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Abstract
We consider the optimal management of hydropower generated by a cascade of three interconnected

reservoirs owned by different agents. In this setting, water availability at the downhill reservoirs depends
on decisions taken by the agents upstream. This creates an opportunity for the hydroplant at the top
to withhold water and take advantage of situations with higher selling prices, which makes the overall
decisions of the agents deviate from what can be considered best for the cascade as whole. In order to
mitigate the market power of the hydroplant uphill, we propose a mechanism to enforce some collabora-
tive behavior among the agents. This is achieved by agents transferring upstream fractions of their profit
in exchange for water released from the top. The corresponding mathematical models are trilevel deter-
ministic and trilevel stochastic linear programming problems, with uncertainty in prices and streamflows
(exogenous inflows). For the stochastic variants, analyzed both in two- and multi-stage formulations,
we propose new solution methods, extending to the trilevel nested setting the well-known L-Shaped and
Stochastic Dual Dynamic Programming methods. A successful implementation of the later depends on
certain floating cuts, that represent symbolically Benders-like linearizations. Convergence properties are
discussed for some of the procedures. Numerical experiments confirm the interest of the approach, be-
cause with the proposed mechanism the top owner as well as the downhill hydroplants earn more money
than when acting in an individualistic manner.

Keywords Cascaded hydroplants, Trilevel Optimization, Nested Multistage Stochastic Problems

1 Introduction
Hydroelectricity is the most widely used renewable energy worldwide (60% in 2020, according to [IRE20]).
In countries like Brazil, Canada, China and Norway hydrogeneration largely dominates the power mix. In
France, hydropower is only second to nuclear energy, roughly representing 10% of the total generation.
The value of hydropower for energy systems relies on several important features of the technology. To
start with, hydroelectricity is renewable and storable, as potential power can be stored in the form of
water in the reservoirs. Storage is one of the biggest challenges in the transition to sustainable electricity
systems, and reservoirs offer volumes in storage capacity still unthinkable, at this time, in terms of batteries.
According to the estimations [Int18], reservoirs represented 94% of the installed global energy storage
capacity worldwide in 2018. In addition, triggering hydraulic generation is fast: it suffices to release water
from the uphill reservoirs for the whole cascade to start generating.

All these properties clearly make hydroelectricity very attractive and, more importantly, extremely use-
ful to counter some downsides of systems dealing with both flexible generation and flexible consumption,
as customary nowadays. Hydropower is a crucial tool for network operators to succeed compensating
uncertainty and intermittency of renewable energy sources with fluctuations of prices and demand, in a
manner that guarantees the stability and safety of the electricity system.
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The issue of optimal management of hydro-dominated power systems has been vastly studied, consider-
ing short, mid, and long planning times; see [GMH10]. How to properly manage a cascaded hydrosystem,
however, still remains a challenge. A large portion of the literature focuses on a price-taker situation in
which hydroplant owners cannot influence spot prices; see, for example, the extensive review [TD17]. For
a cascade of hydroplants belonging to different owners, we also adopt a price-taking setting (prices are
given by scenarios, see Figure 5). Our contribution is to propose to manage the cascade in a manner that
mitigates market power due to water withheld upstream. For a cascade like the one with three hydroplants
represented in Figure 1, water availability of the middle and bottom reservoirs highly depends on decisions
taken at the levels upstream. If the top hydroplant plays opportunistically and withholds water, downstream
owners will earn less profit. In our numerical experiments we observed that an individualistic management
of the cascade can reach extremes in which, for the top hydroplant to increase profit in 1%, the other lev-
els must lose up to 10% of their profit. The assessment and mitigation of market power in decentralized
hydro-thermal systems is discussed in [KLBP01]. A formulation solving an equilibrium problem with equi-
librium constraints was proposed in [CA13]. Recently, a duopoly formulation of competing hydroplants in
the same cascade is analyzed in [MM20]. While market power is clearly an issue for the deployment of
decentralized hydro systems, proposals of mitigation strategies are rarely found in the literature, with the
exception of the work on the Brazilian wholesale water market [Kel99], a market which, however, has not
been implemented in practice.

The mechanism for market power mitigation we investigate in this work is informally described by the
left-hand side arrows in Figure 1. Formally, we deal with a trilevel optimization problem with decisions
intertwined in a complex pattern. For the optimization problem at a given level, variables of the uphill prob-
lem appear in right-hand side of the constraints, and downhill variables appear in the objective functions;
see, for instance, the deterministic formulation in (2) below. While the former dependence is a natural
consequence of the cascade, because water released upstream increases the reservoir volume downhill, the
latter is due to the mitigation mechanism, with downhill levels paying to the upstream plants part of the
profit they have that exceeds the individualistic profits.
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Figure 1: Water released uphill changes the right-hand side (RHS) in the water balance constraints of
the power plant that is downhill. When water is withheld at some level, the profit of utilities that are
downstream is diminished because they generate less power. To encourage water releases, downhill power
plants transfer a fraction of their profit to utilities that are upstream. In the diagram, the utility in the top
receives percentages τ2�1 and τ3�1 of the profit made by hydroplants in the middle and in the bottom,
respectively. The latter also pays a fraction τ3�2 of its profit to the middle power plant, that is immediately
upstream. The arrows show how decisions are intertwined in the trilevel setting. Let xl denote the decision
taken when optimizing the generation of utility l. On the left, transferring profit upwards (left red arrows)
goes from level l+1 to level l: the lth objective function includes terms involving downhill decisions xl+1

(for l = 1, the term includes both x2 and x3). On the right, the terms RHS(xl) (right blue arrows) change
the feasible set of the (l + 1)th problem, and the dependence is reversed, going from level l to level l + 1.
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Figure 1 considers three independent hydrogenerators (top, middle, bottom) optimizing their profit ac-
cording to some mathematical model. Their decisions are summarized by the generated power, a function
of the reservoir volume, which in turns depends on the water released upstream. In our model, all relations
are assumed to be linear, including the so-called efficiency function transforming water into energy (see
[Ca+09; CaPM10] for nonlinear efficiency functions). Each generator aims at maximizing the profit result-
ing from selling the generated power at prices that can be random, while satisfying constraints, including
bounds on the volumes. We consider a single objective function, for multi-objective formulations the
reader is referred to [LQ18; CLY18]. Since streamflows to each reservoir are random, and prices increase
if demand is high or if reservoir volumes are low, generators sometimes store water even in wet periods so
that in dry periods, with higher prices, the released water generates power that yields more gains. In our
proposal, agents in the middle and bottom levels transfer a fraction of their profit uphill, as an incentive to
release water downstream. By this sharing mechanism, the profits of all the agents can only increase, when
compared to the individualistic setting (the transfer is a fraction of what exceeds the individualistic profit).
The numerical results reported in Figures 2 and 7 confirm that the top hydroplant as well as both downhill
owners earn more money with our approach.

In Brazil, approximately 200 hydraulic utilities, distributed along 12 major river basins, belong to about
60 different companies; we refer to the map www.ons.org.br/Mapas/Hidroel%C3%A9tricas%
202022-2026%20Jan%202022.pdf for full details.

The mathematical optimization problem has three levels of nested stochastic linear programs, for which
we discuss variants with uncertainty unveiling in two-stage and multi-stage manners. All variables are con-
tinuous, to ensure convergence of the solution procedure described in Algorithm 1 below, where certain
bilevel subproblems are reformulated by means of primal-dual relations that are necessary and sufficient
optimality conditions in the considered setting. The different models and solution methods are given in
Sections 2, 3, and 4. Section 2 presents the deterministic formulation of the trilevel model and introduces
the proposed mechanism of transfer of profits. The solution approach, which defines cuts for the value
functions of the successive levels as in a Benders’ decomposition, is assessed on a cascade with three reser-
voirs like in Figure 1. We employ a simple, yet realistic, system that confirms the interest of transferring
profit as a device to increase the gains of the cascade as a whole. The stochastic case is addressed in the
next two sections. We first study, in Section 3, the individualistic model, which for the trilevel optimization
problem amounts to having dependencies only on the feasible sets (in Figure 1 there are no arrows on the
left, going upwards). We extend the L-shaped method [VW69] to a “cascaded” variant that properly deals
with a sequence of three nested two-stage stochastic linear programs. To solve the more complex multi-
stage model (still the individualistic formulation) we introduce a nested variant of the Stochastic Dual
Dynamic Programming (SDDP) method [PP91] that deals simultaneously with the three levels. Section 3
ends with numerical results comparing the output of the individualistic model with a joint management of
the cascade, both modeled in a multi-stage setting. The final Section 4 deals with the stochastic trilevel
model with profit sharing. The resulting “cascaded” SDDP method is rather involved, its successful imple-
mentation relies on a new concept, that we named floating cut, described in Section 4.1. A floating cut is a
symbolic representation of the Benders-like linearizations employed by the SDDP method. By this token,
information is suitably transported between levels and the important properties of lower bounding and con-
sistency are preserved throughout the iterative process. Regarding convergence, the methodology is shown
in Theorem 2.1 to have finite termination in the deterministic case and also in the individualistic two-stage
variant. For the remaining cases, our approach provides a reasonable heuristic whose good performance is
confirmed by the numerical experiments carried on for this work. As an additional check of goodness, in
the benchmark we compare in Subsection 4.3 the deterministic setting with the stochastic one, verifying
that the output is consistent, with the respective results being similar to some extent.

2 Deterministic Trilevel Problem
It is convenient to cast the trilevel problem in an abstract format, that is particularized later on for the
application. In order to gradually introduce the notation and setting, we consider first that there is no
uncertainty and give the deterministic mathematical formulation, as well as a solution procedure for the
resulting trilevel problem.
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2.1 Problem Formulation
When considered independently, the optimization problem at level l is a linear programming problem of
the form

min
xl≥0

f>l xl s.t. Alxl = al ,

where the decision variable xl has components such as turbined outflows and spillage, the lth reservoir
volume, and the power generation. Water balance and capacity constraints are abstractly described by
the matrix Al and the vector al, of suitable dimensions. For the actual formulation see (13). Finally, the
negative of the vector fl in the objective function represents the unit profit made at level l.

To formalize the modifications due to the cascaded setting and formulate the trilevel problem, we start
with the bottom level, l = 3. The effect that a release of water uphill (represented by x2) has on the
optimization problem downhill is measured by the following value function

v3(x2) := min
x3≥0

f>3 x3 s.t. A3x3 = a3 −B3x2 .

As illustrated by the right arrows in Figure 1, changing a3 to a3 − B3x2 relates levels l − 1 and l through
the right-hand side term (RHS).

Let us now define the problem for l = 2. The mitigation strategy proposes to transfer fractions
(τ3�2, τ3�1) of the profit of generator of level 3 upstream, to levels 2 and 1, respectively. Regarding our
level of interest, l = 2, this establishes the link in the objective function, relating levels l and l + 1, rep-
resented by the left arrows in Figure 1. Specifically, because the term −τ3�2v3(x2) represents a gain, it
enters in the optimization problem with a negative sign. Accordingly, the modified objective function for
level 2 is the cost

f>2 x2 + τ3�2v3(x2)

and, hence, at level l = 2 the value function of interest is

v3�2
2 (x1) := min

x2≥0
f>2 x2 + τ3�2v3(x2) s.t. A2x2 = a2 −B2x1 .

A similar reasoning yields the objective function at the top level (l = 1):

f>1 x1 + τ2�1v
3�2
2 (x1) + τ3�1v3(x2) , (1)

where the decision variable x2 is the decision that would be taken at l = 2 after x1 is taken at l = 1.
In this nested optimization problem, the downhill value function v3(·) is polyhedral and convex on x2

and the function v3�2
2 (·) is convex on x1 since τ3�2 ≥ 0, see [HUL93, Cor.IV.2.4.3]. Then, the function

(1) is convex as a sum of convex functions whenever τ2�1, τ3�1 ≥ 0. Non-convexity arises in the problem
because of the nexted formulation: the value of x2 that enters (1) has to solve the optimization problem
at level 2, as is made explicit in the formulation below by the notation xC2. For clarity, note that the value
function v3�2

2 (·) is a function of τ3�2 as well as all the other problem data, which represents the costs and
constraints. To make the notation more readable, we do not put in evidence these depencies, since we just
exploit the properties of the value functions with respect to the decisions x2 and x3.

Summing up, in an optimistic setting, the trilevel problem amounts to finding

xC = (xC1, x
C
2, x

C
3) such that xC1 solves

{
min
x1≥0

f>1 x1 + τ2�1v
3�2
2 (x1) + τ3�1v3(x

C
2)

s.t. A1x1 = a1

xC2 solves

{
min
x2≥0

f>2 x2 + τ3�2v3(x2)

s.t. A2x2 = a2 −B2x
C
1

xC3 solves

{
min
x3≥0

f>3 x3

s.t. A3x3 = a3 −B3x
C
2 .

(2)
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In our numerical experiments, we compare the output xC of (2) with two other policies. First, a socially
optimal policy that minimizes the aggregate total cost for the society, while being feasible for all agents:

find xS = (xS1, x
S
2, x

S
3) solving


min

(x1,x2,x3)≥0
f>1 x1 + f>2 x2 + f>3 x3

s.t. A1x1 = a1
A2x2 = a2 −B2x1
A3x3 = a3 −B3x2 .

(3)

Second, individualistic policies that are optimally taken in a sequential manner along the cascade:

find xI = (xI1, x
I
2, x

I
3) solving{

min
x1≥0

f>1 x1

s.t. A1x1 = a1

{
min
x2≥0

f>2 x2

s.t. A2x2 = a2 −B2x
I
1

{
min
x3≥0

f>3 x3

s.t. A3x3 = a3 −B3x
I
2 .

(4)
Since the RHS dependency may result in empty feasible sets, the policies might not be well defined in

some configurations. We assume this is not the case, because feasibility can be ensured for our application
by introducing slack variables representing energy deficits.

Notice that the individualistic point (xI1, x
I
2, x

I
3) is feasible for the social problem (3). As a result,

vS := f>1 x
S
1 + f>2 x

S
2 + f>3 x

S
3 ≤ vI := f>1 x

I
1 + f>2 x

I
2 + f>3 x

I
3 . (5)

Policy makers are often concerned with the “social utility” of an energy market. The gap vI − vS ≥ 0
gives a measure of the social dis-utility of the individualistic policy. We shall see that with our mechanism
(2), of profit sharing, the social dis-utility of the market is decreased on the experiments we perform. Note
that taking τ2�1 = τ3�1 = τ3�2 = 1 is equivalent to transfering all the profits to level l = 1, which makes
l = 1 select the socially optimal policy, since l = 1 receives all the profits and the socially optimal policy
produces the largest profits. On the other hand, taking τ2�1 = τ3�1 = τ3�2 = 0 induces the individualistic
behavior. Therefore, if the social dis-utility behaves well with respect to τ2�1, τ3�1 and τ3�2, we expect
that there are values for τ2�1, τ3�1, τ3�2 ∈ (0, 1) which induce a social dis-utility better than vI − vS.
Nonetheless, we do not have a proof that the social dis-utility is a continuous function of τ2�1, τ3�1 and
τ3�2, which is the ideal situation.

Naturally, we are interested in selecting fair values for τ2�1, τ3�1 and τ3�2. For such, we must have in
mind that the socially optimal policy is the one that produces the largest profits, due to global coordination
among the players. Transfering all profits to level 1 replicates the socially optimal profits, but clearly fails
to improve the individualistic profits. Therefore, feasible values for τ2�1, τ3�1, τ3�2 should at least improve
the individualistic profits. On the other hand, profits should be at least enough to pay the costs of running
the hydro plant. These and other real-life considerations should determine “fair” values for τ2�1, τ3�1 and
τ3�2.

2.2 Solution Procedure
To solve the trilevel problem (2) algorithmically we exploit the convexity of the value functions v3�2

2 and v3
in an iterative form. Letting k represent the current iteration, the respective cutting-plane approximations,
denoted by vk2 and vk3 , are computed in a straightforward way. More precisely, for any given xk2 , when
solving the linear programming problem

v3(x
k
2) = min

x3≥0
f>3 x3 s.t. A3x3 = a3 −B3x

k
2 (6)

the equality constraints vector of multipliers λk3 is available. Convexity ensures the following inequality
for the associated linearization:

`k3(x2) := v3(x
k
2) + (λk3)

>B3(x2 − xk2) ≤ v3(x2) .
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The cutting-plane approximation for v3 is then

vk3 (x2) := max
j=1,...,k

`j3(x2) ≤ v3(x2) .

Having this piecewise affine function, an analogous mechanism can be put in place for defining a cutting-
plane model function that bounds v3�2

2 from below. Since at level l = 2 the objective function involves the
(unknown) value function v3, linearizations are computed for an approximate function vk2 , obtained when
replacing v3 by its cutting-plane model vk3 :

vk2 (x1) := min
r2,x2≥0

f>2 x2 + τ3�2r2 s.t. A2x2 = a2 −B2x1 , r2 ≥ `j3(x2) , j = 1, . . . , k . (7)

Solving this linear program with x1 = xk1 gives a vector of multipliers λk2 for the equality constraints and,
therefore,

`k2(x1) := vk2 (x
k
1) + (λk2)

>B2(x1 − xk1) ≤ vk2 (x1) .
The linearization also bounds the function v3�2

2 from below, because, by construction, the additional scalar
variable in (7) satisfies r2 = vk3 (x2) ≤ v3(x2) , which implies that vk2 (x1) ≤ v3�2

2 (x1) for all x1, as
claimed. Notwithstanding, it is important to keep in mind that the objective function in (7) is different from
the one written for l = 2 in the trilevel problem (2). Specifically, Algorithm 1 replaces

f>2 x2 + τ3�2v3(x2) from (2) by f>2 x2 + τ3�2v
k
3 (x2) , (8)

using the function in (7). Such a replacement, necessary for the numerical implementation, has an impact
on the convergence properties of the procedure; see Theorem 2.1 and the nearby comments.

In our procedure, the cutting-plane estimations of the value functions approximate the trilevel setting
(2) by a sequence of bilevel linear problems

Given vk2 , v
k
3 ,find (xk1 , x

k
2) such that xk1 solves

{
min
x1≥0

f>1 x1 + τ2�1v
k
2 (x1) + τ3�1v

k
3 (x

k
2)

s.t. A1x1 = a1

xk2 solves

{
min
x2≥0

f>2 x2 + τ3�2v
k
3 (x2)

s.t. A2x2 = a2 −B2x
k
1 .

(9)

These bilevel linear problems are solved as follows. First, the lower level problem is replaced by
its equivalent optimality conditions, involving primal and dual feasibility and strong duality. The latter
equality constraint introduces bilinear terms that are reformulated along the lines of McCormick cuts,
using binary variables and a “big M” approach, i.e., choosing large constants that can make the problem
ill-conditioned, due to bad scaling [Dem02, Ch. 5]. The resulting reformulation is a mixed integer linear
programming problem. It is well known that success in the reformulation is driven by a sound choice of
the aforementioned large constants.

Algorithm 1 gives the resulting iterative process in full detail.
Some comments regarding the different steps in Algorithm 1 are in order. Since we are dealing with

polyhedral value functions, they are defined by a finite number of cutting-planes; in particular, by a finite
number of subgradient values. The latter are the optimal Lagrange multipliers associated to the equality
constraints in the linear programs (6) and (7). While the primal-dual solutions of these problems may
not be unique in general, many (if not most) LP solvers compute specific solutions, which makes their
selection finite. Moreover, these solutions correspond precisely to the cutting-planes whose maximum
defines the polyhedral value functions exactly. For example, if the LP solver employed by Algorithm 1
computes basic optimal solutions (vertices), as the simplex method does, the number of optimal multipliers
that the solver can return for (6) and (7) can only be finite; see, e.g., [OSS11, Prop. 4.1] (somewhat related
considerations in a different context can also be found in [DSS09, p. 287]). Interior point methods which
compute certain (unique) centered duals, see [ADCM91], also can return only a finite number of optimal
solutions. The property of the LP solver producing a finite number of solutions, ensures finite termination
of our algorithm; this can be seen, for example, from the argument in [Ber95, Prop. 6.3.2] for the cutting-
plane method applied to a max-function.
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Algorithm 1 SOLUTION PROCEDURE FOR TRILEVEL PROBLEM WITH SHARING MECHANISM.
DETERMINISTIC CASE

Initialization. Take ε ≥ 0 and a sufficiently large constant M > 0.
Set k = 1, vk2 (·) ≡ −M and vk3 (·) ≡ −M .
Iterates for levels 1 and 2. Compute (xk1 , x

k
2) solving the bilevel linear problem (9).

Iterate and linearization for level 3. Compute the primal-dual solution (xk3 , λ
k
3) to the linear programming

problem (6) and the linearization

`k+1
3 (x2) = v3(x

k
2) + (λk

3)
>B3(x2 − xk2) . (10)

Let vk+1
3 (x2) = max{vk3 (x2), `k+1

3 (x2)} .
Linearization for level 2. Compute the primal-dual solution (x̂k2 , r̂

k
2 , λ

k
2) to the linear programming problem

vk+1
2 (xk1) := min

r2,x2≥0
f>2 x2 + τ3�2r2 s.t. A2x2 = a2 −B2x

k
1 , r2 ≥ `j3(x2) , j = 1, . . . , k + 1 .

and `k+1
2 (x1) = vk+1

2 (xk1) + (λk
2)
>B2(x1 − xk1) . Let vk+1

2 (x1) = max{vk2 (x1), `k+1
2 (x1)} .

Stopping test and loop. Stop if both the gaps of levels 2 and 3 are small, e.g., if

v3(x
k
2)− vk3 (xk2) ≤ ε and vk+1

2 (xk1)− vk2 (xk1) ≤ ε.
Otherwise, set k = k + 1 and go back to Iterates for levels 1 and 2.

Notwithstanding, a word of caution is in order, regarding the final iterate computed by Algorithm
1: it may not solve the trilevel problem (2), because the replacement (8) does not ensure the equality
vk3 (x2) = v3(x2) for all x2. However, in practice, the output of Algorithm 1 provides at least a good esti-
mate for practical purposes, as the inequality v3(x2) ≥ vk3 (x2) does hold everywhere. The next statement
summarizes the convergence properties of Algorithm 1. The conditions needed for items (ii) and (iii) of
Theorem 2.1 are discussed after the proof.

Theorem 2.1 (Finite termination of Algorithm 1). Consider Algorithm 1 with ε = 0, and let the linear pro-
gramming solver therein be such that applied to (6) and (7), only a finite number of primal-dual solutions
can be returned by the solver. Then the following holds.

(i) The algorithm terminates at some iteration k satisfying

v3(x
k
2) = vk3 (x

k
2) and vk+1

2 (xk1) = vk2 (x
k
1).

(ii) If τ3�1 = 0, the iterate xk := (xk1 , x
k
2 , x

k
3) solves (2).

(iii) If vk3 (x2) = v3(x2) for all x2 ≥ 0 such that A2x2 = a2 −B2x1 for all x1, then xk solves (2).

Proof. (i) At some iteration k, the primal-dual points (xk2 , λ
k
2) and (xk3 , λ

k
3) eventually coincide with some

other pairs computed previously, because the value functions are polyhedral and we assume that the linear
solver produces only finitely many pairs of primal and dual solutions. By construction, the inequalities
vk+1
3 (xk2) ≥ vk3 (x

k
2) and vk+1

2 (xk1) ≥ vk2 (x
k
1) hold. Since the point already defined linearizations at some

past iteration, at the end of the kth iteration, by definition of vk3 and vk2 , we would have that vk3 (x
k
2) ≥

vk+1
3 (xk2) and, analogously, vk2 (x

k
1) ≥ vk+1

2 (xk1). The conclusion follows.
(ii) If τ3�1 = 0, the problematic constraint on x2 in problem (9) can be disregarded because we are

assuming solvability. Then, convergence follows from standard properties of cutting-plane iterations.
(iii) When the algorithm stops, if vk3 (x2) = v3(x2) for all x2, then problem (9) represents perfectly

problem (2). Then, xk solves (2).

Note that item (iii) of Theorem 2.1 refers to a sufficient condition for global optimality. Since problem
(2) is not classical (nested, non-smooth) it is hard to develop necessary conditions based on derivatives of
the functions involved, which may not even exist. In the sequel, we give a procedure to check the violation
of the condition on item (iii).
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As a result, when Algorithm 1 stops, its output xk is feasible for the original problem (2), and the pair
(xk1 , x

k
2) solves globally the approximate problem

Given vk3 ,find (xk1 , x
k
2) such that xk1 solves

{
min
x1≥0

f>1 x1 + τ2�1v
3�2
2 (x1) + τ3�1v

k
3 (x

k
2)

s.t. A1x1 = a1

xk2 solves

{
min
x2≥0

f>2 x2 + τ3�2v
k
3 (x2)

s.t. A2x2 = a2 −B2x
k
1 .

In view of these properties, Algorithm 1 can be thought of as being a Phase I procedure. If desired,
a subsequent Phase II mechanism can be put in place to generate cuts that may be missing, therefore
guaranteeing that vk3 (x2) = v3(x2) for all x2. By Theorem 2.1(iii), this triggers optimality of xk for (2).

For other works analyzing the finiteness condition on the primal and dual solutions used on statement
of Theorem 2.1, please see [Sha11; GB21; GR12].

Note that the condition τ3�1 = 0 in item (ii) of Theorem 2.1 is not restrictive, because it can be enforced
by the user of the model. In fact, τ3�1 = 0 gives results with better social dis-utility in the computational
experiments below; see Figure 2 in the sequel.

The condition in item (iii) is somewhat more restrictive. It requires that we have the full knowledge
of the value function v3, while in practice, we would have only a partial knowledge of it built using all
previous iterates of Algorithm 1. To understand how the full knowledge of v3 can be achieved, let us
consider the problem

max
x2

v3(x2)− vk3 (x2), (11)

which finds a point x2 where the mismatch between v3 and vk3 is maximized. Recall that v3(x2)−vk3 (x2) ≥
0. The issue with solving problem (11) is that it is non-convex and the function v3 is not explicit. However,
this problem can be solved quite easily by replacing (11) with

min
x2,x∗3

vk3 (x2)− f>3 x∗3 s.t. x∗3 ∈ argmin{f>3 x3 s.t. A3x3 = a3 −B3x2, x3 ≥ 0}. (12)

Problem (12) can be solved using KKT reformulations and a MIP solver. Note also that it must be solved
iteratively until the optimal value of (12) is zero.

2.3 Numerical assessment
The experiments are performed for the cascade of three hydropower plants represented in Figure 1 in the
introduction. Over an horizon with t = 1, . . . , T time periods, and for each hydroplant l,

• the data is: the efficiency factor Φl, the price of energy at time t denoted by Πt, the exogenous water
inflow At

l , the maximum and minimum reservoir volumes V l and V l, and the maximum turbine
outflow U l.

• The variables are: the turbined outflow utl , the reservoir volume vtl , and the spillage wt
l .

The optimization problem solved by the hydropower plant l is shown below, where decisions of other levels
are shown in bold and not present if l − 1 < 1:

max
(u,v,w)≥0

Φl

T∑
t=1

Πtutl

s.t. vt+1
l = vtl + η(−utl − wt

l +At
l + ut

l−1 +wt
l−1), t = 0, . . . , T− 1

η(uTl + wT
l ) ≤ vTl + ηAT

l , t = 1, . . . , T

ηutl ≤ vtl − V l, t = 1, . . . , T

vtl ≤ V l, utl ≤ U l , t = 1, . . . , T ,

(13)

8



where η is the amount of unit time per time period. The meaning of constraints in (13) is standard, starting
with the water balance in the reservoir, and inequalities to keep the outflow (turbined and spilt) within the
capacity of the reservoir. Nonnegativity for the turbined outflow utl rules out any pumping mechanism for
simplicity (negative values could be handled as well).

As stated, problem (13) suffers from the end-of-period effect, that depletes reservoirs to maximize the
profit of each agent. A final target volume could be incorporated to address this issue, but here we do not
include that constraint, and focus on the stylized model (13). Additionally, to guarantee feasibility without
resorting to deficit-related slack variables, neither the outflow nor the spillage are bounded above in (13).
Finally, with respect to the abstract notation, we have the relations

xl :=
(
(utl , v

t
l , w

t
l , slackstl)

T
t=1

)
, fl := −Φl

(
(Πt, 0, 0, 0)Tt=1

)
,

where the slack variables are used to rewrite the feasible set in standard linear programming form, with
equality constraints only.

Note that, for our specific application, the formulation is always feasible. First, if there is too much
water, we just activate the spillage variables, which are not bounded from above and guarantee that the
maximum volume stored is respected. Second, if the reservoirs start with more volume than the minimum,
they will be maintained with volume greater than the minimum. Therefore, the only feasibility condition
is that the initial configuration of the reservoirs is feasible.

The data defining our toy problem, with a simplified cascade configuration, is meant to illustrate the
features of interest, but should not be considered a realistic system. Prices and inflows are the mean of
those considered in the stochastic setting and shown in Figure 5. The McCormick-like reformulation of the
bilevel problems (9) uses values for “big M” in [104, 105], tuned numerically. The remaining parameters
are given in Table 1.

Table 1: Data for deterministic runs

l Φl V 0 V l V l U l

1 1 0.24 0.16 1.60 0.80
2 1 0.15 0.10 1.00 0.50
3 1 0.24 0.16 1.60 0.80

The benchmark compares the output xC of the profit-sharing mechanism (2) with the social and indi-
vidualistic policies, xS and xI solving (3) and (4), respectively. The considered percentages for (2) are

τ2�1 = τ3�1 = τ3�2 ∈ {0.02, 0.05, 0.10, 0.20, 0.30, 0.40} ,

and additionally, for some other benchmarks, we fix τ3�1 = 0.00, as in Theorem 2.1(ii).
All experiments were run on an Intel i7 1.90GHz machine, with Ubuntu 18.04.3 LTS, Julia 1.1.1[Bez+17]

and CPLEX 12.10. Solving each deterministic variant took less than 20 seconds for ε = 10−4.
The profit of each variant is then compared to that obtained with the social policy. Since the latter is

−f>l xSl , the difference in profit with the individualistic policy is −f>l (xSl − xIl ) for l = 1, 2, 3. With the
profit sharing mechanism, the difference in profit is −f

>
3 x

S
3 + (1− τ3�1 − τ3�2)f

>
3 x

C
3 if l = 3

−f>2 xS2 + (1− τ2�1)(f
>
2 x

C
2 + τ3�2f

>
3 x

C
3) if l = 2

−f>1 xS1 + f>1 x
C
1 + τ2�1(f

>
2 x

C
2 + τ3�2f

>
3 x

C
3) + τ3�1f

>
3 x

C
3 if l = 1 .

The individualistic profits vI defined by (5) are useful to improve the quality of the output of the profit-
sharing model. This is made clear by realizing that the policy remains unchanged if, for instance,

at level l = 2, the transfer is τ3�2(v
C
3(x2)− φl) for any benchmark value φl. (14)

We exploit this degree of freedom to improve the quality of the results in the profit-sharing model. Specifi-
cally in our numerical experiments, we take φl = vIl+1, so that rewards that go uphill are only a fraction of
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Figure 2: On the x-axis, each group with three columns represents the profit of levels 1, 2, and 3. The
different group of columns correspond to the criterion employed in the optimization process: from left
to right on the x-axis, these are the social optimum, the individualistic setting, and an increasing amount
of profit sharing. We see that the profit-sharing mechanism is effective to recover more wealth from the
cascade as a whole. With not too large transfers (the red bottom areas), when τ2�1 = τ3�2 = 0.2, level 1
makes more profit than in the individualistic setting, and levels 2 and 3 get the closest to the social policy.
Larger transfers do not improve the situation for the downhill levels. When numbers are followed by a star,
τ3�1 = 0, noting that tuning this parameter is more delicate, because there is an additional interplay within
levels when l = 3 makes two transfers of profit.
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the effective improvement of profit downstream. This re-scaling, transferring net margins with respect to
the individualistic policy instead of gross values, has a significant impact in the numerical solution, at least
with our data.

Figure 2 reports the differences in profit, compared to the social one. For each level and run, profits
are presented as bars proportional to the profit obtained with the social policy (in the first group of bars),
assimilated to 100%.

The individualistic policy, reported in the second group of bars, results in a increase for level 1, but
decreases the profit of both levels 2 and 3. A policy will be acceptable for level 1 only if the gain is at
least the individualistic profit. This corresponds to the dashed horizontal line in the graph. By contrast,
levels 2 and 3 prefer policies that drive their profit as close as possible to the social one, whose level is
indicated by the solid horizontal line in the graph. The remaining groups of bars correspond to different
configurations of the profit sharing mechanism. Numbers in the abscissa indicate the value that was taken
for τ2�1 = τ3�1 = τ3�2, except when the number is followed by a star, in which case τ3�1 = 0, and
τ2�1 = τ3�2 = the displayed number. Red bars in the bottom represent the payments done from the
downhill levels uphill (always as a percentage of the social profit). When there is more than one color in
the top of a bar, the area illustrates a transfer of profit from downhill levels. This is perceptible for example
in the column labeled 0.2, where the profit of level 2 is increased by a transfer from level 3, and level 1
profit gets transfers from both levels 2 and 3. For each level l ∈ {1, 2, 3}, the bars with profit represent
the gain, net from payments uphill. Therefore, when stacking on top the transfer from levels below (in
a different color in the figure), the top of the bar corresponds to the final profit of the considered policy.
Numeric values for the transfers can be found in the Appendix A, Table 3.
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Figure 3 reports the water management for level l in the lth row of plots. The left, middle, and right
columns correspond, respectively, to the social, individualistic and profit-sharing policies, with τ2�1 =
τ3�1 = τ3�2 = 0.2, the best parameters in Figure 2. We do observe that the agents at levels 1 and 2 withhold
less water during periods of low prices, due to the profit-sharing mechanism. Moreover, we observe that
the increase in profits for levels 2 and 3 come from not needing to release as much water without producing
energy, relative to the individualistic solution. In other words, we observe some colaboration between the
levels of the cascade.

Figure 3: Water management of the cascade with social, individualistic and profit-sharing mechanisms
(left, middle, right columns). With the individualistic approach (4), level 1 at the top withholds water until
time t = 5, when the plant starts turbining to get high prices. There is more spillage with the individualistic
approach, when compared to the other policies.

3 Nested stochastic optimization: individualistic approach
The trilevel formulations so far are deterministic. Problem (13) gives an idea on the changes induced by
uncertainty. To start with, prices Πt

s in the objective function are uncertain and given by S equiprobable
scenarios, so we now have to deal with costs of the form f tl,s, for s ∈ {1, . . . , S}. Regarding the stochastic
analogue of the equality Alxl = al −Bl−1xl−1, it involves the water balance constraint

vt+1
l = vtl + η(−utl − wt

l +At
l + ut

l−1 +wt
l−1),

for inflows At
l that were considered deterministic so far. The constraint assumes a water travel time equal

to one time period: the water released (ut
l−1 +wt

l−1) arrives to the reservoir downhill at time t+ 1.
In a stochastic model, random inflows are specified by scenarios such as At

l,r and At
l,s, for r, s ∈

{1, . . . , S} and all variables become indexed by scenarios. Suppose for a moment that the water travel
time is equal to 1, then the water released by level l− 1 at time t reaches level l at time t+1. In particular,
the rth inflow scenario At

l−1,r resulted in decisions ut
l−1,r and wt

l−1,r and at level l this impacts the water
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balance constraints. If the sth inflow scenario At+1
l,s occurs, the corresponding constraint will be

vt+1
l,s = vt

l,r + η(−ut+1
l,s − w

t+1
l,s +At+1

l,s + ut
l−1,r +wt

l−1,r) .

Note that scenarios r and s have no reason to be the same. In order to simplify the presentation, we consider
below that the water travel time is zero (as opposed to the other modeling just explained), so that we deal
with constraints of the form

vt+1
l,s = vt

l,s + η(−ut+1
l,s − w

t+1
l,s +At+1

l,s + ut+1
l−1,s +wt+1

l−1,s) (15)

with the same scenario for all levels (the technique can still be applied for positive travel times, but the
notation becomes too cumbersome).

For clarity, note that we consider different scenarios r, s when the travel time of the water between
reservoirs is positive. This is the reason we consider ut

l−1,r +wt
l−1,r on the reservoir balance equation at

stage t + 1. In other words, the water released in stage t, just arrives downstream at stage t + 1. When
there is no travel time, the scenarios must be equal (r = s) and we consider the term ut+1

l−1,s +wt+1
l−1,s on

the balance equation at stage t + 1. This is very intuitive, since the scenario is a state of the world on a
given stage. Therefore, at the same stage, we have the same scenario. Analogously, for different stages, we
could have different scenarios (states of the world).

Recall from (14) that individualistic profits are needed to chose φ therein and determine the actual trans-
fer between levels. When dealing with scenarios the level interaction is quite intricate; in this section we
explain the methodology for the uncertain version of (4), that is, when there is no transfer of profit between
levels. The stochastic setting with profit being shared between consecutive levels is left for Section 4.

3.1 Computing individualistic two-stage policies
Since the first time step is considered deterministic in our model, both for the two-stage and the multi-stage
cases, the specification of (15) for different time steps is

v1l = v0
l + η(−u1l − w1

l +A1
l + u1

l−1 +w1
l−1)

vt+1
l,s = vt

l,s + η(−ut+1
l,s − w

t+1
l,s +At+1

l,s + ut+1
l−1,s +wt+1

l−1,s) t = 1, . . . , T− 1 , s = 1, . . . , S .
(16)

With the two-stage paradigm, data is considered deterministic until a time when uncertainty reveals, all
at once, until the end of the horizon. For presentation purposes, it is convenient to assume that uncertainty
is fully revealed after the first time step, and that the whole path of inflows At+1

l,s becomes known at once,
for t = 1, . . . , T − 1 and each s = 1, . . . , S. Then in (16) we deal with scenarios for t ≥ 2. Adopting a
notation that can be extended for more than two stages, we let

x1l :=
(
utl , v

t
l , w

t
l , slackstl

)
for t = 1,

x2l,s :=
(
utl,s, v

t
l,s, w

t
l,s, slackstl,s

)T
t=2

for each scenario s = 1, . . . , ,

respectively denote the first and second-stage variables. With this notation, choosing appropriate vectors
and matrices, the relations in (16) can be represented in an abstract manner as

Alx
1
l = al −Blx

1
l−1 for constraints involving t = 1,

Al,sx
2
l,s = al,s − Tl,sx1l −Bl,sx

2
l−1,s for constraints involving t = 2, . . . , T , s = 1, . . . , S .

(17)

For instance, taking al = v0
l + ηA1

l and Al = Bl = [η 0 η 0] gives the first equality in (16).
The starting point is once more the optimization problem at level l, written without any influence of the

other levels. This corresponds to taking null matrices Bl,s above and, hence, we look for solutions to min
x1
l≥0

f>l x
1
l +

1
S

S∑
s=1

Ql,s(x
1
l )

s.t. Alx
1
l = al

for recourse functions Ql,s(x
1
l ) :=

{
min
x2
l,s≥0

f>l,sx
2
l,s

s.t. Al,sx
2
l,s = al,s − Tl,sx1l .
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When levels are organized in a cascade, since the RHS terms are modified by decisions taken in level l−1,
recourse functions depend not only on the first-stage variable, but also on the decision taken at level l − 1
for the same scenario realization. As a result, instead of Ql,s(x

1
l ) as above, we now have the function

Ql,s(x
1
l , x

2
l−1,s), that remains polyhedral and convex.

In a two-stage formulation, the trilevel individualistic problem to be solved is (the symbol “I2” refers
to the individualistic model with two stages)

find (x1
I2

1 , x1
I2

2 , x1
I2

3 ) such that x1
I2

l solves

min
x1
l≥0

f>l x
1
l +

1
S

S∑
s=1

Ql,s(x
1
l , x

2I2

l−1,s)

s.t. Alx
1
l = al −Blx

1I2

l−1

where x2
I2

l,s solves Ql,s(x
1
l , x

2
l−1,s) :=

{
min
x2
l,s≥0

f>l,sx
2
l,s

s.t. Al,sx
2
l,s = al,s − Tl,sx1l −Bl,sx

2
l−1,s

for l = 1, 2, 3 .
(18)

In these problems, all terms involving a subindex l − 1 < 1 are void.
Algorithm 2 puts in place a decomposition approach that we refer to as a “cascaded” L-shaped method,

as it extends to the trilevel setting the well-known algorithm of [VW69]. We denote by Qk
l,s the current

cutting-plane approximations for the recourse of each scenario and level, with the aggregated valued de-
fined as

Qk
l (x

1
l ) :=

1

S

S∑
s=1

Qk
l,s(x

1
l , x

2k
l−1,s) at iteration k. (19)

In (19), the left-hand side the dependency on x2kl−1,1, . . . , x
2k
l−1,S is dropped, for convenience.

In Algorithm 2, the loop parses l ∈ {1, 2, 3}, sequentially in the levels, and parallel with respect to
scenarios (the second-stage subproblems can be solved independently). Replacing throughout x2kl−1,s by
the value computed at the previous iteration, x2 k−1

l−1,s would yield a variant that is parallelizable also in
the levels. Regarding convergence properties, by construction, the approximate recourse functions satisfy
Qk

l,s(x
1
l , x

2
l−1,s) ≤ Ql,s(x

1
l , x

2
l−1,s) for all scenarios s, levels l and iterations k. Except for larger dimen-

sionality, we are in a situation equivalent to the one for v2 in item (ii) of Theorem 2.1. As a result, under
the same assumptions on the linear programming solver, if ε = 0, after a finite number of iterations Algo-
rithm 2 finds a solution to (18), the two-stage stochastic formulation of the individualistic trilevel problem.

3.2 Computing individualistic multi-stage policies
In the multi-stage paradigm, uncertainty is revealed gradually; the tth realization becomes known at the tth
time stage. Accordingly, we shall deal with variables of the form

xtl,s :=
(
utl,s, v

t
l,s, w

t
l,s, slackstl

)
for t = 1, . . . , T and for each scenario s = 1, . . . , S,

and constraints will be like the right-most equality in (17), noting that all scenarios have the same realization
at the first time stage, so x1l,s = x1l is deterministic.

Parsing all the branches of the scenario tree in a multi-stage setting, as it was done in (20) in Al-
gorithm 2, is clearly impractical. Sampling algorithms like SDDP [PP91] are the methods of choice in
multistage programming. However, for a cascade of nested optimization problems, with decisions from
level l − 1 impacting the RHS of the problem at level l, a straightforward application of the SDDP ap-
proach is also impractical. To be more precise, recall that each basic SDDP iteration consists in certain
forward and backward passes (the details are given below). Suppose we start at level 1 with a standard
SDDP iteration. Once the forward-backward iterates at level 1 are available, they become RHS scenario
information for level 2, therefore modifying the scenarios seen by l = 2. A brute-force approach in this
setting would run a standard SDDP method for l = 1 until it converges, and only afterwards move to level
2, running a separate SDDP for each RHS defined by the forward-backward iterates at level 1 and averag-
ing the results. After satisfying a convergence criterion for each one of those runs at level 2, the brute-force
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Algorithm 2 CASCADED L-SHAPED METHOD FOR TWO-STAGE STOCHASTIC TRILEVEL PROBLEMS.
INDIVIDUALISTIC CASE

Initialization. Take ε ≥ 0 and a sufficiently large constant M > 0. Set k = 1 and Qk
l,s(·) ≡ −M for

l = 1, 2, 3 and s = 1, . . . , S. For l = 1, let x1kl−1 = x110 and x2kl−1,s = x210s for s = 1, . . . , S be void elements.

REPEAT for l = 1, 2, 3:

First-stage master problem at level l: Given ykl−1,s for all s = 1, . . . , S and Qk
l from (19),

x1kl solves

{
min
y≥0

f>l y +Qk
l (y)

s.t. Aly = al −Blx
1k
l−1 .

Second-stage subproblems at level l: for each scenario s = 1, . . . , S,

x2kl,s solves Ql,s(x
1k
l , x

2k
l−1,s) :=

{
min
y≥0

f>l,sy

s.t. Al,sy = al,s − Tl,sx
1k
l −Bl,sx

2k
l−1,s .

(20)

Let λk
l,s denote the optimal multiplier vector associated with the equality constraints.

Model improvement for level l: For s = 1, . . . , S the linearization

`kl,s(x
1
l , x

2
l−1,s) := Ql,s(x

1k
l , x

2k
l−1,s) + (λk

l,s)
>Tl,s(x

1
l − x1kl ) + (λk

l,s)
>Bl,s(x

2
l−1,s − x2kl−1,s) (21)

improves the approximate recourse functions and its expected value,

Qk+1
l,s (x1l , x

2
l−1,s) := max

{
`kl,s(x

1
l , x

2
l−1,s), Q

k
l,s(x

1
l , x

2
l−1,s)

}
, and Qk+1

l (x1l ) defined like in (19).

STOPPING TEST. Stop if for all the levels
1

S

S∑
s=1

Ql,s(x
1k
l , x

2k
l−1,s)−Qk+1

l (x1kl ) ≤ ε .

Otherwise, set k = k + 1 and go to REPEAT.
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method would move to level 3. Since such approach is too cumbersome, in this section we show how to
perform calculations in a manner that is computationally efficient.

Instead of sequentially applying SDDP for level l and, when a convergence criterion is reached, moving
to l+1, we perform one SDDP forward and backward passes for all the levels, and then iterate across levels.
Recall that decisions taken upstream modify the downhill ones only via the RHS equality constraints, as
in (17). In Algorithm 3 the key is in suitably transferring to level l information obtained with the SDDP
iteration done at level l − 1. This is done by transporting cuts along levels.

The multi-stage formulation inevitably requires rather involved notation, that we gradually introduce
for clarity. There are time stages t ∈ {1, . . . , T} and S stage-wise independent scenarios referred to by a
subindex s or r ∈ {1, . . . , S}, having T components. Below, the notation with subindex s refers to what
is called a forward SDDP scenario, while r refers to scenarios in the backward SDDP pass. Note that we
can replace the stage-wise independence with a markovian structure on the formulations, in which case, all
calculations can be performed with minor changes.

With respect to the notation in the previous section, given a scenario s,

at stage t
{

the former here-and-now variable x1l corresponds to xt−1l

the former recourse variables x2l,s correspond to xtl,s
in the multi-stage setting.

Consider first the simple setting of disconnected levels and the following shorter notation for the feasi-
ble sets

F t
l,s(x

t−1
l ) :=

{
y ≥ 0 : At

l,sy = atl,s − T t
l,sx

t−1
l

}
,

for l = 1, 2, 3, t = 1, . . . , T and s = 1, . . . , S, and where x0l is a given data, sometimes called the tendency.
Note that the input of F t

l,s(·) does not depend on the scenario, since it can be evaluated for any iterate from
state t − 1 from any scenario, but the set-valued function F t

l,s does depend on s. Letting E stand for the
expectation operator, a nested representation for this multi-stage problem is

min
x1
l∈F

1
l (x

0
l )
f1l
>
x1l + E

[
min

x2
l∈F

2
l (x

1
l )
f2l
>
x2l + E

[
. . .+ E

[
min

xT
l∈F

T
l (x

T−1
l )

fTl
>
xTl

]
. . .

]]
. (22)

In a Dynamic Programming formulation, each bracket above represents the recourse, often called cost-to-
go, or future cost function, shortened to FCF from now on. In particular, the FCF at time t represents the
costs of all the decisions taken between t+ 1 and T.

The basis of the SDDP approach is to define approximations at iteration k moving first forward in (22),
from t to t + 1, to find feasible points x̂tkl,s for the sampled scenario s = sk = (sk1 , . . . , s

k
T ). Then (22) is

parsed from right to left, moving backwards from t+1 to t, generating linearizations along all the branches
of the given scenario, and the process is repeated with k replaced by k+1. The points x̂tkl,s computed in the
forward pass are available for all t = 1, . . . , T. At t = T, given the forward vector x̂T−1,kl,s , the backward
pass computes

xTkl,r solving QT
l,r(x̂

T−1,k
l,s ) :=

{
min (fTl,r)

>y

s.t. y ∈ F T
l,r(x̂

T−1,k
l,s ) ,

for all r = 1, . . . , S. Similarly to (21), the solution process provides a linearization that improves the
current piecewise affine function QTk

l,s. An average of those cutting-plane models gives the expected value
QT,k

l , the FCF for the backward problem at t = T−1. Proceeding further for any stage t = T−1, T−2, . . .,
for all r = 1, . . . , S the backward iterate

xtkl,r solves Qtk
l,r(x̂

t−1,k
l,s ) :=

{
min f tl,r

>
y +Qt+1,k

l (y)

s.t. y ∈ F t
l,r(x̂

t−1,k
l,s ) .

Letting QT+1,k
l,r ≡ 0, the formulation above is also valid for t = T. The backward pass generates lin-

earizations that improve the cutting-plane models defining the FCF to be used in the next forward pass,
Qt+1,k+1

l . Convergence of such procedure to a solution of the multi-stage problem, with probability one,
can be found in [Sha11], as well as the required assumptions for the result to hold (on the sampling and on
conditions on the linear programming solver similar to those in Theorem 2.1).
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When feasible sets are connected stagewise but not between levels, the FCF depends only on the de-
cision taken for the considered scenario and stage, at the current level l. When levels are connected in a
cascade, the recourse functions of level l depend on decisions taken at level l − 1. As explained for the
two-stage case, using the multi-stage notation and for a scenario r = 1, . . . , S and l = 1, 2, 3,(

x2l , x
2
l−1,r

)
from Algorithm 2 becomes

(
xt−1l , xtl−1,r

)
,

and, similarly to (17), the RHS dependencies change the feasible sets to

F t
l,r(x

t−1
l , xtl−1,r) :=

{
y ≥ 0 : At

l,ry = atl,r − T t
l,rx

t−1
l −Bt

l,rx
t
l−1,r

}
.

Hence, with connected levels, Qtk
l,r is a function of

(
xt−1,kl , xtkl−1,r

)
. Note that that we use xt−1,kl instead

of xt−1,kl,r , because the value of xt−1,kl can come from any scenario at stage t − 1. The two-stage case
is similar to the last bracket in (22). Carrying on the parametric dependencies backwards by reasoning
recursively based on the two-stage case, we see that the recourse function at stage t and level l depends

on (xt−1l , xtl−1,r) , through the feasible set F t
l,r(x

t−1
l , xtl−1,r),

on Zt+1
l−1 :=

(
xt
′

l−1,s , s = 1, . . . , S , t′ = t+ 1, . . . , T
)
, through the future cost function .

(23)
With respect to the two-stage setting, the main difference is in the dimensionality increase of the arguments
of the recourse function. As such, the trilevel individualistic problem is an extension of (18) to the multi-
stage setting, with the solutions xt

IT

l,s solving nested problems of the form

Qt
l,r(x

t−1IT
l,s , ZtIT

l−1) =

{
min f tl,r

>
y + 1

S

∑S
s=1Q

t+1
l,s (y, Zt+1,IT

l−1 )

s.t. y ∈ F t
l,r(x

t−1IT
l,s , xt

IT

l−1,r) ,

for each scenario r, s = 1, . . . , S, stage t = 1, . . . , T and level l = 1, 2, 3.
At iteration k of the cascaded SDDP method, by definition of Z in (23), the identity

Zt,k
l−1 = (xtkl−1,1, . . . , x

tk
l−1,S , Z

t+1,k
l−1 )

holds. So at stage t the recourse function is computed at

(xt−1,kl , xtkl−1,1, . . . , x
tk
l−1,S , Z

t+1,k
l−1 ) = (xt−1,kl , Zt,k

l−1) ,

and backward problems yield

xtkl,r solving Qtk
l,r(x̂

t−1,k
l,s , Zt,k

l−1) :=

{
min f tl,r

>
y +Qt+1,k

l (y, Zt+1,k
l−1 )

s.t. y ∈ F t
l,r(x̂

t−1,k
l,s , xtkl−1,r) ,

where Qt+1,k
l is the expected future cost function.

The solution algorithm is given in Algorithm 3.
It is worth noting that the forward samples are common for all levels, which is quite natural if one has

the brute-force solution procedure in mind. Also, the cut calculation performed at the backward pass is
entirely based on the two-stage case. Because of the dependence on the iterates computed at level l − 1,
cuts have (much) larger dimension in the cascaded setting.

Since at the top level the past vectors xtkl−1 are void, when l = 1 Algorithm 3 boils down to a standard
SDDP iteration. Under the same assumptions as in [Sha11, Proposition 3.1], with probability one, the
forward step at l = 1 produces an optimal policy after finitely many iterations. As a result, with probability
one and for sufficiently large k, the cutting-plane models in our cascaded SDDP represent well the relevant
parts of the future costs at level 1. This property does not suffice to ensure convergence in the trilevel
setting, however. The reason bears some resemblance with risk-averse forms of SDDP, to solve problems
as in (22), with the expectation operator replaced by a risk measure, see [KM14; Sha11; GR12]. As noted
in [Sha11, Remark 5], sampling makes the upper bound vk1 random. When passing to level l = 2, the lower
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Algorithm 3 CASCADED SDDP METHOD FOR MULTI-STAGE STOCHASTIC TRILEVEL PROBLEMS.
INDIVIDUALISTIC CASE

Initialization. Take ε ≥ 0 and a sufficiently large constant M > 0. Set k = 1. For l = 1, 2, 3, s = 1, . . . , S
and t ≥ 2, let Qt,k

l,s ≡ −M . For t = 1, all levels and scenarios, the initial tendency x̂t−1,k
l,s is given. For l = 1,

the vectors xtkl−1,s are void.

Sampling. Sample a scenario skt ∈ {1, . . . , S} for each t = 1, . . . , T. To simplify notation recall that all
scenarios at t = 1 are assumed to be the same.

REPEAT For l = 1, 2, 3:

Forward pass. For each t = 1, . . . , T and s = (sk1 , . . . , s
k
T ), compute

x̂tkl,s solving

{
min f t

l,s
>
y +Qt+1,k

l (y, Zt+1,k
l−1 )

s.t. y ∈ F t
l,s(x̂

t−1,k
l,s , xtkl−1,s) .

Init. Take QT+1,k+1
l = 0.

Iterate Across Stages. For t = T, . . . , 2.
Cut computation. For r = 1, . . . , S, solve

xtkl,r solving

{
min f t

l,r
>
y +Qt+1,k+1

l (y, Zt+1,k
l−1 )

s.t. y ∈ F t
l,r(x̂

t−1,k
l,s , xtkl−1,r) .

Obtain subgradients such that for all xt−1
l , xtl−1,r and Zt+1

l−1 the value function
Qt

l,r(x
t−1
l , xtl−1,r, Z

t+1
l−1 ) lies above

Qt
l,r(x

t−1,k
l,s , xt,kl−1,r, Z

t+1,k
l−1 ) + (λt−1,k

l )>(xt−1
l − x̂t−1,k

l,s ) +

(µt,k
l−1,r)

>(xtl−1,r − xt,kl−1,r) + (νt+1,k
l−1 )>(Zt+1

l−1 − Z
t+1,k
l−1 ).

Cut Aggregation. Average the cuts in (3) to obtain a cut such that Qt
l,r(x

t−1,k
l , Zt

l−1) lies
above

Qt
l,r(x

t−1,k
l,ω , Ztk

l−1) + (φt−1,k
l )>(xt−1

l − xt−1,k
l,ω ) + (ρtkl−1)

>(Zt
l−1 − Ztk

l−1). (24)

Define Qt,k+1
l,r as a maximum between Qt,k

l,r and (24).

Upper bound. Set vkl =
∑T

t=1 f
t
l,s
>
x̂tkl,s for the estimation of the upper bounds via average, where

s = (sk1 , . . . , s
k
T ).

Lower bound. Set uk
l as the optimal value of the subproblem at t = 1 solved on the backward pass for

estimation of the lower bounds via average.

STOPPING TEST. Stop if the average lower bound and average upper bound for all levels are close enough or
the lower bounds stabilized. Otherwise, set k = k + 1 and go to the Sampling step again.
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bound uk2 is also random, because it depends on cuts involving forward-backward iterates from level 1.
The lower bound at level 3 is also random and, therefore, no convergence result is available in this setting.
However, in practice we observe small gaps, after averaging.

Algorithm 3 is essentially an efficient implementation of the brute-force algorithm described at the
beginning of this section. The brute-force approach is not computationally practical because the formu-
lation at level 2 depends on the forward path at level 1 and the decisions taken at level 1 associated with
the forward path. Therefore, there are at least as many instantiations of problems at level l = 2 as there
are forward paths. In other words, there are exponentially many problems at level 2. Instead of solving
separately each problem at level 2 for each forward path at level 1 we employ the floating cuts such that,
when a new sequence of forward-backward iterates is obtained at level 1, the cuts at level 2 already provide
a valid lower bound for the SDDP problem at level 2 associated with the new forward path from level 1.
Thanks to this feature, we do not need to solve the SDDP problem at level 2 from scratch. Analogously,
the cuts at level 3 provide a valid lower bound given the new forward-backward iterates at level 2.

For a problem with four stages and three scenarios (T = 4 and S = 3), the diagram in Figure 4
illustrates with solid lines how information flows from level l (up) to level l+1 (bottom) Algorithm 3. For
each level, dotted boxes indicate the path of scenarios sampled in the forward pass, given by s = (0, 3, 2, 2)
in the figure. Since the same path of scenarios is used for all levels, dotted boxes have the same position
in the top and bottom rows. The dotted lines connecting boxes horizontally represent how information is
transmitted in the same level, between time stages. Those lines have no arrows because information goes
both ways, forward and backwards, as in the SDDP passes. Notice also that all boxes are connected from
stage to stage. When moving forward in time, decisions from box l, t = 2, s = 3 go to all scenarios at
l, t = 3, while when moving backwards, cuts from all boxes at l, t = 3 go back to l, t = 2, s = 3.

Figure 4: Illustration of the flow of information in Algorithm 3.

3.3 Numerical assessment
We designed a stochastic variant of our toy problem (13), with uncertainty in the prices Πt and inflows At

l .
The respective considered scenarios are shown in Figure 5.
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Figure 5: Scenarios for the water inflow and price. Inflows are shown as percentages of reservoir’s volume.
The inflow around December is a fraction of the maximum volume followed by a dry period around the
middle of the year. Prices follow an inverse pattern. Recall that the deterministic values taken for price and
inflow in (13) are stagewise averages of these scenarios.

The dimensions of the cascade are the same of the deterministic case, as well as the initial volumes.
The individualistic policies obtained by the cascaded SDDP method presented in Algorithm 3 are compared
to the social policies obtained with the traditional SDDP method for managing the cascade jointly. Pro-
fessional SDDP software typically exploits parallelization. This is not the case with our implementation,
which took up to 8 hours to produce the output reported below. We run 100 forward-backward iterations
on each level and initialize the cuts at l = 1 to make the process faster. All the obtained gaps are smaller
than 4%, relative to the lower bound.

We simulate the cascade operation with each policy, for new out-of-sample 100 scenarios, the corre-
sponding mean profit for each level is reported in Table 2.

Policy Type Profit l = 1 Profit l = 2 Profit l = 3 Tot. Profit
Social (Standard SDDP) 336.89 439.16 710.05 1486.12

Individualistic (Cascaded SDDP) +4.20% -6.13% -2.86% -2.22%

Table 2: Comparison of expected profits for each level relative to the social policy. The qualitative behavior
of the profits is like in the deterministic case: the hydroplant at l = 1 earns more and the hydroplants
downhill earn less. Also, the total wealth obtained from the cascade decreases.

The mean reservoir operation and its standard deviation are reported for each level in Figure 6, respec-
tively in solid and dashed lines. With the social policy, the spillage observed at the end of the simulation is
just an evidence of the end-of-horizon effect, that does not affect the profits. With the individualistic policy,
similarly to the deterministic model, the top hydroplant does not deplete its reservoir at initial times, saving
water for it to be released when prices are high. The pattern of each policy is similar to one observed in the
deterministic case reported in Figure 3.
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Figure 6: Water management of the cascade with social and individualistic policies (top and bottom rows)
in the stochastic setting, computed with three different approaches. Circles represent volume, squares
turbined water and “diamond” spillage. Given the lines of the same color, the dashed lines correspond to
the larger and smaller variation in the solutions of the three methods.

4 Sharing mechanism between neighbors only
We now extend the multi-stage procedure to deal with the mechanism of profit sharing. With respect to the
deterministic case, the setting is slightly less general, as here we assume the transfer is done only between
consecutive levels (this amounts to taking τ3�1 = 0 in the deterministic formulation). For the cascade in
Figure 1, we now consider dependencies represented by both the left and right arrows, only that level 3
shares profit with level 2, but not with level 1 (in the figure, the left arrow with the label τ3�1 is not present).

The iterative procedure follows the rationale in the previous sections, defining cuts based on extended
variables, as in (23), only that now we adopt a handy symbolic representation. The mechanism is described
below in an informal style to avoid heavy and cumbersome notation. A more precise statement of the
algorithm is given in Appendix B.

The setting considered in this section is more general than the one considered in Section 3, since taking
all transfers to be zero in this section, we obtain the same problem as in Section 3. Since the brute-force
approach was already infeasible for Section 3, it is not practical for the developments of this section as
well. Note that the symbolic representation is just a strategy to present the algorithm and to facilitate its
implementation.

4.1 The concept of floating cut
The multi-stage individualistic model gives a hint on the difficulties that need to be tackled when there is
a hierarchy of three nested multi-stage programs with transfer of profit to the next level upstream. The
challenge in the more general setting considered here starts with defining an extended variable, from which
the parametric dependencies in the FCF can be written down, to define the linearizations, or “cuts”. Along
the lines in (23), we need to detect connections between the current decision variable (say xt−1l ) and
decision variables of other levels (say Zt

l−1).
The difference here is that, instead of trying to figure out all the (nontrivial) dependencies that can

happen by ourselves, we put in place a symbolic code that detects automatically those relations and defines
a “floating cut”. The procedure starts representing the forward and backward linear programs that are
solved for each level in a manner similar to a modeling language. For a given optimization problem, the
representation stores, in a human-readable format, three data structures with relevant information. A first
structure deals with variables, distinguishing decisions from parameters (a certain flag is set to 0 or 1),

21



specifying attributes such as type (continuous, binary), bounds, name, and storing the actual value of the
variable in question. A second data structure represents the linear expressions appearing in the optimization
problem (a real number and a list of pairs of real numbers and instances of the data structure variable). The
third structure contains a linear expression for the objective function and a list of pairs of linear expressions
and integers to represent the constraints in the optimization problem under consideration.

With this symbolic representation at hand, and its distinction between parameters and decisions, it is
possible to compute values for the latter, given the values of the former. The same solution process yields
optimal dual variables for the constraints, and these values are stored in the first data structure, with the
problem variables. A floating cut is the symbolic expression of a linearization like (10) in Algorithm 1.
Namely, an affine relation given by the Benders cut that results from fixing the parameters at their current
values in the data structure. Since the floating cut is a linear expression of all the right-hand side parameters
involved in the optimization problem, it can be symbolically represented by means of the second data
structure. At every iteration, knowing the parameters of the optimization problem, a specific instance is
obtained, and its value is inserted as a new constraint in the third data structure of other optimization
problems (those for which the current decision variable appears as a parameter).

The sophisticated construction of floating cuts is fundamental to manipulate efficiently the huge amount
of optimization problems and linearizations involved in the multi-stage three-level setting. The naming is
justified by the following observation. When a specific subproblem is to be solved, the portions of the
linear expressions associated with parameters are reduced to a number, called the parametric value of the
linear expression, based on the values of those parameters. When the values of the parameters change, the
parametric value of the linear expressions change too. In turn, this change is interpreted as the free term of
the linear constraints having “floated” to another level or stage.

As we explain now with an example, before floating a cut we might also need to update its value.
Consider a SDDP problem with T = 3 and S = 2 (only one level) and suppose iterations start from T,
backwards to T − 1. The decision variables at t = 3 and s = 1, 2 are xts and the parameter at t = 3
is the forward decision at t = 2, denoted by x̂t (for this variable we drop the scenario subindices for
convenience). The cuts computed on any scenario at t = 3 are functions of the parameter, the forward
decision x̂t. By this token, for a subproblem at t = 2, the forward decision x̂3 will be considered as a
parameter. But when t = 2, the parameter is x21 if s = 1, and x22 if s = 2. For this reason, the value of
the floating cut computed at t = 3 needs to be updated, replacing the parameter x̂3 by the variable x2s for
each subproblem scenario. A similar translation step needs to be performed to account for the fact that the
forward decision taken at t = 1 is a parameter for all subproblems at t = 2.

Suppose we represent symbolically the subproblems of a multi-stage stochastic problem and that we
declare symbolically all the external parameters of each problem at each level, stage, and scenario. When
making this symbolic declaration we do not know the dependencies of the FCF of that specific subproblem.
However, we can always start with a large negative number as a valid approximation. Given the values of
all the RHS parameters on the symbolic representation, a symbolic expression for the cut can be derived,
which depends on all RHS parameters found on the symbolic representation. Whenever the values of the
RHS parameters are updated, the symbolic linearization, that we named the “floating” cut, is updated too.

This symbolic representation of the cuts, instead of dealing with the usual matrix- and index-based
representations, suffices to detect non trivial parametric dependencies for the multi-stage case, as long as
calculations are carried out in the correct order. To understand this issue, let us explore the two-stage
individualistic setting as an example. Assume we have forward-backward iterates at l = 1. The first cuts
computed at l = 2 are those corresponding to the final time index. Each scenario subproblem at the final
time T depends on xl and x2l−1,s. The symbolic cuts computed at each scenario would be a linear function
of both xl and x2l−1,s. After averaging the symbolic expressions for all scenarios, we would recognize
that the FCF at the first stage is a function of xl, x2l−1,1, . . . , x2l−1,S . The same reasoning applies to the
multi-stage case, except that at stage T − 1 we would have to search for new parameters on the symbolic
representation of the subproblems at T− 1 that come from subproblems at stage T.

We emphasize that to compute the general affine expression of the floating cut, we need the values of
all parameters and we need to possibly update the list of RHS parameters as dependencies appear along
the process. In this sense, the individualistic cascaded SDDP Algorithm 3 first gets values of external
parameters making a forward-backward pass at l = 1. When making the forward-backward pass at l = 2,
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all the correct parametric dependencies show up naturally, which also gives the values of the external
parameters at l = 3 and so on. Therefore, although hard to express precisely, the mechanism is not difficult
to implement.

The procedure can fail if cuts are computed in the wrong order. More specifically, if T = 3 and the first
cut is computed at t = 2, calculations would be made without the parametric dependencies at the final time
t = 3 and all the FCF estimations arriving at t = 1 would be wrong. For the multi-stage problems we solve,
it is enough to just follow the standard iterations, but always start computing cuts at the last stage. This
is not an issue for the traditional SDDP method: in the parametric symbolic view, it amounts to fixing the
values of all the RHS parameters. The corresponding contribution of the fixed parameters on the floating
cuts is zero and, hence, our approach is a generalization of the well-known SDDP algorithm.

These explanations should make it clear that rather than struggling to express the correct RHS para-
metric dependencies, the real issue is to organize the symbolic calculations in the correct order, starting
from the final time T. In our trilevel problem, the order is clear since decisions are sequential in nature and,
under reasonable assumptions, the initial lower bounds for value functions remain valid for bounded values
of the external RHS parameters.

4.2 Computing policies with profit sharing
Having outlined the general procedure, we now focus on the sharing mechanism when dealing with nested
SDDP problems. To fix ideas, suppose that SDDP problem 1 influences SDDP problem 2 and vice-versa
(in the individualistic setting, SDDP problem 1 affects SDDP problem 2, which affects SDDP problem 3,
but not the other way round). Dropping unnecessary indices, we let the corresponding value functions be
defined as

v1(x2) = min
x1

f1(x1, x2) s.t. x1 ∈ X1(x2),

and
v2(x1) = min

x2

f2(x2, x1) s.t. x2 ∈ X2(x1) .

Typically, the solution to such a pair of problems is addressed by computing a generalized equilibrium, for
example by iterating over the best-response of one player, given the other players’ strategies are fixed. See
[SMK18]. When the pair of problems at hand is simple, the best-response iteration is easy to implement
and might converge to an equilibrium. When dealing with a pair of multi-stage stochastic problems, the
situation is much less straightforward. Even the computation of the best response given the strategies of the
other players is a hard task. Floating cuts are very useful in this setting, because linearizations computed
for a given xk2 can be carried over to another iterate xk+1

2 . Thanks to the floating cuts, a best-response
iterative procedure is possible in the context of multi-stage stochastic equilibrium problems as we further
explain now.

Similarly to (23), the tuple Zl = {xtl,s : t = 1, . . . , T, s = 1, . . . , S} represents feasible forward-
backward iterates for each level l. Additionally, Z−l is the vector of tuples referring to levels other than l; in
particular, Z−1 = (Z2, Z3). For the trilevel problem feasible tuples are obtained by sequentially making a
forward-backward pass at l = 1, 2, 3, in order. The tuple Zl is random because it depends on the scenarios
sampled to perform the forward passes.

Recall that the parameter τ�l is the fraction of cost being transferred to level l ∈ {1, 2} from level
l + 1 ∈ {2, 3}. Accordingly, the symbolic declaration of the rth scenario subproblem at stage t and level
l = 1, 2 is given by the expression below:

Qt
l,r(x

t−1
l , Z−l) :=

{
min f tl,r

>
y +Qt+1

l (y, Z−l) + τ�lU
t
l,r(y, Z−l)

s.t. y ∈ F t
l,r(x

t−1
l , xtl−1,r).

Notice that we now have two functions in the objective function. The first one, Q, deals with the
usual nested Dynamic Programming scheme similar to (22). The second function, U, is specific to the
sharing mechanism in our proposal. A closer inspection of the symbolic representation above reveals
some additional features. To begin with, the first argument in the recourse function, xt−1l , has no scenario
subindex because its value can come from any scenario at stage t−1 (as in the dotted lines in Figure 4). By
contrast, the RHS value xtl−1,r, defining the feasible set, comes necessarily from the rth scenario at level
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l − 1 (as in the full lines in Figure 4). In addition, the cut computed from this representation is an affine
function of Z−l as well as of xt−1l and xtl−1,r.

Along iterations, the only information that changes in the symbolic representation is the piecewise
affine approximations Qt+1

l (·, ·) and Ut
l,r(·, ·), which initially are set to a fixed negative number, sufficiently

large. Being the well-known FCF within the SDDP problem at level l, Qt+1
l (·, ·) is the usual function

updated in a forward-backward pass. The new function Ut
l,r(·, ·), represents the instantaneous cost realized

at stage t and scenario r from level l + 1. As such, for l = 2, the new function is a piecewise affine
approximation of

U t
l+1,r(x

t−1
l+1 , x

t
l,r) :=

{
min f tl+1,r

>
y

s.t. y ∈ F t
l+1,r(x

t−1
l+1 , x

t
l,r) ,

and, for l = 1, it is an approximation of

U t
l+1,r(x

t−1
l+1 , x

t−1
l+2 , x

t
l,r) :=

{
min f tl+1,r

>
y + τ�(l+1)U

t
l+2,r(x

t−1
l+2 , x

t
l,r)

s.t. y ∈ F t
l+1,r(x

t−1
l+1 , x

t
l,r) .

Notice that the notation τ�(l+1) is different from the one for the deterministic setting, where we would
have the indices 3� 1, for instance. The reason is that, since we just have profit sharing between immediate
levels, it is clear that τ�(l+1) refers to a transfer from l + 2 to l + 1.

We are now dealing with two different polyhedral approximations, whose update needs to be done in
a manner slightly different from the usual SDDP. The following list explains the procedure step by step.
Algorithms 4 to 9, given in the Appendix B, respectively correspond to pseudo-code for items 1-7 below.
Note that the Algorithms 4 to 9 are split and numbered such that they fit into the pages nicely, and not such
that they match the numbering of the items below.

1. First, a sequence of forward samples for each level is generated and the tuples (Z1, Z2, Z3) are
obtained by making a forward-backward pass at each level without adding any cuts. At this initial-
ization phase, this is crucial to detect the correct parametric dependencies in the symbolic represen-
tation. The goal is to obtain points at which cuts can be computed in a second phase, which needs to
parse the levels and stages at the right order.

2. Since l = 3 does not receive any transfer from lower levels (τ�3 = 0), the last level triggers the
updating procedure. The symbolic mechanism applied to l = 3 will detect parametric dependencies
in the floating cuts that are similar to those arising in the individualistic setting for l = 3. The
functions Qt

l,r(·, ·) with l = 3 are updated making a forward-backward pass at l = 3, that fills the
values for Z3.

3. The next step is to update the functions Ut
l,r(·, ·) for l = 2. This is quite natural, since the iter-

ates at l = 2 would be more informed if they could take into account the implied costs of l = 3.
Accordingly, for all t = 1, . . . , T and r = 1, . . . , S, we compute a cut for the value function
U t
l+1,r(x

t−1
l+1 , x

t
l,r), where xt−1l+1 and xtl,r are taken from the tuples (Z1, Z2, Z3). Precisely, xt−1l+1

is the forward iterate associated with the scenario sampled at stage t− 1 and xtl,r is the correspond-
ing value at Z2 associated with scenario r. Note that there is a difference relative to the scenario
used for xt−1l+1 and xtl,r, as already announced. On the initialization step, we sampled a sequence of
scenarios s = (s1, . . . , sT). The value used for xt−1l+1 is the one associated with st−1 and not with the
r index. After such step, all functions Ut

l,r(·, ·) for l = 2 have been updated.

4. The next step is to run a forward-backward pass at l = 2, but this time updating the future costs
Qt+1

l (·, ·), to detect the parametric dependencies from l = 3 that impact on l = 2. We start comput-
ing the cuts at the last stage, T.

5. Since now Ut
l,r(·, ·) for l = 2 depends on xt−1l+1 , after aggregating the symbolic cuts, we realize that

the SDDP problem at level l = 2 depends not only Z1, but also on the forward decisions at l = 3
represented by Z3. However, for the algorithm this dependence is dealt with extremely easily. A
particularity is that the instantaneous cost Ut

l,r(·, ·) for l = 2 influences the future cost Qt+1
l (·, ·) for

l = 2, which is again extremely natural.
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6. The algorithm continues in the same fashion at l = 1. We start updating Ut
l,r(·, ·) for l = 1 and

then perform a forward-backward pass at l = 1 updating the future costs and performing parameter
detection. We again observe that SDDP problem at l = 1 depends on some components of Z2 and
Z3.

7. When the forward-backward pass at l = 1 is finished, we sample a new sequence of scenarios
s = (s1, . . . , sT) to make the initialization step again, without cut computation in the backward pass,
and go back to the forward-backward at l = 3 again. In other words, we sample s = (s1, . . . , sT)
and compute a new tuple (Z1, Z2, Z3) without adding cuts. Then, we go back to step 2 and start all
over with l = 3.

For each sample s = (s1, . . . , sT) obtained, we also obtain for each level a realization of an estimate
of a lower bound and another one for the upper bound. After averaging these realizations of the upper and
lower bounds, we obtain an expected gap, which is used to stop the algorithm.

Back to the best response setting, it is important to understand that every time some component of Z2

and Z3 change, the cuts available at l = 1 need to be transported (“floated”), so that they are still valid for
the new values of Z2 and Z3. The symbolic cuts enable the application of a best-response iteration to our
trilevel nested multi-stage stochastic setting.

4.3 Numerical Assessment
Our last set of experiments illustrates the nested multi-stage stochastic setting with the profit sharing mech-
anism, solved by the technique based on symbolic dependencies and floating cuts described in the previous
sections. Since the procedure is quite involved, we use for comparison in the benchmark Algorithm 1 with
τ3�1 = 0. This is the deterministic model with profit sharing; our rationale is that results should be sim-
ilar if scenarios do not vary too much. In our runs, such variability depends on the standard deviation of
considered scenarios shown in Figure 5.

The range chosen for the profit-sharing percentages is

τ2�1 = τ3�2 ∈ [0.05, 0.9] .

Our prototype code is not efficient and multi-stage stochastic trilevel problems are computationally
heavy. To keep running times manageable for our code, the configuration from Section 3.3 is run with
shorter time horizon and less scenarios, taking T := 8 and S := 5. Each run takes 2 hours, ending with
gaps smaller than 3% after 100 forward-backward iterations.

The simulation phase, with the system operating with the obtained policies uses 100 out-of-sample
scenarios with the profile reported in Figure 5, truncated at T = 8.

Figure 7 follows the premises in Figure 2, with vertical bars representing the total gain for each level.
The results with the deterministic configurations is shown on the left, and the stochastic one on the right,
taking the expected value of the cost of the 100 simulations. Numeric values for the transfers can be found
in the Appendix A, Tables 4 and 5.

Near the time horizon T = 8 prices in Figure 5 are high. This feature, combined with the short time that
water has to travel downhill, increases the market power of the hydroplant at level 1. This phenomenon
is perceptible when comparing the output on the left and right plots in Figure 7. In the deterministic case
on the left, transferring 30% of the net margin is acceptable to the level in the top. By contrast, for the
stochastic model, the fraction jumps τ2�1 = τ3�2 ≥ 0.7. The owner in the top will accept not to play
opportunistically and will stop withholding water only if the payment received from the lower level is at
least 70% of its net margin. In a somewhat indirect manner, such significant difference gives a quantitative
perception of the value of the stochastic solution in our nested trilevel setting, see [Bir82] and [Esc+07].

Concluding remarks
The issue of market power mitigation in multi-owned hydro cascades is among the main causes that hy-
dro systems did not undergo the same privatization process that thermally dominated systems experienced
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Figure 7: Wealth with deterministic and stochastic sharing policies (left and right). Since the latter con-
siders few scenarios with little dispersion, the pattern of the bars is similar to the deterministic case. For
level 1, any configuration of parameters above the dashed horizontal line is acceptable. For levels 2 and 3,
the best is to get the closest to the solid horizontal line. In the stochastic model, the rightmost configura-
tions that are satisfactory for the three levels are τ2�1 = τ3�2 ≥ 0.7, whereas τ2�1 = τ3�2 ≥ 0.3 suffices
in the deterministic case. With the stochastic model and for τ2�1 and τ3�2 closer to 1, level 1 profit (the
blue section of the bar) is close to the one obtained with the social profit (indicated by the solid horizontal
line). With those configurations level 1 achieves a gain comparable to the individualistic policy (the dashed
line) only after receiving a payment from level 2. For those configurations, the uphill level l = 1 behaves
similarly to a confiscatory agent.

worldwide. While being a topic of high applied value for countries like Brazil and Canada, it also involves
the practical solution of advanced game-theoretic models, some of which do not have effective solution
strategies yet, see [FP03]. Our proposal provides a response in that direction, as it guarantees a more
efficient management of the overall system. The methodology is shown to terminate finitely for the de-
terministic and two-stage settings. The approach can be applied to nested multi-stage stochastic programs
thanks to the innovative concept of floating cuts defined symbolically in an SDDP framework.
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A Appendix with tables

Table 3: Deterministic run, Algorithm 1, values in Figure 2.

Policy Type Profit l = 1 Profit l = 2 Profit l = 3 Tot. Profit
Social 332.17 439.23 718.04 1489.45
Individual +4.18% -5.97% -3.73% -2.62%
τ2�1 = τ3�1 = τ3�2 = 0.02 +4.18% -5.97% -3.73% -2.62%
τ2�1 = τ3�1 = τ3�2 = 0.05 +4.18% -5.59% -3.70% -2.50%
τ2�1 = τ3�1 = τ3�2 = 0.10 +4.40% -3.35% -2.81% -1.36%
τ2�1 = τ3�1 = τ3�2 = 0.20 +5.32% -1.66% -2.40% -0.04%
τ2�1 = τ3�1 = τ3�2 = 0.40 +8.36% -2.00% -3.21% -0.02%
τ2�1 = τ3�2 = 0.20, τ3�1 = 0.00 +4.58% -3.48% -2.68% -1.29%
τ2�1 = τ3�2 = 0.40, τ3�1 = 0.00 +6.19% -2.19% -2.36% -0.04%
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Table 5: This table continues the analysis of Table 4. It shows the percentage variations of profits relative
to the social policy after the profit-sharing payments. Recall that the payments are based on what exceeds
the individualistic profits. It is interesting to note the results for τ2�1 and τ3�2 closer to 1. The profits before
profit-sharing payments are closer to social profits and after the payments are closer to the individualistic
profits. In these cases, hydro l = 1 acts analogously to a confiscatory agent.

Deterministic Stochastic (Expected Value)
Policy Type Profit l = 1 Profit l = 2 Profit l = 3 Profit l = 1 Profit l = 2 Profit l = 3

Individual +12 % -22 % -12 % +12 % -20 % -11 %
τ2�1 = τ3�2 = 0.05 +12 % -21 % -12 % +11 % -19 % -10 %
τ2�1 = τ3�2 = 0.10 +12 % -16 % -09 % +09 % -15 % -08 %
τ2�1 = τ3�2 = 0.20 +13 % -16 % -09 % +11 % -13 % -08 %
τ2�1 = τ3�2 = 0.30 +15 % -09 % -07 % +13 % -10 % -07 %
τ2�1 = τ3�2 = 0.40 +19 % -10 % -07 % +14 % -10 % -07 %
τ2�1 = τ3�2 = 0.50 +22 % -08 % -07 % +17 % -10 % -07 %
τ2�1 = τ3�2 = 0.60 +27 % -10 % -08 % +19 % -11 % -07 %
τ2�1 = τ3�2 = 0.70 +31 % -12 % -09 % +32 % -11 % -08 %
τ2�1 = τ3�2 = 0.80 +40 % -14 % -10 % +35 % -13 % -09 %
τ2�1 = τ3�2 = 0.90 +47 % -18 % -11 % +39 % -17 % -10 %

Table 4: Stochastic run with profit sharing, values in Figure 7. The values reported are raw profits before
any transfer. Percentage variations of the profits after transfer are reported in Table 5.

Deterministic Stochastic (Expected Value)
Policy Type Profit l = 1 Profit l = 2 Profit l = 3 Profit l = 1 Profit l = 2 Profit l = 3
Social 108.31 146.24 230.76 109.87 143.40 227.20
Individual 121.50 114.74 202.67 123.12 114.40 202.43
τ2�1 = τ3�2 = 0.05 121.48 115.21 202.67 122.25 116.80 205.52
τ2�1 = τ3�2 = 0.10 120.74 123.07 209.98 119.33 121.81 208.93
τ2�1 = τ3�2 = 0.20 120.74 122.78 211.76 119.40 126.09 211.32
τ2�1 = τ3�2 = 0.30 117.29 135.11 221.22 118.34 131.47 215.65
τ2�1 = τ3�2 = 0.40 117.30 135.11 221.22 115.87 133.04 217.70
τ2�1 = τ3�2 = 0.50 113.15 141.27 227.38 114.54 134.41 219.19
τ2�1 = τ3�2 = 0.60 111.68 143.92 227.38 109.61 136.78 222.52
τ2�1 = τ3�2 = 0.70 109.87 143.40 227.20 112.99 142.60 226.89
τ2�1 = τ3�2 = 0.80 109.06 146.24 229.70 107.68 144.28 228.38
τ2�1 = τ3�2 = 0.90 108.31 146.24 230.76 106.73 143.14 227.76

29



B Stochastic Algorithm with Cost Sharing
We now give the precise description of the stochastic cost sharing method. The notation is the same of
Section 4, except that the forward iterates associated with a forward path of scenarios s = (s1, . . . , sT )

is denoted as by Ẑt
l = (x̂tl,s, . . . , x̂

(T−1)
l,s ), where x̂tl,s = x̂tlw, w = st, and with ẐT

l an empty vector. The
sequence of Algorithms 4 to 9 matches the sequence of steps described in Section 4. The name of those
steps related to a forward-backward SDDP pass is shortened to FB Pass, for convenience.
Note that at the initialization step of Algorithm 4 we set x̂t−1,kl+1,ω = 0 and x̂t−1,kl+2,ω = 0. The choice of the
value “zero” is irrelevant, since it is just the first trial point for the approximations of the value functions
and the value functions are initialized with −M . Therefore, any initial value for x̂t−1,kl+1,ω and x̂t−1,kl+2,ω gives
the same results.
It is extremely important to notice that ideally, the algorithm would have to be able to generate cutting
plane approximations for the value functions at different levels, such that the cuts are tight are the Nash
triples. However, computing the Nash triples is hard. For this reason, we calibrate the value functions at
the best-response iterates.

Algorithm 4 STOCHASTIC ALGORITHM WITH COST SHARING (PART 1)

Initialization. Take ε ≥ 0 and a sufficiently large constant M > 0. Set k = 1. For l = 1, 2, 3, and t ≥ 2, let
Qt,k

l,s ≡ −M and U t,k
l,s ≡ −M . For l = 1 and k = 1, set x̂t−1,k

l+1,ω = 0 and x̂t−1,k
l+2,ω = 0 for all t, ω, where ω

refers to the scenario.

Step 1: Sampling. Obtain a sample skt ∈ {1, . . . , S} for each t = 1, . . . , T.

Step 2: Get Feasible Iterates at l = 1. For each t = 1, . . . , T, take s = skt and ω = skt−1, and compute

x̂tkl,s solving

{
min f t

l,s
>
y +Qt+1,k

l (y, Ẑt,k
l+1, Ẑ

t,k
l+2) + τ�lU

t,k
l+1,s(x̂

t−1,k
l+1,ω, x̂

t−1,k
l+2,ω, y)

s.t. y ∈ F t
l,s(x̂

t−1,k
l,ω ) .

For each t = T, . . . , 2 and for each r = 1, . . . , S, take ω = skt−1 and compute

xtkl,r solving

{
min f t

l,r
>
y +Qt+1,k

l (y, Ẑt,k
l+1, Ẑ

t,k
l+2) + τ�lU

t,k
l+1,r(x̂

t−1,k
l+1,ω, x̂

t−1,k
l+2,ω, y)

s.t. y ∈ F t
l,r(x̂

t−1,k
l,ω ) .

Step 3: Get Feasible Iterates at l = 2. For each t = 1, . . . , T, take s = skt and ω = skt−1, and compute

x̂tkl,s solving

{
min f t

l,s
>
y +Qt+1,k

l (y, Zt+1,k
l−1 , Ẑt,k

l+1) + τ�lU
t,k
l+1,s(x̂

t−1,k
l+1,ω, y)

s.t. y ∈ F t
l,s(x̂

t−1,k
l,ω , xtkl−1,s) .

For each t = T, . . . , 2 and for each r = 1, . . . , S, take ω = skt−1 and compute

xtkl,r solving

{
min f t

l,r
>
y +Qt+1,k

l (y, Zt+1,k
l−1 , Ẑt,k

l+1) + τ�lU
t,k
l+1,r(x̂

t−1,k
l+1,ω, y)

s.t. y ∈ F t
l,r(x̂

t−1,k
l,ω , xtkl−1,r) .

30



Algorithm 5 STOCHASTIC ALGORITHM WITH COST SHARING (PART 2)

Step 4: FB Pass at l = 3. For each t = 1, . . . , T, take s = skt and ω = skt−1, and compute

x̂tkl,s solving

{
min f tl,s

>
y +Qt+1,k

l (y, Zt+1,k
l−1 )

s.t. y ∈ F t
l,s(x̂

t−1,k
l,ω , xtkl−1,s) .

Step 4.1. Take QT+1,k+1
l = 0.

Step 4.2. For t = T, . . . , 2.

Step 4.2.1: Cut computation. For r = 1, . . . , S, compute

xtkl,r solving

{
min f tl,r

>
y +Qt+1,k+1

l (y, Zt+1,k
l−1 )

s.t. y ∈ F t
l,r(x̂

t−1,k
l,ω , xtkl−1,r) .

Obtain subgradients such that for all xt−1l , xtl−1,r and Zt+1
l−1 the value function

Qt
l,r(x

t−1
l , xtl−1,r, Z

t+1
l−1 ) lies above

Qt
l,r(x̂

t−1,k
l,ω , xt,kl−1,r, Z

t+1,k
l−1 ) + (λt−1,kl )>(xt−1l − x̂t−1,kl,ω ) +

(µt,k
l−1,r)

>(xtl−1,r − x
t,k
l−1,r) + (νt+1,k

l−1 )>(Zt+1
l−1 − Z

t+1,k
l−1 ).

(25)

Step 4.2.1: Cut Aggregation. Average the cuts in (25) to obtain a cut such that
Qt

l,r(x
t−1,k
l , Zt

l−1) lies above

Qt
l,r(x̂

t−1,k
l,ω , Ztk

l−1) + (φt−1,kl )>(xt−1l − x̂t−1,kl,ω ) + (ρtkl−1)
>(Zt

l−1 − Ztk
l−1). (26)

Define Qt,k+1
l,r as a maximum between Qt,k

l,r and (26).

Step 4.3: Calculation of Bounds. Take ukl =
∑

t f
t
l,sx̂

t
l,s where s = skt . Take ukl as the

optimal value of the first state problem after the backward step (Step 4.2).

Algorithm 6 STOCHASTIC ALGORITHM WITH COST SHARING (PART 3)

Step 5: Cost-Sharing to l = 2. For each stage t = 1, . . . , T and each scenario s = 1, . . . , S, take
ω = skt−1 and compute subgradients

(αk
lts, β

k
lts) ∈ ∂U t

l+1,s(x̂
t−1,k
l+1,ω, x

tk
l,s).

Then, take U t,k+1
l+1,s as a maximum between U t,k

l+1,s and the affine function

U t
l+1,s(x̂

t−1,k
l+1,ω, x

tk
l,s) + (αk

lts)
>(xt−1l+1 − x̂

t−1,k
l+1,ω) + (βk

lts)
>(xtl,s − xtkl,s).

Note that the variables are xt−1l+1 and xtl,s, which represent, respectively the forward decision at stage
t− 1 at level 3 and the decision taken at scenario s and stage t at level 2.
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Algorithm 7 STOCHASTIC ALGORITHM WITH COST SHARING (PART 4)

Step 6: FB Pass at l = 2. For each t = 1, . . . , T, take s = skt and ω = skt−1, and compute

x̂tkl,s solving

{
min f t

l,s
>
y +Qt+1,k

l (y, Zt+1,k
l−1 , Ẑt,k

l+1) + τ�lU
t,k+1
l+1,s (x̂

t−1,k
l+1,ω, y)

s.t. y ∈ F t
l,s(x̂

t−1,k
l,ω , xtkl−1,s) .

Step 6.1. Take QT+1,k+1
l = 0.

Step 6.2. For t = T, . . . , 2.

Step 6.2.1: Cut computation. For r = 1, . . . , S, compute

xtkl,r solving

{
min f t

l,r
>
y +Qt+1,k+1

l (y, Zt+1,k
l−1 , Ẑt,k

l+1) + τ�lU
t,k+1
l+1,r (x̂

t−1,k
l+1,ω, y)

s.t. y ∈ F t
l,r(x̂

t−1,k
l,ω , xtkl−1,r) .

Obtain subgradients such that for all xt−1
l , xtl−1,r, x

t−1
l+1 , Ẑ

t
l+1 and Zt+1

l−1 the value function
Qt

l,r(x
t−1
l , xtl−1,r, x

t−1
l+1 , Ẑ

t
l+1, Z

t+1
l−1 ) lies above

Qt
l,r(x̂

t−1,k
l,ω , xt,kl−1,r, x̂

t−1
l+1,ω, Ẑ

t,k
l+1, Z

t+1,k
l−1 ) + (λt−1,k

l )>(xt−1
l − x̂t−1,k

l,ω ) +

(µt,k
l−1,r)

>(xtl−1,r − xtkl−1,r) + (νt+1,k
l−1 )>(Zt+1

l−1 − Z
t+1,k
l−1 ) +

(ξt,kl+1,r)
>(xt−1

l+1 − x̂
t−1,k
l+1,ω) + (πt+1,k

l+1 )>(Ẑt
l+1 − Ẑt,k

l+1).

(27)

Step 6.2.1: Cut Aggregation. Average the cuts in (27) to obtain a cut such that
Qt

l,r(x
t−1,k
l , Zt

l−1, Ẑ
t−1
l+1 ) lies above

Qt
l,r(x

t−1,k
l , Ztk

l−1, Ẑ
t,k
l+1) + (φt−1,k

l )>(xt−1
l − x̂t−1,k

l,ω ) +

(ρtkl−1)
>(Zt

l−1 − Ztk
l−1) + (ψtk

l+1)
>(Ẑt−1

l+1 − Ẑ
t−1,k
l+1 ).

(28)

Define Qt,k+1
l,r as a maximum between Qt,k

l,r and (28).

Step 6.3: Calculation of Bounds. Take uk
l =

∑
t f

t
l,sx̂

t
l,s + τ�lu

k
l+1 where s = skt . Take uk

l as the
optimal value of the first state problem after the backward step (Step 6.2).

Algorithm 8 STOCHASTIC ALGORITHM WITH COST SHARING (PART 5)

Step 7: Cost-Sharing to l = 1. For each stage t = 1, . . . , T and each scenario s = 1, . . . , S, take
ω = skt−1 and compute subgradients

(αk
lts, β

k
lts, γ

k
lts) ∈ ∂U t

l+1,s(x̂
t−1,k
l+1,ω, x̂

t−1,k
l+2,ω, x

tk
l,s).

Then, take U t,k+1
l+1,s as a maximum between U t,k

l+1,s and the affine function

U t
l+1,s(x̂

t−1,k
l+1,ω, x̂

t−1,k
l+2,ω, x

tk
l,s)+(αk

lts)
>(xt−1l+1−x̂

t−1,k
l+1,ω)+(βk

lts)
>(xt−1l+2−x̂

t−1,k
l+2,ω)+(γklts)

>(xtl,s−xtkl,s).
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Algorithm 9 STOCHASTIC ALGORITHM WITH COST SHARING (PART 6)

Step 8: FB Pass at l = 1. For each t = 1, . . . , T, take s = skt and ω = skt−1, and compute

x̂tkl,s solving

{
min f tl,s

>
y +Qt+1,k
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Step 8.1. Take QT+1,k+1
l = 0.

Step 8.2. For t = T, . . . , 2.

Step 8.2.1: Cut computation. For r = 1, . . . , S, compute
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Obtain subgradients such that for all xt−1l , Ẑt
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t
l+2, x

t−1
l+1 , x

t−1
l+2) lies above

Qt
l,r(x̂

t−1,k
l,ω , Ẑtk
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Step 8.2.1: Cut Aggregation. Average the cuts in (29) to obtain a cut such that
Qt
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l,r (xt−1,kl , Ẑt−1
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l+2 ) as a maximum between Qt,k
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t−1
l+2 ) and

(30).

Step 8.3: Calculation of Bounds. Take ukl =
∑

t f
t
l,sx̂

t
l,s + τ�lu

k
l+1 where s = skt . Take ukl as

the optimal value of the first state problem after the backward step (Step 8.2).

Step 9: Stopping Test. Stop if for all l = 1, 2, 3 the average of ukl and ukl across k are close enough
or the lower bounds ukl stabilized. Else, set k = k + 1 and go back to Step 1.
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