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Abstract

Determining reliable price indicators in the long-term is fundamental for optimal manage-
ment problems in the energy sector. In hydro-dominated systems, the random components of
rain and snow that arrive to the reservoirs have a significant impact on the interaction of the
low-cost technology of hydro-generation with more expensive ones. The sample employed to
discretize uncertainty changes certain Lagrange multipliers that represent a marginal cost for
the power system and, therefore, changes the price signals. The effect of sampling in yielding
different price indicators can be observed even when running twice the same code on the same
computer. Although such values are statistically correct, the variability on the dual output
puts at stake economic analyses based on marginal prices. To address this issue, we propose a
dual regularization that yields reliable indicators for a two-stage stochastic model. It is shown
that the approach provides the minimal-norm multiplier of the energy management problem
in the limit, when certain parameter is driven to zero. The new method is implemented in a
rolling horizon mode for a real-life case, representing the Northern European energy system
over a period of one year with hourly discretization. When compared to SDDP, an established
method in the area, the approach yields a significant reduction in the variance of the optimal
Lagrange multipliers used to compute the prices.

1 Introduction

Energy problems provide a fertile field for application of mathematical optimization, [20], [3], [25],
[15], [18]. Modern energy markets involve a large number of technologies to generate electricity and
finding the best policy with lower prices is a challenging problem, [24]. This work considers long
term problems that Independent System Operators and agents in the business solve to obtain price
signals for hydro-dominated electric systems, similar to the setting in [4], [14], [5]. Hydro-power
has the particular capacity of providing a reserve of energy in the form of water in the reservoirs.
Since hydro-generation is cheaper than other sources, in places like Brazil and North Europe a
sound hydro-power management in the long term is absolutely essential for the proper functioning
of the whole energy system.
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Uncertainty in this setting plays a prominent role, as streamflow impact on the reservoir vol-
umes, and their level can deeply affect decisions to be taken. These problems are usually solved by
sampling methods such as the well-known Stochastic Dual Dynamic Programming (SDDP) method
[17]; see also [16]. The uncertain data is a sample with a set of scenarios, to which some probability
is attached. In the optimization problem, the objective function includes thermal generation costs
and load-shedding penalties, and in addition to operational constraints, generation must meet the
demand along the time horizon. The growth rate of the overall cost with respect to the demand,
or long-term marginal cost, is averaged over the different scenarios to compute a price signal. In
energy optimization terms, the price signal is related with the Lagrange multiplier associated at
an optimum with the demand constraint.

Having different scenarios for the streamflow results in different generation schedules to attend
the demand, and in different price signals. In the energy sector, price signals obtained with
fundamental models of the power system are used to guide the business decisions. Suppose the
company has two managers, say in two different locations. Each manager determines price signals
using a sample of the same size, but not necessarily the same scenarios. The underlying belief is
that, if the samples are sufficiently large, the multiplier empirical distributions obtained with both
samples will be alike. Hence, the two averaged prices will be similar; in some sense, statistically
the same. This is clearly desirable since then, as common sense dictates in this situation, our two
managers are likely to take similar business decisions. However, this is not what can be observed,
even in very simple examples. Being assimilated to a dual variable in an optimization problem
that often has a polyhedral feasible set, the price signal exhibits sharp variations and can lead to a
very different output. In the simple problem we use as an illustration in Sections 3.1 and 3.3, the
correct mean price signal is 0, but one manager obtains a positive price while the other manager
obtains the negative of the same value, only because of the difference in the respective samples.

In order to address this issue, in [12] we introduced a dual regularization approach to stabilize
Lagrange multipliers in two-stage stochastic programs. This is achieved by adding to the recourse
function a penalty given by a factor of certain square norm; see Section 3.2. The new recourse
function enjoys sound mathematical properties and, in the limit (as the penalizing factor goes to
zero), provides primal and dual solutions to the original problem. Most importantly, our approach
yields the minimal norm price signal in the multiplier set. The interest of this result is clear, since it
provides a mechanism of selection that is systematic, independent of the specific run. The approach,
which passes through a variational analysis and non-linear computational analysis perspectives,
was developed in [12] for a setting without upper bounds. Since variables like generation and
reservoir volumes are naturally bounded above, in this work we extend the theory in [12] to make
it applicable to energy problems.

The stochastic programming literature on stability is abundant when it comes to primal vari-
ables, ([11], [10], [13], [2]). The analysis of multipliers, or dual variables, is a different matter. The
only other study that we are aware of is [25], which deals with a problem in energy optimization, as
in this work, but adopts a different perspective. The approach therein is employed to solve a short-
term electricity production management problem that has 106 variables and 106 constraints. For
a power system with 200 plants, the model covers 48 hours that are discretized in half-hour steps,
see [7]. Because of the large scale and the practical necessity of solving the problem in a couple
of hours at most, certain subproblems that arise when applying Lagrangian relaxation cannot be
solved to optimality. The (inexact) oracle computing the problem data returns an approximation
that causes instability in the dual solution, when considering consecutive time steps (electricity
prices are not meant to jump in a bang-bang from one half hour to the next one). This phenomenon
occurs even when the inaccuracy is small. The article [25] proposes a regularization with respect
to total variation of price signals that yields satisfactory results when a bundle method handles the
inexactness. In the context of our work, uncertainty is in perturbations of the right-hand side of
some equality constraints of the stochastic optimization problem. We are interested in controlling
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the instability with respect to samples, and not with respect to time. Rather than modulating the
accuracy of information used to iteratively determine optimal Lagrange multipliers, our aim is to
maintain low the variance of the perturbation induced by a sampling process.

The contributions of this work are twofold. On the theoretical side, we extend the convergence
theorems in [12] to a more general feasible set, with box constraints, as needed for energy man-
agement problems. These results establish the link between the dual regularized problem and the
original one, and, most importantly, provide a way to find the minimal norm price signal in the
multipliers set. Also, we fully solve an analytical example that illustrates the aforementioned price
instability and its remedy. The second line of contributions is in the modeling and computational
areas. We show the effectiveness of our approach on a real-life case covering the Northern Euro-
pean region. Since our work deals with two-stage programs, that long term multi-stage problem is
solved by putting in place a rolling-horizon solving mechanism as in [6]; see also [1]. The procedure
moves week by week over a year, solving 53 two-stage stochastic programs in succession (one per
week of the year). Each one week two-stage problem is regularized using our approach. The result-
ing output provides input for the problem of the next week, therefore yielding an implementable
policy. The rolling-horizon policy is benchmarked against SDDP, by simulating the system opera-
tion over a high number of randomly generated scenarios, covering a large spectrum of foreseeable
futures. In the numerical assessment, that confirm the theoretical results, we analyze the price
distribution as well as the impact of regularization on the reservoirs levels, the hydro-generation,
and the interconnections between zones.

This work is organized as follows. The energy management problem and its notation is in-
troduced in Section 2. As our application is for the Northern European market, we focus on
this particular energy system, even if the model can also used for other regions with important
participation of hydro-power plants, including the Brazilian case. Section 3 examines the corre-
sponding price signals, illustrating with an analytical example their instability and explaining the
dual regularization proposed as stabilizing mechanism. In particular, Subsection 3.4 is devoted to
asymptotic results that describe the behavior of primal and dual regularized solutions when the
regularized problem approaches the original one. Finally, in Section 4 we present numerical results
for the Northern European energy system, including a comparison of the performance of SDDP
against our method, implemented in a rolling-horizon mode.

2 Formulation of the energy management problem

We are interested in the problem of managing in an optimal manner the generation of an energy
system, over a time horizon of 12 months, with weekly discretization. Generation optimization
problems in the long term can be found in the literature, with variations in the problem to be
solved, such as [7], [22], [5].

2.1 System and Nomenclature

Energy systems like the Northern European considered in our numerical experience involve several
balancing zones, as illustrated by the diagram in Figure 1. A zone can be a country (say Finland)
or a region in a country (say Norway 1 to Norway 5). Typically, intra-zone constraints are demand
satisfaction and water balance equations, while the overall balance of the system is achieved by
interconnections between the zones, as represented by the diagram in Figure 1.
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Figure 1: Energy system with balancing zones
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The notation for the different elements defining the optimization problem is given below.

� Sets:

– Scenarios s ∈ S each one with probability ps, representing uncertainty ξs on water
inflows, changing the hydro power availability.

– Time steps in the set {t ∈ T}.
– Balancing zones {zl, l ∈ L}.
– A zone zl has thermal power plants {i ∈ Il} and hydro-plants {j ∈ Jl}.
– For each l ∈ L, Fl is a set of zones connected with zl, to import or export energy. When

the zone has no connections, this set is empty.

� Variables at time t:

– A hydro-plant j ∈ Jl has reservoir level vt
j

and spillage sptj .

– The generated energy of thermal and hydro-power plants gtti . and ghtj , respectively.

– For each l ∈ L having nonempty set Fl, and for all l1 ∈ Fl, the energy exchanged
between zones zl and zl1 is ftl↔l1 .

– A possible deficit in generation of zone zl is represented by an artificial power plant in
the set Il, with very high generating cost and large capacity.

� Parameters:

– For the reservoir in hydro-plant j ∈ Jl, the water inflow I
t,s
j = Isj (ξ

s), noting that for

t = 1 this is a deterministic value: I
1,s
j = I1j , the same for all scenarios s. The reservoir

initial volume is v0j , its maximum and minimum levels are vj and vj, respectively.

– For thermal power plant i ∈ Il at time t, its maximum generation capacity gt
t
i and unit

generation cost Cti .

– The hydro-cost of hydro-power plant j ∈ Jl is null, and its maximum capacity gh
t

j .

– The bounds for the forward flow on interconnection between l ∈ L and l1 ∈ Fl 6= ∅ at
time t is ftl↔l1 . Similarly, the bound for the backward flow is ftl↔l1 .

– For zone zl at time t, the deterministic demand Dtl .

We now explain how to deal with uncertainty, in two stages.
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2.2 Two-stage stochastic programming model

For a fixed scenario s, the deterministic formulation for the problem of interest is

min
∑
t∈T

∑
l∈L

∑
i∈Il

Ctigt
t
i

s.t. vtj 6 v
t
j 6 v

t
j and 0 6 sptj , j ∈ Jl , l ∈ L , t ∈ T

0 6 ghtj 6 gh
t

j , 0 6 gtti 6 gt
t
i , j ∈ Jl , i ∈ Il , l ∈ L , t ∈ T

−ftl↔l1 6 ftl↔l1 6 ftl↔l1 , l ∈ L : l1 ∈ Fl 6= ∅ t ∈ T

vtj − v
t−1
j + ghtj + sp

t
j = I

t,s
j , j ∈ Jl , l ∈ L t ∈ T∑

j∈Jl

ghtj +
∑
i∈Il

gtti +
∑

l1∈Fl 6=∅

ftl↔l1 = Dtl , l ∈ L , t ∈ T .

(1)

Recall the demand equation involves no variables ftl↔l1 for zones zl without interconnections, as
in this case Fl = ∅. Note also that feasibility is ensured by the spillage and deficit (the artificial
power plant generation), which act as slack variables in the equality constraints.

For legibility, the stochastic version of the linear program (1) is now cast in an abstract format,
more suitable for our developments. To this aim, we adopt a two-stage approach to handle uncer-
tainty, splitting the time steps into two sets, T1 := {t ∈ T : t 6 t1} and T2 := {t ∈ T : t > t1}. Until
time t1 all data is known, with scenarios s corresponding to right-hand side uncertainty, relative
to times in T2: 

min 〈F1, x1〉+
∑
s∈S

ps 〈F2, xs2〉

s.t. 0 6 x1 6 b1
0 6 xs2 6 b2 for s ∈ S
Tx1 +Wx

s
2 = hs for s ∈ S .

(2)

The difference between (2) and the problems considered in [12] is in the upper bounds (x 6 b).
The formulation in [12] corresponds to taking b = +∞. Box constraints were not present in that
work but they are necessary in our energy problem. The new setting with more constraints changes
the multiplier set and for this reason requires a new convergence analysis, see Theorem 3.2.

As mentioned, the one-year horizon in our energy management problem (2) is handled in a
rolling-horizon mode, considering a sequence of two-stage programs (2), each one with T1 repre-
senting the number of hours in the first week under consideration (and T2 the rest of the year);
details are given in Section 4.1.1 below.

The relation between the abstract notation and the one in (1) is the following. Variables with
time index t 6 t1 define the first-stage decision vector

x1 :=
⋃
t∈T1

{(
vtj , sp

t
j ,gh

t
j )j∈Jl , (gt

t
i)i∈Il , (f

t
l↔l1)l1∈Fl 6=∅

)
: l ∈ L

}
, (3)

which is of “here-and-now” type. Since we consider that uncertainty reveals at time t1, all variables
with index t > t1 are of the “wait-and-see” type and, hence, denoted by xs2 for each scenario s:

xs2 :=
⋃
t∈T2

{(
vt,sj , spt,sj ,ght,sj )j∈Jl , (gt

t,s
i )i∈Il , (f

t,s
l↔l1)l1∈Fl 6=∅

)
: l ∈ L

}
.

The objective in (1) is likewise split, so that we have vectors F1 and F2 of appropriate dimensions
satisfying ∑

t∈T1

∑
l∈L

∑
i∈Il

Ctigt
t
i = 〈F1, x1〉 and

∑
t∈T2

∑
l∈L

∑
i∈Il

Ctigt
t,s
i = 〈F2, xs2〉 .

5



In a manner similar, the box constraints in (1), written for x1 and xs2, are rewritten

x1 6 b1 and xs2 6 b2 , s ∈ S ,

taking appropriate vectors b1 and b2. Although not present in (1), explicit upper bounds for the
spillage and interconnections (variables sptj and ftl↔l1) can be obtained from the water balance
and demand equality constraints.

Finally, notice that in (1) only the water balance equations couple time steps. In particular,
for t = t1 + 1, this gives an equality coupling components of xs2 with components of x1:

vt1+1,s
j − vt1j + gtt1+1,s

j + spt1+1,s
j = I

t1+1,s
j , j ∈ Jl , l ∈ L .

As usual in stochastic programming, this relation is expressed as

Tx1 +Wx
s
2 = hs ,

where the vector hs = h(ξs) has components given by the right-hand side terms I
t,s
j and Dtl1 . In

the abstract format, the demand equation:∑
j∈Jl

ghtj +
∑
i∈Il

gtti +
∑

l1∈Fl 6=∅

ftl↔l1 = Dtl , l ∈ L t ∈ T ,

is also incorporated in the constraint Tx1+Wx
s
2 = hs, by taking technology and recourse matrices

T and W of appropriate dimensions.

3 Reliability of price signals

The price signals given by the demand constraint correspond to components of the optimal mul-
tiplier associated with the last constraints in (2), with right-hand side vector hs, for s ∈ S. As
mentioned, a common practice in the energy sector is to average those signals and use the resulting
mean price to guide the company business strategies.

We start with a simple example showing that for the energy management problem (2) tak-
ing different scenario sets S1 6= S2 (with the same cardinality) can yield very different averaged
prices. We then extend to the box-constrained setting to the box-constrained setting the stabilizing
procedure introduced in [12], and show its convergence.

3.1 An illustrative particular case

Suppose in (2) the right-hand side vector hs = ξs is a particular realization of the continuous
variable ξ ∈ R, with cumulative distribution function denoted by P. The second-stage vectors xs2
have components (x+2 (ξ), x

−
2 (ξ)) ∈ R2, with respective scalar costs F+2 and F−2 , satisfying F−2 >

F+2 > 0. We furthermore take b1 ,b2 = +∞, x1 ∈ R and let T = 1, W = [1 − 1] so that the
optimization problem is

min F1x1 + E[F+2 x+2 (ξ) + F−2 x−2 (ξ)]
s.t. x1 > 0

x+2 (ξ) > 0 , x−2 (ξ) > 0 for a.e. ξ
x1 + x

+
2 (ξ) − x

−
2 (ξ) = ξ for a.e. ξ ,

with F1 > 0 and where the feasible set is assumed not empty for a.e. ξ. Rewriting this problem in
a two-level formulation,{

min F1x1 + E[Q(x1, ξ)]
s.t. x1 > 0

, Q(x1, ξ) :=

 min F+2 x
+
2 + F−2 x

−
2

s.t. x+2 , x−2 > 0
x+2 − x−2 = ξ− x1

(4)
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gives, by Linear Programming duality, that

Q(x1, ξ) :=

{
max π(ξ− x1)
s.t. −F−2 6 π 6 F+2 .

Therefore, the optimal multiplier associated with the affine constraint in (4) is

π(x1, ξ) :=

 −F−2 if ξ− x1 < 0
any element in [−F−2 , F+2 ] if ξ− x1 = 0

F+2 if ξ− x1 > 0 .
(5)

The recourse function can be written

Q(x1, ξ) = F−2 max(x1 − ξ, 0) + F+2 max(ξ− x1, 0),

yielding an explicit form for the expected value

E[Q(x1, ξ)] = F−2 P(ξ 6 x1) + F
+
2 P(ξ > x1) = F

+
2 + (F−2 − F+2 )P(ξ 6 x1) ,

and problem (4) boils down to

min
x1>0

F1x1 + E[Q(x1, ξ) = F+2 + min
x1>0

F1x1 + (F−2 − F+2 )P(ξ 6 x1) .

The cumulative distribution P(ξ 6 ·) is a non-decreasing function. Since, in addition, F1 > 0 and
F−2 > F+2 by assumption, the minimizer is x̄1 = 0. The corresponding optimal price distribution is

π̄(ξ) =

 −F−2 if ξ < 0
any element in [−F−2 , F+2 ] if ξ = 0

F+2 if ξ > 0 .

For simplicity, let F−2 = F+2 = F2 and suppose that ξ has a symmetric probability distribution
P. Then the continuous price signal for (4) has mean and variance

E[π̄(ξ)] = 0 and Var[π̄(ξ)] = E[π̄(ξ)2] = F22 . (6)

If the problem arises in a company with Manager 1 sampling only negative numbers while Manager
2 samples only positive numbers, then S1 ⊂ R− and S2 ⊂ R+ will respectively result in

∀s ∈ S1 π̄1(ξ
s) = −F2 =⇒ E[π̄1] = −F2 and Var[π̄1] = 0

∀s ∈ S2 π̄2(ξ
s) = F2 =⇒ E[π̄2] = F2 and Var[π̄2] = 0 .

(7)

These are very different (and wrong) empirical signals, no matter how large the samples are.
Of course, this example illustrates an extreme case and any intermediate situation between

the most wrong one (as above) and “right” ones (with S1 and S2 containing the same number of
positive and negative numbers) are possible. It is undeniable that the sampling method has an
impact in reducing variance. Nevertheless, the stochastic nature of the energy problem (2) still
remains, making the issue of producing reliable price signals a real concern for decision makers.

3.2 Dual Regularization of Two Stage Problems

We now extend to the box-constrained setting the stabilization device proposed in [12], to obtain
multipliers with minimum norm.
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Like for the simple example, consider the two-level reformulation of (2), min 〈F1, x1〉+
∑
s∈S

psQs(x1)

s.t. 0 6 x1 6 b1 ,
(8)

making use of the following recourse function, once more given in primal and dual forms:

Qs(x1) :=

 min 〈F2, x2〉
s.t. 0 6 x2 6 b2

Wx2 = hs − Tx1

=


max 〈π,hs − Tx1〉− 〈λ,b2〉
s.t. −λ+W>π 6 F2

λ > 0 .

(9)

Stability of the dual variables is achieved by considering the following regularized recourse
functions, depending on a parameter β > 0,

Qβ,s(x1) :=


max 〈π,hs − Tx1〉− 〈λ,b2〉− β

2 ‖π‖
2

s.t. −λ+W>π 6 F2
λ > 0 .

(10)

By construction, the maximizer π̄β,s(x1) is unique. Using once again duality,

Qβ,s(x1) =

{
min 〈F2, x2〉+ 1

2β‖h
s −Wx2 − Tx1‖2

s.t. 0 6 x2 6 b2 ,

whose solutions x̄β,s2 (x1) define a proxy for the multiplier π:

π̄β,s(x1) =
hs −Wxβ,s2 (x1) − Tx1

β
. (11)

Notice that neither the λ-components solving (10) nor the second-stage primal minimizers x̄β,s2 (x1)
are guaranteed to be unique. Also, with respect to [12], the upper bounds in our setting introduce
the multiplier λ, that was not present in that work.

Going back to the one-level formulation, instead of the linear program (2), we shall solve a
quadratic programming problem of the form

min 〈F1, x1〉+
∑
s∈S

ps
(
〈F2, xs2〉+

1

2β

∥∥∥hs −Wxs2 − Tx1∥∥∥2)
s.t. 0 6 x1 6 b1

0 6 xs2 6 b2 for s ∈ S .

(12)

With respect to our energy management problem (2), the rightmost term in the objective func-
tion above (with factor 1

β
) corresponds to relaxing the water balance equations. These are very

important constraints for long term optimal energy management problems. In our numerical ex-
periments in Section 4, for the Nordic energy system, the value of β is chosen so that the total
violation is smaller than 1% of the whole hydro-capacity, see Figures 5 and 6.

3.3 Back to the analytical case

The effects of our regularization can be examined for the illustrative problem from Section 3. For
a symmetric probability distribution and F−2 = F+2 = F2, the stabilized version of (4) is

{
min F1x1 + E[Q

β(x1, ξ)]
s.t. x1 > 0 ,

for Qβ(x1, ξ) =

 max (ξ− x1)π−
β

2
π2

−F2 6 π 6 F2 ,

(13)

8



which yields a proxy multiplier

πβ(x1, ξ) :=


−F2 if ξ− x1 < −βF2
ξ− x1
β

if ξ− x1 ∈ [−βF2,βF2]

F+2 if ξ− x1 > βF2 ,

(14)

to be compared with the multipliers (5), explicitly computed for the initial problem.
Continuing with the actions of our two managers, now solving the regularized problems, suppose

βk is sufficiently large for the inequality xk1 − βkF2 < 0 to hold. Even if Manager 1 still samples
only negative numbers, now the set S1 may contain scenarios for which ξs − xk1 ∈ [−βkF2, 0], with
prices possibly larger than −F2. Similarly, now Manager 2 can sample ξs ∈ [0, xk1 +βkF2] for some
s ∈ S2, thus also considering prices smaller than F2 when computing the mean. It is therefore
likely that the empirical expected prices will be closer to the true mean.

The result below formalizes this assertion. Recall from (6) that the moments for the price
signal at the solution x̄1 = 0 are

E[π̄(ξ)] = 0 and Var[π̄(ξ)] = F22 .

Proposition 3.1. Consider the simple problem (4), with minimizer x̄1 = 0 and let π̄(ξ) be an
optimal multiplier associated with the affine constraint in the recourse function Q(x̄1, ξ). The

following holds for
(
xk1 ,πk(ξ) = πβk(xk1 , ξ)

)
solving the regularized problem (13), written with

β = βk:
lim
βk→0

E[πk(ξ)] = E[π̄(ξ)] with Var[πk(ξ)] 6 Var[π̄(ξ)] . (15)

Proof. It is convenient to introduce the short notation

Γk− := P(ξ− xk1 6 −βkF2) , and Γk+ := P(ξ− xk1 > βkF2) ,

noting that, by the symmetry assumption and the fact that xk1 → x̄ = 0,

lim
βk→0

Γk+ = P(ξ > 0) =
1

2
= P(ξ 6 0) = lim

βk→0
Γk− . (16)

The average of prices (14) is

E[πk(ξ)] = F2(Γk+ − Γk−) +

∫xk1+βkF2
xk1−βkF2

ξ− xk1
βk

dξ .

To compute the limit, first bound the integral as follows:

−ΓkF2 6
∫xk1+βkF2
xk1−βkF2

ξ− xk1
βk

dξ 6 ΓkF2 ,

for
Γk := P(−βkF2 6 ξ− xk1 6 βkF2) .

Then, using that limβk→0 Γ
k = 0 , passing to the limit as βk → 0 in the inequalities below

F2(Γ
k
+ − Γk− − Γk) 6 E[πk] 6 F2(Γk+ − Γk− + Γk) , (17)

yields, together with (16), that limβk→0 E[πk] = 0, as claimed.
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To get the variance expression, since Var[π] = E[π2] − E[π]2, we first compute the term

E[πk(ξ)2] = F22(Γk+ − Γk−) +

∫xk1+βkF2
xk1−βkF2

(ξ− xk1 )
2

β2
k

dξ ,

and bound again the integral, as follows:

−ΓkF22 6
∫xk1+βkF2
xk1−βkF2

(ξ− xk1 )
2

β2
k

dξ 6 ΓkF22 .

Adding the negative of (17) gives

F2(Γ
k
+ − Γk− − Γk) 6 E[πk(ξ)2] − E[πk]F2(Γk+ − Γk− + Γk) .

Since Var[Z] = E[Z2] − E[Z]2 for any random variable Z, this means that

F2(Γ
k
+ − Γk− − Γk) 6 Var[πk] 6 F2(Γk+ − Γk− + Γk) .

Then, passing to the limit as βk → 0, gives the desired result.

The positive impact of the regularization is shown numerically in Figure 3 below. We consider a
normal distribution ξ ∼ N(0, 10), F2 = F1 = 5, and samples Ξ = {ξ1, . . . , ξS} with S = 200 elements.
We fix β = 1, and compute the numerical value for the multipliers π̄ and π̄β given in (5) and (14).
The respective histograms are shown in Figure 2.

Figure 2: Non-regularized (left) and regularized (right) price signal distributions

The histograms are consistent with the theory: on the left, the values of π̄ oscillate between
−5 and 5, (that is, −F2 and F2); on the right, the distribution of π̄β looks smoother.

To see the impact of regularization on the expected value and variance we repeated the same
test with different samples Ξn, n ∈ {1, . . . ,N} for N = 40.

The distribution of π̄β is computed using x̄β1 , the regularized primal solution for the one-level
regularized problem (13). The expected value and variance for the N = 40 samples are reported
in Figure 3.

Clearly, results cannot match exactly the theoretical ones because we are using a finite sample,
instead of the continuous normal distribution. Notwithstanding, the left plot in Figure 3 confirms
that the expected value is around zero, with the non-regularized model exhibiting a higher vari-
ability. On the right plot, on the other hand, we see that when β = 0 the variance indeed stays
close to 25 = 52 = F22, being significantly smaller for the regularized model.
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Figure 3: Expected value and variance for 40 samples

3.4 Asymptotic properties of the dual regularization

By the convergence theory in [12], as β→ 0, the proxy multiplier converges to the multiplier of the
original problem that has minimal norm. That work considers more general quadratic objective
functions, including possibly nonconvex but, as already mentioned, [12] only deals with equality
and nonnegativity (thus, lower bound) constraints. We show how to adapt the theory for problems
with upper bounds as in (2). Basically, the results from [12] can be in some instances specialized,
and in other instances slightly extended, to the current setting.

To cast (2) and (12) in the the setting of [12], suppose the scenario set is S := {1, . . . ,S} denote
by n1 and n2 the respective dimensions of x1, xs2 defined in (3). We define the vectors

x := (x1, x12, . . . , xS2 ) ∈ Rn , where n := n1 + n2S ,

g := (F1,p1F2, . . . ,pSF2) ∈ Rn ,

a := (h1, . . . ,hS) ∈ RmS ,b := (b1,b2, . . . ,b2) ∈ Rn .

and the mS× n matrix

A :=


T W 0 . . . 0

T 0 W
. . .

...

T
...

. . .
. . . 0

T 0 . . . 0 W

 , (18)

where m is the dimension of hs. With this notation, problem (2) becomes min 〈g, x〉
s.t. Ax = a

0 6 x 6 b .
(19)

The multiplier associated with the constraint Ax = a in (19) is denoted π, while the box-constraint
multipliers are denoted by µ and λ, respectively for the lower and upper bounds. The convergence
results for our regularization are given below.

Theorem 3.2 (Primal and dual convergence in the setting of problem (19)).
Consider the penalization problem (12), which writes down as{

min 〈g, x〉+ 1
2β‖Ax− a‖

2

s.t. 0 6 x 6 b ,
(20)
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Let the triplet (xk,µk, λk) denote the optimal primal and dual solutions (Lagrange multipliers) to
(20), written with β = βk, and let πk := (Axk − a)/βk.

If βk+1 < βk for all k, and βk → 0, the following holds:

(i) The primal sequence {xk} is bounded and any of its accumulation points minimizes (19).

(ii) Let {xkj } → x̄ as j → ∞ and let N{06x6b}(x̄) denote the cone normal to the box-constraints
at x̄. If the condition

Im(A>) ∩N{06x6b}(x̄) = {0} (21)

holds, then {µkj } and {λkj } are bounded. Moreover, for any accumulation point (µ̄, λ̄) of the
subsequence {(µkj , λkj)}, the corresponding subsequence {πkj } converges to π̂, the solution of:

min
1

2
‖π‖2s.t. g+A>π− µ̄+ λ̄ = 0. (22)

The point (x̄, π̂, µ̄, λ̄) is a primal-dual solution of (19).

Proof. Item (i) is immediate: Every sequence {xk} generated by the method is automatically
bounded (and thus has a convergent subsequence), because the set X = {0 6 x 6 b} is compact.
Then, every accumulation point of {xk} is a solution of (19), by [12, Thm. 3.4].

We proceed to item (ii). By KKT conditions for (20), we have that

g+
1

βk
A>(Axk − a) − µk0 + µkb = 0,

xk > 0, µk0 > 0, 〈µk0 , xk〉 = 0, xk 6 b, µkb > 0, 〈µkb, xk − b〉 = 0.
(23)

Recalling the definition of πk and setting µk := µkb − µ
k
0 , we obtain that

g+A>πk + µk = 0. (24)

Let {xkj } → x̄ as j → ∞. We next prove that the sequence {(µ
kj
0 ,µ

kj
b )} is bounded. To that

end, using the second line in (23), first observe the following:

(µk0 )i > 0 ⇒ xki = 0 ⇒ (µkb)i = 0, µki = −(µk0 )i < 0,
(µkb)i > 0 ⇒ xki = b ⇒ (µk0 )i = 0, µki = (µkb)i > 0.

(25)

From those relations, it is obvious that {(µ
kj
0 ,µ

kj
b )} is bounded if and only if {µkj } is bounded.

Next, similarly to the proof of [12, Thm. 3.4], suppose by contradiction that (23) (and thus
(24)) hold with ‖µkj‖ → +∞. Passing onto a subsequence, if necessary, let {µkj/‖µkj‖}→ µ̄ 6= 0.
Denote ukj = −A>πkj/‖µkj‖ ∈ ImA>. Dividing the equality in (24) by ‖µkj‖ and passing onto
the limit as j→∞, it follows that

ukj = (g+ µkj)/‖µkj‖ → µ̄ 6= 0.

As ukj ∈ ImA>, ukj → µ̄, and ImA> is closed, we conclude that µ̄ ∈ ImA>.
Observe now that from (25) it follows that

µ̄i < 0 ⇒ x̄i = 0 and µ̄i > 0 ⇒ x̄i = b.

This shows that µ̄ ∈ NX(x̄). As µ̄ 6= 0 and µ̄ ∈ ImA>, we obtain a contradiction with (21). It

follows that {µkj } is bounded. And as already observed from (25), this means that {µ
kj
0 } and {µ

kj
b }

are bounded. The proof that the corresponding subsequence {πkj } converges to π̂, the solution of
(22), is analogous to that in Theorem [12, Thm. 3.4].
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Some comments are in order about the relations between the statements in Theorem 3.2 and
those in Theorems 3.3 and 3.4 in [12]. The fact that all accumulation points of {xk} are solutions
to (19) is a standard property of exterior penalty methods, see [12, Thm. 3.1] and accompany-
ing comments. However, the existence of accumulation points (i.e., boundedness of {xk}) is not
automatic. In [12, Thm. 3.3], boundedness of the primal sequence was established under certain
assumptions. Note that in the current setting we do not need any assumptions, as (20) has box-
constraints (and so its feasible set is compact). Condition (21) can be interpreted as a partial
Mangasarian–Fromovitz condition; see [12, Thm. 2.1] and the associated comments. Its role is
to ensure boundedness of the multipliers associated to box-constraints, while allowing the set of
multipliers associated to the equality constraints to be unbounded (and in particular, allow for the
matrix A to be not of full rank).

4 Benchmark for Northern European system

The energy system described in Section 2 has 12 bidding zones. Norway, with 5 zones, has the
largest percentage of hydro-energy generation, which amounts to an equivalent of 95% of its de-
mand. Other countries have several different sources of energy, Sweden has a large proportion of
nuclear generation, while in Denmark wind generation amounted to half of its demand in 2014. As
in the diagram in Figure 1, imports and exports are handled as interconnections between zones.
In total the system has L = 30 balancing zones, J = 21 hydro-power plants, and I = 224 thermal
power plants. Hydro-power plants are assumed to have no generation cost. Our model uses real
and estimated values from ENGIE’s database for historical inflows, thermal generation and im-
port costs, capacity of each power plant in the system, minimum and maximum level of reservoirs
and maximum flow between zones. Finally, the inflow uncertainty was generated by calibrating a
log-normal distribution over historical inflow scenarios.

As usual with multi-stage stochastic programs, the numerical assessment is split into two steps.
One defining implementable policies by solving the multi-stage energy problem, and a second phase,
simulating the system operation under the policy provided as an output of the optimization step.

4.1 Optimization Phase

Our goal is to compare the price signals obtained by SDDP on the original multi-stage problem
with our two-stage regularized approach running in a rolling-horizon mode, denoted below by
RRH. A third solver, RH, is the two-stage rolling-horizon algorithm without regularization. The
mechanism of rolling horizon put in place for both RH and RRH is described below.

4.1.1 Rolling-horizon Methodology

The time horizon of one year was discretized in t = 1, . . . , 8760 hours. At the first hour of each
week, the inflow uncertainty of the whole week becomes known. Since the year has 54 weeks, this
defines a multi-stage structure of uncertainty, that we cast in our two-stage setting as follows.

We put in place a rolling-horizon mode, in which we solve w = 1, . . . , 53 two-stage problems
derived from (1) in Section 2. In the w-th two-stage problem, the decision variables of the w-th
week are considered in the first stage. The uncertainty of the remaining w + 1, . . . , 54 weeks is
revealed at once, at the end of the week w and, hence, the corresponding decision variables are
considered in the second stage. Since one week has 168 hours, the time horizon of the w-th problem
covers Tw := (54−w+ 1)168 hours. The output of the w-th two-stage problem provides input for
the problem w+ 1, similarly to [6].

With this mechanism, the first-stage components of the decision vector of problem w are in
fact decision variables for the w-th week. Accordingly, if x̄β;w1 denotes the first-stage component
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of a solution obtained for the w-th two-stage problem, then the primal policy{
x̄β;w1 : w = 1, . . . , 52

}
(26)

is implementable, or nonanticipative, as defined in [21]. Another output, close to SDDP pricing
mechanism, is the following dual policy, also implementable, that gives a value to water:{

the cuts for E
[
Qβ,s;w(x̄β;w1 )

]
;w = 1, . . . , 53

}
. (27)

that is, the cuts of the successive expected recourse functions at a solution.
We now define mathematically the problem solved in a rolling horizon. In the next sections we

shall use this formulation as a reference to explain our simulations.
Following the notation introduced in section 2 to formulate the energy management problem,

for the w-th week we let

Tw = {t : 7(w− 1) < t 6 7w}, and Aw = {t : 7w < t}.

We write the problem for the w-th week as follows:

min
∑
t∈Tw

∑
l∈L

∑
i∈Il

Ctigt
t
i + E[Qβw(v7wj , Isj )]

s.t. vtj 6 v
t
j 6 v

t
j and 0 6 sptj , j ∈ Jl , l ∈ L , t ∈ Tw

0 6 ghtj 6 gh
t

j , 0 6 gtti 6 gt
t
i , j ∈ Jl , i ∈ Il , l ∈ L , t ∈ Tw

−ftl↔l1 6 ftl↔l1 6 ftl↔l1 , l ∈ L : l1 ∈ Fl 6= ∅ , t ∈ Tw

vtj − v
t−1
j + ghtj + sp

t
j = Itj , j ∈ Jl , l ∈ L , t ∈ Tw∑

j∈Jl

ghtj +
∑
i∈Il

gtti +
∑

l1∈Fl 6=∅

ftl↔l1 = Dtl , l ∈ L , t ∈ Tw .

where v
7(w−1)
j is the reservoir level decision that had been made in the (w− 1)-th week. Here, Itj

is random, but it does not depend on the scenario s. The sequence (Itj,w), where t ∈ Tw is a path
in the tree of scenarios.

The regularized recourse functions defined in the second stage are

Qβw(v7wj , Isj ) :=

min
∑
t∈Aw

∑
l∈L

∑
i∈Il

Ctigt
t
i + 1

2β‖v
7n+1
j − v7wj + gh7w+1

j + sp7w+1
j − I

7w+1,s
j ‖2

s.t. vtj 6 v
t
j 6 v

t
j and 0 6 sptj , j ∈ Jl , l ∈ L, t ∈ Aw

0 6 ghtj 6 gh
t

j , 0 6 gtti 6 gt
t
i , j ∈ Jl , i ∈ Il , l ∈ L, t ∈ Aw

−ftl↔l1 6 ftl↔l1 6 ftl↔l1 , l ∈ L : l1 ∈ Fl 6= ∅, t ∈ Aw

vtj − v
t−1
j + ghtj + sp

t
j = I

t,s
j ↔ πt,sj , j ∈ Jl , l ∈ L, , t ∈ Aw∑

j∈Jl

ghtj +
∑
i∈Il

gtti +
∑

l1∈Fl 6=∅

ftl↔l1 = Dtl , l ∈ L , t ∈ Aw ,

where I
t,s
j is random and depends on the scenario s. When β = 0, the constraint moves from the

objective function to the feasible set.
In this notation the sequence

{
x̄β;w1 : w = 1, . . . , 52

}
from (26) corresponds to the reservoir level

x̄β;w = (v7wj ), while the cuts for the function E
[
Qβ,s;w(x̄β;w1 )

]
in (27) are expressed in terms of

the couple (π̄7w+1
j,k , δwit), for each iteration k, where π̄7n+1,k

k > 0, and:

14



π̄7w+1,k
j,it =

1

S

∑
s

π7w+1,k,s
j,it ,

δwk =
1

S

∑
s

Qw,k(v
7w
j , Is) −

∑
j

π̄7w+1,k
j,k v7wj .

We note that the regularized problem above differs slightly from the abstract formulation (2).
The latter includes in the penalization, via the definitions of T and W, both the water balance
and demand constraints. In the problem above, by contrast, we only penalize the water balance,
to simplify the implementation. For these problems, if the reservoir levels are kept below their
maximal capacity, the Lagrange multipliers of the demand and water balance equation coincide
(in the figures below, with the reservoir dynamics after the optimization and simulation phases,
the maximum capacity is never reached).

4.1.2 Results for the optimization phase

The optimization part of the experiment uses an in-sample set with 30 inflow scenarios and takes
β := 7000 for RRH (below we explain that with this value, the magnitude of the violation incurred
by RRH is less then 1% for the whole system). The SDDP method takes one scenario randomly in
the forward pass and all the 30 scenarios in the backward pass. The rolling-horizon variants take
the same forward scenario, for the different weeks w = 1, 2, . . ., including the 30 scenarios from
week w+ 1 to week 48 in the second stage of the w-th two-stage problem.

The aggregate reservoir management (adding all the hydro-plants), is shown in Figure 4, where
colors correspond to the different weeks. The values are normalized with respect to the maximum
system capacity.

Figure 4: Aggregate reservoir management - optimization phase

It is important to explain that the SDDP curve was made running the SDDP algorithm and
storing cuts, that estimate the future cost function, until SDDP converges. Having these cuts as
input, we then ran a forward path of SDDP following the same path considered by RH and RRH,
making a fair comparison between these tree models.

The levels of reservoirs with the rolling-horizon modes are lower, with the RRH using the most
of water. Since SDDP sees a larger portion of the scenario tree in the backward pass (not only
the tail of the weeks w + 1, . . . , 54), SDDP water management is more conservative. Regarding
the comparison between RRH and RH, note that the inequality Qβ,s(·) 6 Qs(·) always holds
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(the feasible set defining the former is included in the one defining the latter). Having an under-
estimation of the future-cost function, RRH tends to be less conservative than RH, keeping less
water in the reservoirs.

Since RRH does not consider the water-balance equations, in Figure 5 we examine the gap

vtj − v
t−1
j + ghtj + sp

t
j − I

t,s
j

over the first 48 weeks for s = 1, . . . , 12 scenarios (different colors in the figure), for two hydro-plants
in Norway.

Figure 5: Absolute violation of water balance - Hydro-plants 1 and 3 in Norway (left and right)

We note that the system exploits the most the possibility of not satisfying the water-balance
equation in the beginning of the year, when inflows are smaller. In order to determine the real
extent of the violation, relative to the total hydro-capacity, we use the expression for the multiplier
proxy

πβ(ξ) =
Tx1 +Wx2(ξ) − h(ξ)

β
,

to estimate the gap by βπβ(ξ). Since β = 7000 and the price signals are about 102, the magnitude
of the violation incurred by RRH is of order 105. This is consistent with the graphs in Figure 5.
The whole hydro-capacity being about 107, the gap is less then 1% for the whole system. The
mean violation, in relative values, over the 30 scenarios and all the hydro-power plants, is shown
in Figure 6 for the first 48 weeks.

Figure 6: Relative mean violation of water balance in the whole system
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4.2 Simulation phase

We now assess the quality of the policies obtained by the three solvers on an out-of-sample set
with 200 scenarios. After the optimization phase, we simulate different scenarios as input data
and examine the Wasserstein distance between the histograms of the respective price signals, [23].
We expect to obtain similar expected values for the three solvers, but a smoother distribution for
RRH. A similar measure for the quality of optimal decisions is considered in [9], to assess a proposal
to build a scenario tree that preserves certain essential statistical properties. The different trees
generated with their approach maintain the optimal value of the considered optimization problem.
The rationale is that if the relevant statistical information is captured by the method, the result
should not vary too much with the data input. Along these lines, in [8] it is shown that primal
regularization does not affect the statistical properties of the solution and the number of iterations
required by algorithms based on cutting planes. In our tests, solving the regularized model required
slightly more iterations.

4.2.1 Primal Simulation

This is the primal policy (26) available only with the rolling-horizon solvers RH and RRH. It is not
possible to benchmark the output with SDDP because this (multi-stage) method lacks a primal
policy. The comparison with SDDP is done in the next section, when assessing the dual policies.

For this simulation we keep the fist-stage decisions: (v7j , v
14
j , . . . , v7×52j ) that come from opti-

mization part and simulate the cost-to-go function with new scenarios (Itj ), t ∈ Aw, in the w-th
week. For 200 out-of-sample scenarios, Figure 7 shows the performance of both RH and RRH in
terms of distribution of the price signals.

RH RRH with β = 7000

Figure 7: Mean price signals of the first 25 weeks, simulated with primal policy of RH and RRH

We observe that the regularized price signal has a smooth distribution, and RRH is less sus-
ceptible than RH to variations of different samples. The right graph in Figure 7 is repeated on
the left in Figure 8, to contrast the difference in RRH’s price distribution when increasing the
regularization parameter (on the right, β = 100000).

In the right histogram in Figure 8 the shift to the left indicates a reduction in the price signals.
This is in agreement with the optimization phase: with the primal policy, the higher β, the lower
the reservoir levels. Table 1 shows the expected value and variance of the rolling-horizon variants.

RH RRH (β = 7000) RRH (β = 100000)
Mean Value 61.22 54.93 13.8

Standard Deviation 16.2 14.31 11.34

Table 1: Price signal mean and deviation for one primal simulation
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RRH with β = 7000 RRH with β = 100000

Figure 8: Mean price signals, simulated with RRH primal policy with two different values for β

In order to evaluate the variability of the approaches under 15 different samples, in Table 2 we
measure the variation of the distributions using the Wasserstein distance. The figures in Table 2
show a clear drop in the standard deviation for RRH, reflected also in the Wasserstein distance.

RH RRH (β = 7000)
Mean (Samples) 61.28 53.95

Standard Deviation (Samples) 16.38 14.40
Wasserstein Distance 28.16 15.78

Table 2: Price signal mean and deviation over different primal policies, first 25 weeks

Our final Figure 9, with the level of the reservoirs in the balancing zone NO2 (Norway) shows a
typical behavior, observed for all the hydro-plants, with RH exhibiting a more erratic management
of the water and keeping lower levels, when compared to RRH. The reason why we see apparently
just one blue line is that all paths have close first-stage decisions.

Figure 9: Water management of NO2 with primal simulation

4.2.2 Dual Simulation

The dual policies (27) provided by RH and RRH, are compared with the cuts for the future-cost
functions obtained at the optimization phase with SDDP. Using the same set of scenarios employed
in the primal simulation reported in Figure 7, we obtain the output in Figure 10. We note that
prices vary between 0 and 100 for all approaches, with both SDDP and RH concentrating prices
mostly in extreme values and RRH having a better price distribution.
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RH RRH SDDP

Figure 10: Mean price signals of the first 25 weeks with dual simulation

The variability of the approaches under different samples, is reported in Table 3. Like with
the primal policy in Table 2, we observe once again, though this time with less expressive results,
more stability for RRH. Contrary to SDDP, the regularization approach RRH was able to reduce
the distance between histograms while keeping the expected value close to the one with RH.

SDDP RH RRH (β = 7000)
Mean (Samples) 68.2 57.93 58.08

Standard Deviation (Samples) 34.5 38.48 30.1
Wasserstein Distance 6.11 5.64 4.46

Table 3: Price signal mean and deviation over different dual policies, first 25 weeks

We finish our analysis comparing in Figure 11 different paths of the first-stage primal decision
that is, the level of reservoirs. Each path consists of a different sequence of scenarios. Each line
represents a path and each color a different algorithm.

Figure 11: Reservoir dynamics

We observe a similar behavior as with the primal simulation for RH and RRH. For some paths,
the curve of the reservoir level in SDDP is distant from the mean curve, as with SDDP prices vary
the most. This is a consequence of the prudence of SDDP that, when confronted to a sequence of
more favorable scenarios, is forced to a change, with respect to the initial conservative perspective.
In terms of quality of the output under simulation, our RRH approach seems to be more stable
for the considered sets of runs.

To conclude, we note that the best choice for the penalization/regularization parameter is
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clearly problem dependent. In our runs, setting its value to β = 7000 was driven by the constraint
violation percentage, inferior to 1%, for the water balance equation.

Concluding Remarks

In many applications dual variables are an important output of the solving process, due to their
role as price signals. When dual solutions are not unique, different solvers or different computers,
even different runs in the same computer if the problem is stochastic, end up with different price
indicators. Even though all of such values are correct, the fact that the obtained dual variable can
vary among many possibilities makes unreliable any economic analysis based on marginal prices.
We have presented an approach that yields reliable indicators, by providing the minimal-norm
multiplier. Our computational experience, both proof-of-concept and on a real-life problem of
ENGIE, shows the benefits of the methodology for two-stage stochastic linear programs.

The best choice for the penalization/regularization parameter β is clearly problem dependent.
In [12] we propose a performance index similar to the solution concept called compromise decision
in [19], but adopting a dual point-of-view, to measure bias and variance in multiple replications
of sampling-based approximations of two-stage stochastic programs. We observe empirically that
our approach yields a significant reduction in the variance of the dual solutions (optimal Lagrange
multipliers).
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