [34, 32, 20, 39]. The approach in [21, 22, 23] differs from
those works, as it handles nonconvexity using redistributed models that, in addition
to downshifting, tilt the slopes, as in below.

In order to account for many alternative models in the literature, we shall assume
that the family of model functions satisfies the following property. In the sequel, we
shall show that it holds for many methods of interest.

DEFINITION 5.1 (Models 1QA ). A convex proper function ¢, : R™ — R is said
to model f at x with one-sided quadratical accuracy, if

(5.1) 30> 05y € R 0uy) < fly) — f(@) + Sy — ol

The property 1QA is a weakened form of the two-sided models considered in [13]
and [12]. Making the condition unilateral is crucial for including bundle methods in
the analysis (even when f is convex; see for an illustration).

The key role of convex 1QA models ¢, in convergence analyses is that they al-
low to transport subgradients, a mechanism that is not available for the nonconvex
function f directly. Also, 1QA models are quite general, as the condition (5.1) can
be satisfied both by cutting-plane-like models, where linearizations are oblivious to
possible further information about f, and also by models that use structure. When a
function has known structure, it is appealing to make the model inherit some of this
feature. We next provide some examples.

5.1.1. Models defined using linearizations. For weakly convex functions,
the simplest model 52 is clearly 1QA , taking ¢ = p, the weak convexity parameter,
but as already commented, the descent condition ( ) is not guaranteed for such a
model, as it gives just a subgradient iteration. By contrast, the cutting-plane model
with downshifted errors satisfies (5.1), as long as the iterates remain in a bounded
set. The case of the more sophisticated model from [21, 22, 23] is analyzed below.
Note that the model associated with the following result is equivalent to constructing

a cutting-plane model for the “convexified” function f(-) + g” |

PROPOSITION 5.2 (Redistributed models are 1QA ). Let f: R™ - R U {+oo} be
a weakly convex function with parameter p and let x € R™. Given bundle elements
Xy f(25),9(x;) € Of (x;) for i € B, consider the downshifted linearization errors and
tilted subgradients, respectively defined by

e/ () = (@) = lar gl @) + Sl —ail® and g!(x) = g(w:) = pla — ).

Then the associated model ©°(-) := max;ep {—e€f (z) + (¢7(x), - —x)} is 1QA.

Proof. The model is convex, as the maximum of affine functions.
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For any bundle element, weak convexity implies that, for all y,
p
F@) + 5lly = 2ill® = oy g (v) = Fla) + (9(wi),y — @3) -

Since e;(x) = f(x) — Ly, g(a,)(x), rearranging terms, we obtain that
p
Fy) = f(z) = —ei(2) + (glwi),y — ) = Slly = x:]*

Adding £ly — z||? to both sides yields

) = @)+ Sy ol = —ei(@) + (g@i)y = ) + £ (lly = all* — ly - i]1?)

As
P p
2y =l = lly = il12)= =Ll = il = {pla — i),y —a) |

it follows that
P
Fl) = f() + Zlly ol

> —(ei(x) + gllx - Ii||2> + <(9(1‘i) —plz — xi))vy - $>
= —ej(x) + (97 (2),y — x) .

Since each of the terms defining the model ¢? satisfies (5.1), so does the model. 0O

In the redistributed proximal bundle method [22] iterates are generated with a
model ¢ whose augmentation parameter p; is updated along the process, without
knowing p beforehand. It is shown in [21] that unless x;_ is critical, the procedure
generates a serious step after a finite number of null iterations for weakly convex
functions (f is uniformly prox-bounded in the language of that work). In [22] the
serious step sequence is shown to be globally convergent under the same assumptions.
Thanks to the theory developed in , based in , in addition
to global convergence, we can now prove that serious steps converge at the linear rate.
To the best of our knowledge, this is the first result on linear convergence rates for
nonconvex bundle methods.

5.1.2. Decomposable functions, proximal-descent and composite bun-
dle methods. Recalling , for decomposable functions f = h o ¢ the
ProxzDescent iterates [31, Algorithm 1] are defined by computing the proximal point
of the model that is created by replacing the smooth mapping ¢ with its Taylor ex-
pansion:

() = h(e(z) + V(@) (- — @) — f(2).

In [12], the associated method is called proz-linear. We next show that the model pi*
is 1QA under our assumptions (it should be noted that in [31] the outer function h
can be more general, specifically extended-valued prox-regular).

PROPOSITION 5.3 (Models for decomposable functions are 1QA ). Let h: R™ —
R be convex, finite-valued and positively homogeneous, and let ¢ : R® — R™ be con-
tinuously differentiable with its Jacobian being Lipschitz-continuous.

Then the model ¥ is 1QA.
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Proof. Under the stated assumptions, pX¥ is convex.

As h is convex positive homogeneous and finite, it is the support function of a
compact convex set D (that coincides with its subdifferential at 0), see [24, Chapter
V] or [44, Theorem 8.24]. That is

h(d) = rﬁrgagc(s d).

Moreover, let L be the Lipschitz constant of the Jacobian of c. It follows that,
for all y,z € R",

lle(y) — c(z) = Ve(@) " (y — 2)|| < glly — .
Hence,

he(@) + Ve(x) " (y — ) = hlc(z) + Ve(@) (y — z) = e(y) + ¢(y))
= max(s, c(z) + Ve(z)" (y — ) = e(y) + c(y))

< s, )+ gl o) + V() — ) )

< max(s, (y)) + max |[s|[le(z) + Ve(z) " (y — ) — c(y)]
maxgep ||s||L
< hfe(y)) + eIy, e,
After adding — f(x) on both sides, this is (5.1) with ¢ = maxsep ||s||L- d

When computing the proximal point of p}¥ is computationally expensive, an
alternative is to employ the composite proximal bundle method of [45]. The proposal
therein is to replace the outer function h by its cutting-plane model AP, thereby
computing the proximal point of the model

0e° () = hP(c(z) + Ve(z) " (- —2)) — f(2).
By convexity of h, ¢S5 < ¢¥. This model is also 1QA | by

5.1.3. Sum of functions and prox-gradient method. Given a C?-function
f1 with Lipschitz-continuous gradient and a convex function f5, the proximal gradient
method [4] minimizes f := f; + fo computing the proximal point of fo at z, —
txV f1(zy), tr > 0. This is equivalent to computing the proximal point of the model
that makes a Taylor linearization of f; and keeps fs:

OPE() = fi(x) +(Vfi(x),  —x) + f2(0) — f(z).

If f5 is convex, then so is ¢52. Also, the 1QA property for the model follows directly
from the Lipschitz-continuity of the gradient of f;.

5.1.4. Taylor-like models. The theory in [12] uses powerful tools in Variational
Analysis, including Ekeland’s variational principle, to prove convergence of a variety
of algorithmic schemes. Like in this work, the iterates are generated by computing a
proximal point of some model. An important difference, however, is [12, relation (1.4)],
which requires the model to approximate f not only uniformly but also bilaterally
(from above and from below). Specifically, with our notation, the theory presented in
[12] requires that

0> 0: Wy €RYJ(y) — fl@) — lly — all” < 0uly) < Fy) ~ (@) + Sy — o]
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While this condition holds in several situations described in [12] (related to Taylor-like
models), the two-sided quadratic requirement excludes cutting-plane models from the
analysis. The reason is that, even for a convex f, linearizations in the cutting-plane
model g, the key ingredient in a bundle algorithm, may deviate from below from
f in a non-polynomial manner. Figure 1 illustrates this phenomenon. Note that
according to (5.2b), a lower bound condition for the model actually does hold, but it
is related to the points x, and xp_; only. In particular, this requirement is weaker
than asking for global quadratic accuracy from below, such as Taylor-like models.

2.00 2.00
1.8
1.75 1.75
1.5
1.50 1.50 12 |
1.25 1.25 0.9 | /7
06 |
1.00 1.00 g, 1 1 /n 1 1 1 |

-0.4-0.20.0 0.2 0.4

Fi1G. 1. For the function f(z) =

e’ z >0

-0.4-0.20.0 0.2 0.4

11—z =<0

-0.4-0.20.0 0.2 0.4

plotted with a continuous dark line, three

cutting-plane models are shown in dashed lines. These are all 1QA models, because they remain un-
der the thick curved line in the top. By contrast, bilateral models with quadratic accuracy considered
in [12] must lie in the shaded region. Even for this simple convex function, none of the cutting-plane
models satisfies the two-sided condition in [12].

5.2. Convergence theory for model-based methods. Using 1QA models
¢, approximating f, we shall consider the following algorithmic scheme, that will be
shown to fit the framework of (1.2).

Starting from some xy € R™, for all £ > 1,

(5.2a)
(5.2b)

for Gx—1 € Opq,_, (z1),
for m € (0,1).

T = Tp—1 — tk—1Gr-1,
f(@r) = f(wp—1) < mepy,, (x),

In particular, the new iterate is obtained computing the proximal point of the
model, and the descent is measured using the value of the model at the new point.
This is one of the characteristics of bundle methods. Other methods can also be
recast in this manner. Below, we show that the sequences associated to the models
described in subsection 5.1.2 and subsection 5.1.3 are of descent, both in the original
sense of (1.2) and in the model-based sense of (5.2). Regarding the Taylor-like models
in subsection 5.1.4, the proposal in [12] does not consider a specific type of problem
to be tackled by a particular method. So, as long as we are able to generate a descent
sequence in the sense of (5.2), the results in Proposition 5.4 below would hold, since
Taylor-like models are bilateral, while 1QA models are one-sided (in this sense, more
general).

5.2.1. Decomposable functions and prox-descent method. Let f be a
decomposable function as in subsection 5.1.2, and consider the model ¢X¥ defined
therein. Let {zx} be a prox-descent sequence as in [31, Algorithm 1.

First, (5.2a) is a direct consequence of the definition of the next iterate in [31,
Algorithm 1] with stepsize ¢ := 1/u. In order to see this, it suffices to recall that the
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step d := x — xx_1 is characterized by the relations
Ve(xg_1) v+ id =0, wv€dh(c(rr_1)+ Ve(zgp_1)"d).
Setting Gr—1 := Ve(zk—1) v, it holds that
o —po1 =d =t 1Gr1, Gr_1 € Opq,_, (T1),

which is (5.2a). As for (5.2h), it is the same as the acceptance criterion for the step
in [31, Algorithm 1] with m = o.

Note also that it is proven in [31, Theorem 5.4] that [31, Algorithm 1] generates
stepsizes t; that are bounded away from zero. Thus, the algorithm satisfies the
assumptions in below.

5.2.2. Sum of functions and prox-gradient method. Let f = f; + fo be
as in . The proximal gradient method conforms to the algorithmic
pattern of (1.2) if tyin < tp < 1/Ly,, where Ly is the Lipschitz constant of V fi.
Indeed, (1.2a) with e,_1 = 0 and a = Ly, /2 is a direct consequence of the decent
properties of this algorithm; see, e.g., [5, Proposition 6.3.2]. As for ( ), we know
that z; minimizes

1
P8 (. .= 2
%(Hztkll zp—1|°.

Hence, there is g2 ; € Of2(xy) such that
1
0=Vfi(zp_1)+ g2k + E(xk —Tp_1)

= Vfi(wn) + gk + Vi (@) — Vi) + %m —zy).

Defining zj, := xj, we have gi := V fi(zr) + g2, € Of () and

lgal = le(xk_ﬂ - V@) + - )

< (Lf1 + 1/tmin)”xk - xk—l”-
This is ( ) with b = Ly, 4+ 1/tmin. Finally, (1.2¢) holds trivially.

5.2.3. Convergence of sequences generated by model-based methods.
To continue with our analysis, we need to exhibit the errors €5 and the theoretical
sequence {zj} from (1.2) that are associated with the bundle-like scheme (5.2). We
start by transporting subgradients of convex models of nonconvex functions to the
convex function obtained from f, by weak convexity. This relation and
below yield zi as a perturbation of the iterate xy, as desired.

PROPOSITION 5.4 (Transportation of subgradients and the validity of (1.2a)).
Consider the minimization of a proper p—weakly convex function f: R™ — RU{+o0}
applying the model-based proximal scheme in (5.2) with models @, that are 1QA with
parameter ¢ < p in , and let G, € 0pg, (Tr41) as in (5.2a). The
following holds for all k.

(i) The model aggregate error at xy,

Ey = —t||Gil]* = 0o, (Th41)
satisfies By > 0.
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(ii) If for all z € R™, F,(-) denotes the (convex) function f(-)+ 5||-—z|?, then a
subgradient Gy, in ( ) can be transported to be the convexr Ey—subgradient
of Fy, at xy:

Gk S 8Ekak (xk)

Suppose, in addition, that inf f > —oo, and the proximal stepsizes are bounded away
from zero: tr, > tymin > 0. Then,

(i11) both {Gy},{Ek} converge to 0 as k — oo, and

(iv) condition (5.2b) is equivalent to (1.2a) written with a = m/tmin and e =

te1Fr—1.

Proof. Since the models are 1QA, taking x = y = x in (5.1) implies that
vz, (zr) < 0. By the convexity of the model and the iterate definition in (5.2a),
it holds that

0> @zkfl(xk—l)
> Qo (@) + (Gr—1, Th—1 — Tp)
= apy (@) + to1 |Groa | = —Bi-1
and Ej > 0 for all k, as stated in item (i).
To show item (ii), because the model is 1QA , we have that
p
Para (@) < f(2) = fl@r) + Sllo =z |
= Fﬂ?k—l(x) - f(xk—l) :
Combining now the model convexity with (i) yields

f(@r—1) + @op_, (wr) + (Gr—1, 2 — x1)
f@rp—1) + (Grp—1, 0 — Tp—1)

+0z_y () + (Gr—1,Tp—1 — Tk)

Fop (@r-1) + (Gr—1, 2 —xp—1) — Ep_1.

Fﬂ?k—l(x) > f(xkfl) + @wkfl(x)

v

As the last relation is (ii) written with k replaced by k — 1, the desired result follows.

To show item (iii), note that the descent condition (5.2b), written using the
aggregate gradient and error definitions, gives
(5.3) m(By—1 + 1| Gea|?) < flan—1) — fax) -

As {f(xg)} is non-increasing and f is bounded below, this sequence is convergent.
Hence, f(xg—1) — f(zx) — 0 as k — co. Then from (5.3) and tx > tyin > 0, it follows
that F, — 0 and G, — 0.

Finally, rewriting the descent condition ( ) using the aggregate gradient and
error definitions yields (iv), as

F@r) + = (llax = zpoa |+ tem1 Bxr) < Flznor)-
te_1 O
Proposition shows that for weakly convex functions Clarke’s and proximal
subgradients are equivalent concepts. As noted by one reviewer, the transportation
result in item (ii) of Proposition yields an e-proximal subdifferential for f at x,
satisfying satisfying for all y the inequality

W) f@)+ gy =)+ Glly — x> —<.
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To complete formulating (5.2) in the format of the algorithmic pattern in (1.2),
we show the validity of ( ) and (1.2¢). This is achieved applying the error bound
inequality in , noting that it involves the exact (Clarke) subgradients of
f. We have just shown that the transported model subgradient is an Fj—subgradient
of the auxiliary convex function Fy, at xix. The connection with the original function
f is done by means of the following result, reproduced from [43].

THEOREM 5.5 (Brgndsted-Rockafellar’s like relation, Theorem 2 in [43] ). Let
F be a proper lower semicontinuous convez function on R™. Suppose that E > 0 and
that G € OgF(x). Then, for each v > 0, there is a unique y = y(y) such that

1
G—;yeaF(xﬂLvy), lyll < VE.

By the above result, any e—subgradient of a convex function can be perturbed to
obtain an exact subgradient of the same function, at a perturbed point. Since weak
convexity gives an explicit relation between f and the convex function F},, we shall be
able to relate the respective subgradients, and apply the subdifferential error bound
for f using the perturbed points.

LEMMA 5.6 (Casting (5.2) in the format of (1.2)). Under the assumptions of

, suppose f satisfies the subdifferential error bound of
and the sequence of stepsizes {ti} in ( ) is bounded below by tymin > 0. Then
there exists a theoretical sequence {zx} such that all conditions in (1.2) hold, with

sz — .%k” § \/gEk,

Proof. The validity of (1.2a) was already shown in (iv).

To derive the expression for zj, apply written with G := G} €
Op, Fy, (z1) for the convex function F := F, , E := E}, taking v := V¢ > 0, where
¢ > 0 is the constant of the subdifferential error bound in . It follows

that there exists a unique gy such that

1
lyell < VEe and Gy — Uk € OFs, (xk + \/Zyk) - Bf(:rk + ﬁyk) + oV ys

by the definition of Fj, . Therefore, letting
14 pt

VI

Zk_1:=Xk_1+ \/Zyk,l it holds that gx_1 := Gr_1 — ( ) Yp—1 € Of (z—1) .

To show that condition (1.2¢) holds, first notice that

1
Wﬂqu — Zp—1|l = |yp—1]| < \/ﬂ

Since Ey, — 0 by (iil), this means that z;_1 —2,—1 — 0. The remaining

condition g, — 0 follows from the expression e;_1 = tp_1Er_1 in (iv),

combined with the boundedness assumption on t, using once more that E — 0.
To show that the sequence {g; € 0f(zx—1)} satisfies condition (1.2h), notice that

1+pl
lgsall < |Grall+ (%) o1
1+pf
= i”l’k — x| + (%) %sz—l — 1
< il =l + () o — 2l

Hence, (1.2b) holds with b := max{1/tmin, (1 + p€)/¢} . d
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Thanks to , we are now in position of applying to show
that the general scheme based on models considered in this section converges, with a
rate that is R-linear for the iterates and @-linear for the functional values.

THEOREM 5.7 (Global convergence of (5.2) and local linear rate). Let f: R™ —
R U {+o0} be a weakly convex function, such that inf f > —oco. Suppose, in addition,
that f satisfies the proper separation of isocost surfaces ( ) and the sub-
differential error bound ( ), and that the sequence of stepsizes {tx} in
( ) is bounded below by tmin > 0. The following holds for the model-based proxi-
mal scheme in (5.2), as long as the models , therein are 1QA ( with
parameter ¢ < p).

(i) {f(zr)} monotonically converges to some critical value f*, such that the se-

quence of functional errors {vy = f(xg) — f*} converges to 0 with Q-linear
rate:

dq € (0,1) : vp < qui—1 for all sufficiently large k.

(i) The sequence of iterates {xy} converges to a critical point x. of f with R-
linear rate:

Jg€(0,1) and ¢ > 0: ||z —z™|| < Cﬁk for all sufficiently large k.

Proof. To see item (i), we apply . First, from the definition of the
aggregate error Fj and (5.3), it follows that
1
By < —(vk—1— ),
m

1
|Gr-1]? < —— (Vk—1 — k) -

The first inequality combined with the definition of z; imply that
9 L
lzp—1 — 2p—1]|" < LlEp_1 < E(vkq —vg).

Moreover, combining the last inequalities with Gr_1 € 0p,_, Fy,_, (xf—1), the defini-
tion of 2z, and the fact that t; is bounded away from 0, we obtain that

flrp—1) — flzr=1) < g||2k—1 —xp1||? = (Gr-1, 261 — Tp—1) + E—1

14 l 1
< (vt = 0) + Gl — (01 = 00) + — (v — i)
1 14 14
< m (/; + T + 1) (Vk—1 — Vg) .
Since (4.7) and (4.8) in hold for

1
01=<p€+,/ ! +1> and  Cp =~
m \ 2 tmin m

items (i) and (ii) follow. d
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6. The theory applied to constrained smooth optimization. Another ap-
plication of our unified analysis is the feasible descent framework of [33] (see also [47]).
Consider the constrained optimization problem (3.1), where f : R™ — R is continu-
ously differentiable with Lipschitz-continuous gradient on the nonempty closed convex
set X C R™.

The work [33] considers iterative sequences {xy} satisfying

(6.1a) rp = Px(¥k—1 — th-1Vf(Tr-1) +€x-1), th-1>tmin >0,
(6.1b) lex—1ll < allzp — @, a€(0,1).

This setting is quite broad. It includes, of course, the basic gradient projection
method, taking e, = 0 for all k. But, depending on the form of the mapping e
that gives ex_1 in (1.2), it includes many other algorithms for solving problem (3.1).
Some examples are the extragradient method, the proximal point method, coordinate
descent, and several splitting techniques; see [33] and references therein.

We next show that our general analysis of (1.2) is applicable to methods given by
(6.1) as well. We consider (1.2) for the function (f+ix) and take, for allk > 1, &, =0
and x, = zj (note that (1.2¢) is then automatic). Under the stated assumptions, f+ix
is weakly convex; see . We next need to show that (6.1) implies (1.2a)
and ( ) for f+ix. Once this is done, we apply for the weakly convex
function f +ix.

The proof below that the sequence {zy} from (6.1) satisfies the descent condition
(1.2a) for f+ix is essentially a similar argument as in [33] for f, because by (6.1a) it
holds that z; € X for all k& (and so (f+ix)(xr) = f(zx)). We include this part of the
proof here mostly for completeness. Note, however, that the subgradients of f and of
(f +ix) are not the same. Also, our rate of convergence analysis is different, as our

results are based on the subdifferential error bound ( ), while [33] uses
the projection error bound ( ). Therefore, our results are new when the
error bounds are different (see the comments in regarding the comparisons

of the error bounds in question).

PROPOSITION 6.1 (The feasible descent framework (6.1) fits (1.2)). Let f : R™ —
R be a continuously differentiable function with L— Lipschitz continuous gradient on
the nonempty closed conver set X C R™. Then any sequence {xy} satisfying (6.1) is

a sequence of descent for the function f +1ix in the sense of (1.2). More specifically,
(i) For all k,

l-a L

flze) + (t* - 2) 2k — zp-al® < flze-1),
whenever t, < t* < 2(1 —«)/L. ILe., ( ) holds for f +ix (recall that
TR € X)

(i) For all k, there exists up, € Nx (k) such that

950+l < (420

+ L> lzk — 21,

i.e., holds for f +ix.
(1.2b)

Proof. From ( ) and the characterization of the projection operator, for all
y € X it holds that

(@p—1 —tg—1Vf(Tp—1) + €x—1 — 2,y —zx) < 0.
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Taking y = x;_1 in this inequality and rearranging terms, we obtain that
@r—1 — 2&|® — the1 (Vf (T—1), Th—1 — 21) < {€h—1, 2Tk — Th—1) -
Using the Cauchy-Schwarz inequality and ( ) on the right-hand side, it holds that
k-1 — 2pl|* =t 1 (Vf(2h-1), Tp-1 — 1) < al|mp_1 — 2.

It follows that 1
a—
(Vf(@p—1), 26 —2p—1) < P zk—1 — zk|?.

Since the function is differentiable with Lipschitz-continuous gradient with con-
stant L, by [26, Lemma A.11] we have that

Flow) = Fwer) <V F@rr)me — z) + 5 ok — 2o P

Combining the last two inequalities above gives

+ LTh—1— T
th 1 k—1 k )

Flaw) — Flana) < (

from which item (i) follows.
We next prove item (ii), i.e., condition ( ) for f+ix. Again, from (6.1a) and
the characterization of the projection operator, there exists v € Nx (z)) such that

Tp—1 =t 1 Vf(Th—1) +ex—1 — T = k.
Defining up = vi/tg—1 € Nx (1), we have that
th—1ug = Tp—1 — Tp + ep—1 — 1V f(Tk-1),
and
tho1(Vf(zr) +up) = 2p—1 — 2 +ex—1 + 1 (Vf(2r) = V(2r-1)).
Define wy, = V f(xy) + up € O(f +ix)(xr). We then obtain that

1
lwell < 2= llwer = 2k + x|l + 1V (2e) = V(@)

1+«
( 7 +L) ||1‘k —xk_lH,

min

IN

where the triangle inequality, ( ), and the Lipschitz-continuity of the gradient of
f were used. The proof is complete. 0

Due to and , We are now in position to apply
our unified analysis for weakly convex functions to obtain estimates for the rate of
convergence in (6.1).

THEOREM 6.2 (Linear rate of convergence of (6.1)). Under the assumptions of
, if [ is bounded from below, and the subdifferential error bound (
) and the proper separation of isocost surfaces condition ( )
hold, then for the iterates {xx} satisfying (6.1) it holds that:
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(i) There exists some critical value f* € R of f such that f(xr) — f*. For
v = f(xk) — f*, there exists ¢ € (0,1) such that for all sufficiently large k,

U < QU1 -

(i) {xr} converges R-linearly to a critical point x* of f with f(x*) = f*. More
specifically, there exists ¢ > 0 such that for all k sufficiently large,

g — 2*|| < cv/g"

Proof. By , [+ix is a weakly convex function. By ,
any sequence {xy} satisfying (6.1) conforms to (1.2) and all the conditions of
, with xp, = 2k, e, = 0 for all k, and g € O(f + ix)(xk). Then the assertions
follow from , with

2
1
¢ = M M— 2t (tmi—:iL) B v/ Vo
- ) ~ 1-—a L ) - . .
R N e N N

Note that while the scheme (6.1) is explicit in our terminology, as it uses the
gradient of f at xg_1, it is cast in our framework (1.2) as being implicit, as the
subgradient of f 4 ix is taken therein at xj.
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