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LOCAL CONVERGENCE OF EXACT AND INEXACT AUGMENTED
LAGRANGIAN METHODS UNDER THE SECOND-ORDER

SUFFICIENT OPTIMALITY CONDITION∗

D. FERNÁNDEZ† AND M. V. SOLODOV‡

Abstract. We establish local convergence and rate of convergence of the classical augmented
Lagrangian algorithm under the sole assumption that the dual starting point is close to a multiplier
satisfying the second-order sufficient optimality condition. In particular, no constraint qualifications
of any kind are needed. Previous literature on the subject required, in addition, the linear indepen-
dence constraint qualification and either the strict complementarity assumption or a stronger version
of the second-order sufficient condition. That said, the classical results allow the initial multiplier
estimate to be far from the optimal one, at the expense of proportionally increasing the threshold
value for the penalty parameters. Although our primary goal is to avoid constraint qualifications,
if the stronger assumptions are introduced, then starting points far from the optimal multiplier are
allowed within our analysis as well. Using only the second-order sufficient optimality condition, for
penalty parameters large enough we prove primal-dual Q-linear convergence rate, which becomes
superlinear if the parameters are allowed to go to infinity. Both exact and inexact solutions of sub-
problems are considered. In the exact case, we further show that the primal convergence rate is of
the same Q-order as the primal-dual rate. Previous assertions for the primal sequence all had to do
with the weaker R-rate of convergence and required the stronger assumptions cited above. Finally,
we show that under our assumptions one of the popular rules of controlling the penalty parameters
ensures their boundedness.
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1. Introduction. Given twice continuously differentiable functions f : IRn → IR
and g : IRn → IRm, we consider the optimization problem

min f(x),
subject to (s.t.) gi(x) = 0, i = 1, . . . , l,

gi(x) ≤ 0, i = l + 1, . . . ,m,
(1.1)

where 0 ≤ l ≤ m. One of the fundamental approaches to solving (1.1) is the aug-
mented Lagrangian algorithm, also known as the method of multipliers. The method
dates back to [19, 26, 27, 28], and had been further developed and studied from vari-
ous angles in [33, 3, 10, 20, 13, 9, 32, 5, 1, 2, 6, 7, 23], among extensive other literature
(see also the monographs [4, 25, 12, 31]). Successful software based on the augmented
Lagrangians includes LANCELOT [11] and ALGENCAN [34].
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We next describe the basic iteration of the algorithm in question. The augmented
Lagrangian function for (1.1) is defined by L̄ : IRn × IRm × (0,∞) → IR,

L̄(x, μ; ρ) = f(x)+

l∑
i=1

(
μigi(x) +

ρ

2
gi(x)

2
)
+

1

2ρ

m∑
i=l+1

(max{0, μi+ρgi(x)}2−μ2
i ).(1.2)

Then given the current multiplier estimate μk ∈ IRm and the current penalty param-
eter ρk > 0, the (exact) augmented Lagrangian method generates the next iterate
(xk+1, μk+1) ∈ IRn × IRm as follows:

xk+1 is a solution of min
x∈IRn

L̄(x, μk; ρk),

μk+1
i = μk

i + ρkgi(x
k+1), i = 1, . . . , l,

μk+1
i = max{0, μk

i + ρkgi(x
k+1)}, i = l+ 1, . . . ,m.

(1.3)

Before explaining our contributions to the analysis of this algorithm, we need
to introduce some notation. Stationary points of problem (1.1) and the associated
Lagrange multipliers are characterized by the Karush–Kuhn–Tucker (KKT) system

0 =
∂L

∂x
(x, μ),

0 = gi(x), i = 1, . . . , l,
0 ≤ μi, gi(x) ≤ 0, μigi(x) = 0, i = l + 1, . . . ,m,

(1.4)

where L : IRn × IRm → IR is the Lagrangian function of problem (1.1), i.e.,

L(x, μ) = f(x) + 〈μ, g(x)〉.

We denote by M(x̄) the set of Lagrange multipliers of problem (1.1) associated with a
given stationary point x̄, i.e., μ ∈ M(x̄) if and only if (x̄, μ) satisfies the KKT system
(1.4). Let

I = I(x̄) = {i ∈ {1, . . . ,m} | gi(x̄) = 0}, J = J (x̄) = {1, . . . ,m} \ I

be the sets of indices of active and inactive constraints at x̄, respectively. For each
μ ∈ M(x̄), we introduce the following standard partition of the set I:

I1(μ) = {1, . . . , l} ∪ {i ∈ {l+ 1, . . . ,m} | μi > 0}, I0(μ) = I \ I1(μ).

The critical cone of problem (1.1) at its stationary point x̄ is given by

C(x̄) =
{
u ∈ IRn

∣∣∣∣〈f ′(x̄), u〉 = 0, 〈g′i(x̄), u〉 = 0 for i ∈ {1, . . . , l},
〈g′i(x̄), u〉 ≤ 0 for i ∈ {l + 1, . . . ,m} with gi(x̄) = 0

}
(1.5)

=
{
u ∈ IRn | g′I1(μ̂)

(x̄)u = 0, g′I0(μ̂)
(x̄)u ≤ 0

}
,

where the second equality is independent of the choice of μ̂ ∈ M(x̄).
We say that the second-order sufficient optimality condition (SOSC) is satisfied

at (x̄, μ̄) with μ̄ ∈ M(x̄) if〈
∂2L

∂x2
(x̄, μ̄)u, u

〉
> 0 ∀u ∈ C(x̄) \ {0}.(1.6)
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The usual convergence rate statements for the augmented Lagrangian meth-
ods assume the linear independence constraint qualification (i.e., that the gradients
{g′i(x̄), i ∈ I} are linearly independent, and hence the multiplier μ̄ ∈ M(x̄) is unique),
strict complementarity (i.e., μ̄i > 0 for all i ∈ I) and SOSC (1.6). The assertion is
that for any initial multiplier estimate μ0 if ρk ≥ ρ̂ > 0 for all k (the farther μ0 is
from the unique optimal multiplier μ̄, the larger the penalty parameter threshold ρ̂
should be), then the dual sequence generated by (1.3) converges to μ̄ with Q-linear
rate and the primal sequence converges to x̄ with R-linear rate. Convergence becomes
superlinear if ρk → +∞. Various versions of such statements can be found, e.g., in
[4, Prop. 3.2 and 2.7], [25, Thm. 17.6], [12], [31, Thm. 6.16]. Strict complementarity
is not assumed in [13], but a stronger version of second-order sufficiency is employed.
Strict complementarity is also not used in [20]. However, the linear independence
constraint qualification is required in all the literature.

In this paper, we prove that if the initial multiplier estimate μ0 is close enough to
μ̄ satisfying SOSC (1.6) and the penalty parameters are chosen large enough, then the
primal-dual sequence converges Q-linearly to (x̄, μ̂) with some μ̂ ∈ M(x̄). In particu-
lar, no constraint qualifications of any kind are needed. The multipliers set can even
be unbounded. Strict complementarity is also not assumed. As usual, convergence
becomes superlinear if ρk → +∞. However, in most implementations it is accepted
that the penalty parameters should stay bounded. In this respect, we show that they
indeed stay bounded under our assumption of SOSC (1.6), if updated as proposed in
[7]. This is also the first result to this effect not assuming any constraint qualifica-
tions. Both exact and inexact solutions of subproblems are considered. Furthermore,
for the exact solutions of subproblems we show that the primal convergence rate is
of the same Q-order as the primal-dual rate. To the best of our knowledge, this is
the first result asserting Q-rate of convergence (rather than the weaker R-rate) of the
primal sequence generated by the augmented Lagrangian method, under any assump-
tions. We also show that if the linear independence constraint qualification and the
strong second-order sufficient optimality condition are introduced, then initial values
of multiplier estimates far from the optimal one can be used in our analysis as well,
similar to the classical results.

It is worth commenting that when it comes to the need (or not) for constraint
qualifications, it is reasonable to conjecture that in augmented Lagrangian methods
they may be not required. Indeed, at least part of the role of constraint qualifications
in convergence analyses of optimization methods is to ensure that subproblems are
feasible; for example, when constraints are linearized as in the standard sequential
quadratic programming [8] or in the linearized (augmented) Lagrangian methods [24].
In such cases, some constraint qualification is clearly unavoidable. In the augmented
Lagrangian methods, on the other hand, subproblems are unconstrained and there
is no obvious reason why assumptions about the constraints should be required in
the analysis. Thus removing them from consideration looks appealing and potentially
possible. We note, in passing, that the situation is somewhat similar to the stabilized
sequential quadratic programming method, where constraint qualifications are also
not needed [17]. For this method feasibility of subproblems is also not an issue,
although the reason is different: subproblems are always feasible thanks to a certain
“elastic mode” feature.

Our approach to convergence of the augmented Lagrangian methods is in the
spirit of some recent analyses of Newtonian frameworks for generalized equations
in [18] and [21], and their applications to methods for constrained optimization in
[17, 16, 22]. The framework of [18] allows nonisolated solutions (and thus nonunique
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multipliers), and had been employed in [17, 22] to prove convergence of the stabilized
sequential quadratic programming method without assuming constraint qualifications.
The framework of [21] requires solutions to be isolated (thus the strict Mangasarian–
Fromovitz constraint qualification is needed), but reveals that Newtonian lines of
analysis might be applicable to some algorithms that are not commonly recognized as
being of Newton type, in the sense that their subproblems are not systems of equa-
tions or quadratic programs. For example, such is the case of the linearly constrained
augmented Lagrangian method [24], for which improved local convergence results have
been obtained in [21, 16] relating the method in question to a certain perturbation
of Newtonian iterates. The present paper develops Newtonian analysis of the aug-
mented Lagrangian method by combining the ideas of [18] in dealing with nonisolated
solutions in Newton methods with the ideas of [21, 16] in dealing with methods that
perhaps “do not look” like Newton methods, but can be reinterpreted in such terms
a posteriori by introducing perturbations. The applicability of this line of analysis to
the augmented Lagrangian method is actually somewhat surprising, considering that
no linear or quadratic approximations appear in (1.3).

In practice, subproblems of the augmented Lagrangian method are often solved
approximately, in the sense that the iterates of the unconstrained minimization method
used to minimize the augmented Lagrangian are truncated. Specifically, instead of
computing an “exact” minimizer in (1.3), a point xk+1 satisfying

∥∥∥∥∂L̄∂x (xk+1, μk; ρk)

∥∥∥∥ ≤ εk

is accepted, where εk ≥ 0 is the current approximation tolerance. In theoretical
analysis, {εk} is often an exogenous sequence of scalars converging to zero. In what
follows, we define εk as a specific computable quantity that depends on the violation
of KKT conditions (1.4) for problem (1.1) by the point (xk, μk). This technique is
also related to some truncation conditions used in [1]. Thus we prove convergence and
rate of convergence for both the inexact/truncated version and the exact method.

The rest of the paper is organized as follows. In section 2 we state our algo-
rithmic framework and interpret augmented Lagrangian iterates as perturbations of
solutions of generalized equations associated to the KKT conditions of the problem.
We also sketch the general lines of our convergence analysis. Details are worked out
in section 3. Section 4 presents some further related developments. In particular, in
section 4.1 we establish boundedness of the penalty parameters if the latter are gen-
erated by one of the popular update rules. Some relations with the classical results
are discussed in section 4.2, where it is shown that under the stronger assumptions
initial multiplier estimates far from the optimal one can be used in our analysis as
well. Section 4.3 explains that our results extend to the practically important case
where linear constraints of the problem are passed as constraints to the subproblems,
while the augmented Lagrangian involves general constraints only.

We finish this section by describing our notation. We use 〈·, ·〉 to denote the
Euclidean inner product, ‖ · ‖ the associated norm, B the closed unit ball, and I
the identity matrix (the space is always clear from the context). For any matrix M ,
MI denotes the submatrix of M with rows indexed by the set I. When in matrix
notation, vectors are considered columns, and for a vector x we denote by xI the
subvector of x with coordinates indexed by I. For a set S ⊂ IRq and a point z ∈ IRq,
the distance from z to S is defined as dist(z, S) = infs∈S ‖z− s‖. Then ΠS(z) = {s ∈
S | dist(z, S) = ‖z − s‖} is the set of all points in S that have minimal distance to z.
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388 D. FERNÁNDEZ AND M. V. SOLODOV

For a cone K ⊂ IRq, its polar (negative dual) is K◦ = {ξ ∈ IRq | 〈z, ξ〉 ≤ 0 for all z ∈
K}. Recall that for any closed convex cone K ⊂ IRq and z ∈ IRq it holds that

z̄ = ΠK(z) ⇔ K � z̄ ⊥ z − z̄ ∈ K◦,(1.7)

where the notation u ⊥ v means that 〈u, v〉 = 0. We use the notation ψ(t) = o(t) for
any function ψ : IR+ → IRq such that limt→0+ t

−1ψ(t) = 0.

2. The algorithmic framework and preliminary considerations. In this
section, we formally state the algorithm under consideration and discuss our interpre-
tation of its iterates as solutions of perturbed generalized equations associated to the
KKT system (1.4).

To simplify the notation, we define the closed convex cone

Q = {ν ∈ IRm | νi ∈ IR, i = 1, . . . , l; νi ≥ 0, i = l + 1, . . . ,m}.
Noting that Q◦ = {ξ ∈ IRm | ξi = 0, i = 1, . . . , l; ξi ≤ 0, i = l + 1, . . . ,m}, our
problem (1.1) takes the compact form

min f(x),
s.t. g(x) ∈ Q◦,(2.1)

with its KKT system (1.4) given by

0 =
∂L

∂x
(x, μ),

Q � μ ⊥ g(x) ∈ Q◦.
(2.2)

The violation of the KKT conditions (2.2) is measured by the natural residual σ :
IRn × IRm → IR+,

σ(x, μ) =

∥∥∥∥
[
f ′(x) + (g′(x))�μ
μ−ΠQ(μ+ g(x))

]∥∥∥∥ .(2.3)

In particular, σ(x, μ) = 0 if and only if (x, μ) solves (2.2). Define the function G :
IRn × IRm → IRn × IRm and the set-valued mapping N from IRn × IRm to the subsets
of IRn × IRm by

G(x, μ) =

[
∂L

∂x
(x, μ)

−g(x)

]
, N (x, μ) = {0} × NQ(μ),(2.4)

where

NQ(μ) =

{ {v ∈ IRm | 〈v, ν − μ〉 ≤ 0 ∀ν ∈ Q} if μ ∈ Q,
∅ otherwise

is the normal cone to Q at μ ∈ IRm. Then the KKT system (1.4) (or (2.2)) is further
equivalent to the generalized equation (GE)

0 ∈ G(w) +N (w), w = (x, μ) ∈ IRn × IRm.(2.5)

In the present notation, the augmented Lagrangian function (1.2) is

L̄(x, μ; ρ) = f(x) +
1

2ρ

(
‖ΠQ (μ+ ρg(x))‖2 − ‖μ‖2

)
,(2.6)
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and its derivatives are given by

∂L̄

∂x
(x, μ; ρ) = f ′(x) + (g′(x))�ΠQ(μ+ ρg(x)),

∂L̄

∂μ
(x, μ; ρ) =

1

ρ
(ΠQ(μ+ ρg(x)) − μ) .

For an arbitrary but fixed ĉ ∈ (0,+∞), we consider the following iterative pro-
cedure. Given a current iterate (xk, μk) ∈ IRn × Q with σ(xk, μk) > 0, a penalty
parameter ρk > 0, and an approximation parameter εk ≥ 0,

find xk+1 satisfying

∥∥∥∥∂L̄∂x (xk+1, μk; ρk)

∥∥∥∥ ≤ εk,(2.7)

∥∥∥∥
[

xk+1 − xk

ΠQ(μ
k + ρkg(x

k+1))− μk

]∥∥∥∥ ≤ ĉ σ(xk, μk),(2.8)

and set μk+1 = ΠQ(μ
k + ρkg(x

k+1)).(2.9)

Some comments are in order. The condition (2.8) is a localization-type condition.
Some condition of this kind is unavoidable in local convergence analyses of most algo-
rithms, and the augmented Lagrangianmethod is no exception [4, 25, 12, 31]. Without
extremely strong assumptions, the augmented Lagrangian may have stationary points
(as well as minimizers) arbitrarily far from the solution of interest (equivalently, from
the current iterate xk). Such points must be discarded in any meaningful local anal-
ysis. This is precisely the role of (2.8). In practical implementations, it is ignored,
of course. Another point is that this condition is formally not well-defined for k = 0
(the algorithm starts with the initial dual estimate μ0 ∈ Q and generates x1, i.e.,
we do not have x0). This detail should not introduce any confusion, however, as we
can think of (2.7)–(2.9) starting with the index k = 1. Alternatively, we could take
x0 arbitrary and fix ĉ a posteriori, after x1 is obtained, choosing it large enough to
satisfy (2.8) for k = 0.

We next relate the iterative process (2.7)–(2.9) to the study of GE (2.5) under
perturbations. By (2.7), there exists ϑ ∈ B such that

∂L

∂x
(xk+1, μk+1) + εkϑ = 0,

where we used the fact that

∂L

∂x
(xk+1, μk+1) =

∂L̄

∂x
(xk+1, μk; ρk).(2.10)

Also, by the definition of μk+1, we have that

μk + ρkg(x
k+1)− μk+1 ∈ NQ(μ

k+1).(2.11)

Hence,

0 ∈

⎡
⎢⎣

∂L

∂x
(xk+1, μk+1) + εkϑ

−g(xk+1) +
1

ρk
(μk+1 − μk)

⎤
⎥⎦+N (xk+1, μk+1).
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390 D. FERNÁNDEZ AND M. V. SOLODOV

Defining wk+1 = (xk+1, μk+1), we conclude that

0 ∈ G(wk+1) + pk +N (wk+1), where pk =

(
εkϑ ,

μk+1 − μk

ρk

)
, ϑ ∈ B.(2.12)

Thus, the behavior of the sequence generated by the augmented Lagrangian
method is connected to the study of solutions of GE (2.5) under perturbations of
the form in (2.12). There are some ingredients in our approach that are closely re-
lated to [18], where an analysis of a certain class of Newtonian methods for GEs is
presented. However, the framework of [18] is not applicable to our case. To see this,
it is enough to note that the penalty parameters ρk in (2.12) are not functions of the
problem variables, unlike the perturbation terms of the Newtonian iteration in [18].

Let Σ∗ be the solution set of the GE (2.5) (equivalently, of the KKT system (2.2))
and let Σ(p) be the solution set of its right-hand side perturbation, i.e.,

Σ(p) = {w ∈ IRn+m | 0 ∈ G(w) + p+N (w)}, p ∈ IRn+m.(2.13)

Let w̄ ∈ Σ∗ be a specific solution of the GE (2.5). The following upper-Lipschitzian
property of Σ(p) is one of the main ingredients in local analysis of a number of
algorithms for solving GEs and its special cases: there exist ε0, γ0, τ0 > 0 such that

Σ(p) ∩ (w̄ + ε0B) ⊆ Σ∗ + τ0‖p‖B ∀p ∈ γ0B.(2.14)

According to [18, Theorem 2], in the case of KKT systems the property (2.14) is
further equivalent to the first inequality in the following error bound:

β1 dist(w,Σ∗) ≤ σ(w) ≤ β2 dist(w,Σ∗) ∀w ∈ w̄ + εσB,(2.15)

where εσ > 0, β2 ≥ β1 > 0, and σ(·) is the natural residual of KKT conditions
defined in (2.3). The second inequality in (2.15) holds by the Lipschitz-continuity
of the natural residual. Furthermore, the property (2.14) is also equivalent to the
assumption that the multiplier μ̄ in w̄ = (x̄, μ̄) is noncritical as defined in [22]. We
shall not introduce the latter notion here, as for the purposes of this paper it is enough
to mention that SOSC (1.6) holding at (x̄, μ̄) implies that μ̄ is noncritical and thus
(2.15) holds [22]. Summarizing, under SOSC (1.6) we have the properties stated in
(2.14) and (2.15). Note also that since SOSC implies that x̄ is locally unique, shrinking
εσ if necessary, it holds that

dist(w,Σ∗) =
(‖x− x̄‖2 + dist(μ,M(x̄))2

)1/2 ∀w ∈ w̄ + εσB.(2.16)

We now sketch the general line of our convergence analysis. Observe that (2.12)
means that wk+1 ∈ Σ(pk). Thus, if wk+1 ∈ w̄ + ε0B and pk ∈ γ0B, from (2.14), we
obtain that

dist(wk+1,Σ∗) ≤ τ0‖pk‖
≤ τ0

(
εk +

1

ρk
‖μk+1 − μk‖

)
.(2.17)

It should be noted that relations like (2.17) are standard in the literature of aug-
mented Lagrangian methods, but previously they have always been derived assuming
the linear independence constraint qualification at x̄, among other things. Our inter-
pretation above of the augmented Lagrangian iterates as solutions of perturbed GEs
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(2.12) shows that (2.17) is a direct consequence of the upper-Lipschitzian property
(2.14), for which SOSC (1.6) is sufficient.

Consider, for the moment, the case of the exact iterations with εk = 0. If the
condition (2.8) holds, then

‖wk+1 − wk‖ ≤ ĉσ(wk)

and, by (2.15),

‖μk+1 − μk‖ ≤ ĉβ2dist(w
k,Σ∗).

It then follows from (2.17) that

dist(wk+1,Σ∗) ≤ ĉτ0β2
ρk

dist(wk,Σ∗).

Hence, convergence (and rate of convergence) essentially would follow if we show that
the sequence generated by (2.7)–(2.9) is well-defined and, in particular, that (2.8)
holds.

3. Local convergence analysis. The first stage of the analysis is to show that
under SOSC (1.6) holding at (x̄, μ̄), the augmented Lagrangian has (exact local)
minimizers that satisfy the condition (2.8).

We start with establishing that the augmented Lagrangian has the quadratic
growth property around x̄, uniform for all μ̂ ∈ M(x̄) close to μ̄. This is an extension
of [29, Theorem 7.4 (c)], which states this property for the fixed μ̄.

Proposition 3.1. If (x̄, μ̄) satisfies SOSC (1.6), then there exist the constants
δμ̄, γμ̄, ημ̄, ρμ̄ > 0 such that

L̄(x, μ̂; ρ) ≥ f(x̄) + γμ̄‖x− x̄‖2,(3.1)

for all x ∈ x̄+ δμ̄B, all μ̂ ∈ (μ̄+ ημ̄B) ∩M(x̄), and all ρ ≥ ρμ̄.
Proof. For all μ̂ ∈ M(x̄) and ρ > 0, it holds that μ̂ = ΠQ(μ̂ + ρg(x̄)). Hence,

L̄(x̄, μ̂; ρ) = f(x̄) and ∂L̄
∂x (x̄, μ̂; ρ) =

∂L
∂x (x̄, μ̂) = 0. Then the second-order expansion of

the augmented Lagrangian in the primal variables takes the following form (see [29,
Prop. 7.2, (7.3)]):

L̄(x̄+ u, μ̂; ρ) = f(x̄) + Φ0(μ̂, u) + ρΦ1(μ̂, u) + oμ̂(‖u‖2),(3.2)

where

Φ0(μ̂, u) =
1

2

〈
∂2L

∂x2
(x̄, μ̂)u, u

〉
,

Φ1(μ̂, u) =
1

2

⎛
⎝ ∑

i∈I1(μ̂)

(〈g′i(x̄), u〉)2 +
∑

i∈I0(μ̂)

(max{0, 〈g′i(x̄), u〉})2
⎞
⎠ .

Note that if i ∈ I1(μ̄), i ≥ l + 1, we have that μ̄i > 0. Then I1(μ̄) ⊆ I1(μ̂) for
all μ̂ ∈ M(x̄) close enough to μ̄, by continuity. For the same (continuity) reason,
Φ0(μ̂, u) > 0 for all u ∈ C(x̄) \ {0}, since this property holds at μ̄ by SOSC (1.6) and
C(x̄) is closed. Thus, there exists ημ̄ > 0 such that

I1(μ̄) ⊆ I1(μ̂) and Φ0(μ̂, u) > 0 ∀ u ∈ C(x̄) \ {0} ∀ μ̂ ∈ (μ̄+ ημ̄B) ∩M(x̄).(3.3)
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Define Ψ0,Ψ1 : IRn → IR by

Ψ0(u) = min{Φ0(μ̂, u) | μ̂ ∈ (μ̄+ ημ̄B) ∩M(x̄)} and Ψ1(u) = Φ1(μ̄, u).

By [30, Theorem 1.17 (c)], Ψ0 is continuous on IRn. Let −t0 ∈ IR and let t1 ∈ IR
be the minimal values of the continuous functions Ψ0 and Ψ1, respectively, on the
compact set D = {u ∈ S | Ψ0(u) ≤ 0}, where S = {u ∈ IRn | ‖u‖ = 1}. Obviously,
t0 ≥ 0 by the definition of D. Note that by the compactness of the set in the definition
of Ψ0 and (3.3), it holds that Ψ0(u) > 0 for all u ∈ C(x̄) \ {0}, and by the definition
(1.5) we have that C(x̄) = {u ∈ IRn | Ψ1(u) ≤ 0}. Thus, Ψ1(u) > 0 for all u ∈ D (if
Ψ1(u) ≤ 0 for u ∈ S, then u ∈ C(x̄) \ {0}, so that Ψ0(u) > 0 and u �∈ D). Hence,
t1 > 0 by the compactness of D. Choose ρμ̄ > t0/t1 ≥ 0. As Ψ1(u) ≥ 0 for all
u ∈ IRn, by the definition of D we have that Ψ0(u) + ρμ̄Ψ1(u) ≥ Ψ0(u) > 0 for all
u ∈ S \ D. Also, Ψ0(u) + ρμ̄Ψ1(u) > 0 for all u ∈ D by the definition of ρμ̄. Thus
Ψ0(u) + ρμ̄Ψ1(u) > 0 for all u ∈ S. By the compactness of S, and by the continuity
of Ψ0 and Ψ1, it follows that there exists ε̃ > 0 such that

Ψ0(u) + ρμ̄Ψ1(u) ≥ ε̃ > 0 ∀u ∈ S.(3.4)

Since I1(μ) ∪ I0(μ) = I for any μ ∈ M(x̄), it holds that

(I1(μ̂)\I1(μ̄)) ∪ I0(μ̂) = I0(μ̄).
Hence, for any μ̂ ∈ (μ̄+ ημ̄B) ∩M(x̄) we have

2Φ1(μ̂, u) =
∑

i∈I1(μ̄)

(〈g′i(x̄), u〉)2 +
∑

i∈I1(μ̂)\I1(μ̄)

(〈g′i(x̄), u〉)2 +
∑

i∈I0(μ̂)

(max{0, 〈g′i(x̄), u〉})2

≥
∑

i∈I1(μ̄)

(〈g′i(x̄), u〉)2 +
∑

i∈I0(μ̄)

(max{0, 〈g′i(x̄), u〉})2

= 2Φ1(μ̄, u) = 2Ψ1(u),

where we used the fact that t2 ≥ max{0, t}2. Combining the latter relation with (3.4),
we conclude that for all u ∈ S it holds that

Φ0(μ̂, u) + ρμ̄Φ1(μ̂, u) ≥ Ψ0(u) + ρμ̄Ψ1(u) ≥ ε̃.

For each v ∈ IRn \ {0} considering u = v/‖v‖ ∈ S, using the definitions of Φ0 and Φ1

the latter relation gives

Φ0(μ̂, v) + ρμ̄Φ1(μ̂, v) ≥ ε̃‖v‖2

for all μ̂ ∈ (μ̄ + ημ̄B) ∩M(x̄) and all v ∈ IRn. Now using the deduction of (3.2), it
can be seen that the little-o term can be made uniform, and then L̄(x̄ + v, μ̂; ρμ̄) ≥
f(x̄) + ε̃‖v‖2 + o(‖v‖2). Thus we guarantee the existence of γμ̄, δμ̄ > 0 such that

L̄(x̄+ v, μ̂; ρμ̄) ≥ min{L̄(x̄+ v, μ; ρμ̄) | μ ∈ (μ̄+ ημ̄B) ∩M(x̄)}
= L̄(x̄+ v, μ̃; ρμ̄)

≥ f(x̄) + ε̃‖v‖2 + o(‖v‖2)
≥ f(x̄) + γμ̄‖v‖2

for all v ∈ δμ̄B.
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The property (3.1) follows taking x = x̄ + v, v ∈ δμ̄B, and using the fact that
L̄(x, μ; ·) is nondecreasing [29, Proposition 7.1].

The next result shows, among other things, that under the stated assumptions the
augmented Lagrangians have local minimizers in the interior of some ball around the
point x̄. This conclusion is standard under SOSC for the case of equality-constrained
problems and in the general case if strict complementarity is assumed (e.g., combin-
ing SOSC with [4, Prop. 2.2]). Using the quadratic growth condition and the exterior
penalty arguments, it can be seen that the property holds also without strict com-
plementarity (e.g., using the techniques in [6]). We include here a different proof for
completeness, and also because some specific estimates derived in the process would
be needed later on.

Corollary 3.2. Let (x̄, μ̄) satisfy SOSC (1.6), and let δμ̄, γμ̄, ημ̄, ρμ̄ > 0 be the
constants defined in Proposition 3.1.

If μ ∈ IRm, x ∈ x̄+ δμ̄B and ρ ≥ ρμ̄ are such that L̄(x, μ; ρ) ≤ f(x̄), then for all
μ̂ ∈ (μ̄+ ημ̄B) ∩M(x̄) it holds that

‖x− x̄‖2 ≤ 1

ργμ̄
〈ΠQ(μ+ ρg(x))− μ, μ̂− μ〉.(3.5)

Furthermore, shrinking δμ̄, ημ̄ and increasing ρμ̄ if necessary, it holds that for all
μ ∈ (μ̄+ ημ̄B) ∩Q and all ρ ≥ ρμ̄ the problem

min
x∈IRn

L̄(x, μ; ρ)

has a local minimizer x̃ ∈ int(x̄+ δμ̄B).
Proof. Using the concavity of L̄(x, ·; ρ) [29, Prop. 7.1], we have that

L̄(x, μ; ρ) ≥ L̄(x, μ̂; ρ)−
〈
∂L̄

∂μ
(x, μ; ρ), μ̂− μ

〉

= L̄(x, μ̂; ρ)− 1

ρ
〈ΠQ(μ+ ρg(x))− μ, μ̂− μ〉

≥ f(x̄) + γμ̄‖x− x̄‖2 − 1

ρ
〈ΠQ(μ+ ρg(x))− μ, μ̂− μ〉,(3.6)

where we used (3.1) for the second inequality. Then if L̄(x, μ; ρ) ≤ f(x̄), the property
(3.5) follows immediately.

We now prove the last assertion. Fix τ ∈ (0, 1). Define c̄ > 0 and � > 0 such that

c̄ =

⎧⎨
⎩

1

3
min
i∈J

{−gi(x̄)} if J �= ∅,
1 otherwise,

and

‖g(x)− g(x̄)‖ ≤ �‖x− x̄‖ ∀x ∈ x̄+ δμ̄B.

Decreasing δμ̄, ημ̄ and increasing ρμ̄, if necessary, we can guarantee that

0 < δμ̄ ≤ c̄

�
, 0 < ημ̄ ≤ γμ̄τ

2δμ̄
2�

, ρμ̄ ≥ γμ̄τ
2

2�2
.(3.7)

Take any μ ∈ (μ̄+ ημ̄B) ∩Q, any ρ ≥ ρμ̄, and let x̃ be any (global) minimizer of
L̄(·, μ; ρ) over the (compact) set x̄+ δμ̄B.
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Since g(x̄) ∈ Q◦ and the projection operator is nonexpansive, it holds that

‖ΠQ(μ+ ρg(x̄))‖ = ‖ΠQ(μ+ ρg(x̄))−ΠQ(ρg(x̄))‖ ≤ ‖μ‖.
Hence,

L̄(x̃, μ; ρ) ≤ L̄(x̄, μ; ρ)

= f(x̄) +
1

2ρ

(
‖ΠQ (μ+ ρg(x̄))‖2 − ‖μ‖2

)
≤ f(x̄).(3.8)

Condition (3.8) now implies that the bound (3.5) holds for x̃ and μ̄, i.e.,

‖x̃− x̄‖ ≤
(

1

ργμ̄
〈ΠQ(μ+ ρg(x̃))− μ, μ̄− μ〉

)1/2

.(3.9)

To establish the claim, it remains to show that the right-hand side in (3.9) is strictly
smaller than δμ̄.

If i ∈ J , then μ̄i = 0, and we obtain that

1

ρ
μi + gi(x̃) ≤ 1

ρ
|μi − μ̄i|+ |gi(x̃)− gi(x̄)|+ gi(x̄)

≤ 1

ρμ̄
ημ̄ + �δμ̄ − 3c̄

≤ 2�δμ̄ − 3c̄

≤ −c̄ < 0,

where the second inequality follows from the definition of c̄, and for the other relations
we use (3.7). Hence, (μ+ ρg(x̃))J < 0 and we have that∥∥(ΠQ(μ+ ρg(x̃))− μ)J

∥∥ = ‖ − μJ ‖ = ‖μJ − μ̄J ‖.(3.10)

By the structure of Q and using that gi(x̄) = 0 for i ∈ I, we have∣∣(ΠQ(μ+ ρg(x̃))− μ)i
∣∣ = ρ|gi(x̃)− gi(x̄)| for i ∈ {1, . . . , l},∣∣(ΠQ(μ+ ρg(x̃))− μ)i
∣∣ = |max{0, μi + ρgi(x̃)} − μi|
≤ ρ|gi(x̃)− gi(x̄)| for i ∈ I\{1, . . . , l},

where for the last inequality we use the fact that μi ≥ 0 (because μ ∈ Q) and
|max{a, b} −max{a, c}| ≤ |b− c| for any a, b, c ∈ IR. Combining the relations above,
we obtain ∥∥(ΠQ(μ+ ρg(x̃))− μ)I

∥∥ ≤ ρ‖gI(x̃)− gI(x̄)‖.(3.11)

Now, using (3.10) and (3.11), it follows that

1

ρ
〈ΠQ(μ+ ρg(x̃))− μ, μ̄− μ〉 ≤ 1

ρ
‖(ΠQ(μ+ ρg(x̃))− μ)J ‖‖(μ̄− μ)J ‖

+
1

ρ
‖(ΠQ(μ+ ρg(x̃))− μ)I‖‖(μ̄− μ)I‖

≤ ‖gI(x̃)− gI(x̄)‖‖μI − μ̄I‖+ 1

ρ
‖μJ − μ̄J ‖2

≤ �δμ̄ημ̄ +
1

ρμ̄
η2μ̄

≤ 1

2
γμ̄τ

2δ2μ̄ +
1

2
γμ̄τ

2δ2μ̄ = γμ̄τ
2δ2μ̄,
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where for the last inequality we use (3.7). Combining this bound with (3.9), we
conclude that

‖x̃− x̄‖ ≤ τδμ̄ < δμ̄,

i.e., x̃ ∈ int(x̄+ δμ̄B). Therefore, it follows that x̃ is an unconstrained local minimizer
of L̄(·, μ; ρ).

It is now clear that the (exact or inexact) stationarity condition (2.7) can always
be achieved. The next step is to prove that the localization property (2.8) is satisfied
as well. We first verify this fact for the case of exact solutions of subproblems.

Proposition 3.3. Let (x̄, μ̄) satisfy SOSC (1.6), and let δμ̄, γμ̄, ημ̄, ρμ̄ > 0 be the
constants defined in Corollary 3.2.

Then there exist ε1, c1 > 0 such that for any ρ ≥ ρμ̄ and (x, μ) ∈ ((x̄, μ̄) + ε1B)∩
(IRn ×Q) with σ(x, μ) > 0, if y is a solution of

min
x∈x̄+δµ̄B

L̄(x, μ; ρ)

and ν = ΠQ(μ+ ρg(y)), then it holds that∥∥∥∥
[
y − x
ν − μ

]∥∥∥∥ ≤ c1 σ(x, μ).

Proof. Suppose the contrary, i.e., that there exists a sequence {(xk, μk, ρk)} ⊂
IRn ×Q× (0,∞) such that (xk, μk) → (x̄, μ̄), ρk ≥ ρμ̄, and

ζk = ‖(yk − xk, νk − μk)‖ > kσk, σk = σ(xk, μk) > 0,

where

yk ∈ argmin{L̄(x, μk; ρk) | x ∈ x̄+ δμ̄B}, νk = ΠQ(μ
k + ρkg(y

k)).

By the assumption above, we have that

σk
ζk

→ 0.(3.12)

By the definition (2.3) of σ(·), this means that

f ′(xk) + (g′(xk))�μk = o(ζk), μk −ΠQ(μ
k + g(xk)) = o(ζk).(3.13)

Also, defining μ̂k = ΠM(x̄)(μ
k), we have that

xk − x̄ = O(σk), μ
k − μ̂k = O(σk), xk − x̄ = o(ζk), μ

k − μ̂k = o(ζk),(3.14)

where the first two relations follow from (2.15) and the last two follow from (3.12).
Taking a subsequence if necessary, we can assume that

1

ζk

[
yk − xk

νk − μk

]
→
[
u
v

]
�= 0.(3.15)

For k large enough we have that yk ∈ x̄+ δμ̄B, ρk ≥ ρμ̄, μ̂
k ∈ (μ̄+ ημ̄B) ∩M(x̄)

and L̄(yk, μk; ρk) ≤ f(x̄) (as in (3.8)). Thus, by (3.5), it holds that

‖yk − x̄‖2 ≤ 1

ρkγμ̄
〈νk − μk, μ̂k − μk〉.(3.16)
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Since μk ∈ Q, we have that

‖νk − μk‖ = ‖ΠQ(μ
k + ρkg(y

k))−ΠQ(μ
k)‖ ≤ ρk‖g(yk)‖.

Then (3.16) implies

lim sup
k→∞

‖yk − x̄‖2 ≤ lim sup
k→∞

1

ρkγμ̄
‖νk − μk‖‖μ̂k − μk‖

≤ lim sup
k→∞

1

γμ̄
‖g(yk)‖‖μ̂k − μk‖ = 0,(3.17)

where we used the fact that {yk} is bounded. From (3.16) we also obtain that

lim sup
k→∞

‖yk − x̄‖2
ζ2k

≤ lim sup
k→∞

1

ρkγμ̄

‖νk − μk‖
ζk

‖μ̂k − μk‖
ζk

= 0,

where we have used the last relation in (3.14), that ρk ≥ ρμ̄, and that ζ−1
k (νk−μk) → v

by (3.15). Using now the relation above and again (3.14), we conclude that

u = lim
k→∞

yk − xk

ζk
= lim

k→∞
yk − x̄

ζk
− lim

k→∞
xk − x̄

ζk
= 0.(3.18)

From (3.16), using that ζ−1
k (νk − μk) → v, we also obtain

lim sup
k→∞

ρk
ζk

‖yk − x̄‖2 ≤ lim sup
k→∞

1

γμ̄

‖νk − μk‖
ζk

‖μ̂k − μk‖ = 0.(3.19)

Since yk → x̄ (by (3.17)), we have that yk ∈ int (x̄ + δμ̄B) so that it is an
unconstrained local minimizer of L̄(·, μk; ρk). We then have that

0 =
∂L̄

∂x
(yk, μk; ρk)

= f ′(yk) + (g′(yk))�νk

= f ′(yk) + (g′(yk))�νk − f ′(xk)− (g′(xk))�μk + o(ζk)

= f ′(yk)− f ′(xk) + (g′(yk)− g′(xk))�μk + (g′(yk))�(νk − μk) + o(ζk)

= (g′(yk))�(νk − μk) + o(ζk),

where the second equality is by (2.10), the third equality is by (3.13), and the last
equality follows from yk − xk = o(ζk) (by (3.18)). Dividing both sides of the latter
equation by ζk, taking limits and using that yk → x̄ (by (3.17)), we conclude that

v ∈ ker (g′(x̄))�.(3.20)

If i ∈ J , we have that μ̄i = 0 and gi(x̄) < 0. Then, since yk → x̄ (by (3.17)), xk → x̄
and μk → μ̄, it holds that μk

i + gi(x
k) < 0 and μk

i + ρkgi(y
k) < 0 for k large enough.

Thus, by (3.13) we have that μk
J = o(ζk), and by the definition of νk that νkJ = 0.

Hence,

vJ = lim
k→∞

νkJ − μk
J

ζk
= 0.(3.21)
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Combining (3.21) with (3.20) we conclude that

vI ∈ K = ker (g′I(x̄))
�.

Since gI(yk) = gI(x̄) + g′I(x̄)(y
k − x̄) +O(‖yk − x̄‖2) and gI(x̄) = 0, we have that

gI(yk) +O(‖yk − x̄‖2) = g′I(x̄)(y
k − x̄) ∈ im g′I(x̄) = K⊥.

Using now that ΠK(·) is a linear operator (since K is a subspace), we obtain that

0 = lim
k→∞

ρk
ζk

ΠK(gI(yk) +O(‖yk − x̄‖2))

= lim
k→∞

(
ρk
ζk

ΠK(gI(yk)) +O

(
ρk‖yk − x̄‖2

ζk

))

= lim
k→∞

ρk
ζk

ΠK(gI(yk)),(3.22)

where (3.19) was employed for the last equality.
Since the index set {l+1, . . . ,m} is finite, passing onto a subsequence if necessary,

we can assume that there exists I2 ⊆ {l + 1, . . . ,m} such that μk
i + ρkgi(y

k) < 0 for
i ∈ I2 and all k large enough, while μk

i + ρkgi(y
k) ≥ 0 for i ∈ {l + 1, . . . ,m} \ I2.

Then νki = 0 for i ∈ I2 and νki = μk
i + ρkgi(y

k) ≥ 0 for i ∈ {l+ 1, . . . ,m} \ I2. Define
the closed convex cone

Q2 = {wI ∈ IR|I| | wi ∈ IR, i ∈ I\I2; wi ≥ 0, i ∈ I ∩ I2}.

Since for i ∈ I2 we have νki = 0 while μk
i ≥ 0 (because μk ∈ Q and

I2 ⊆ {l + 1, . . . ,m}), it holds that −(νkI − μk
I) ∈ Q2. Dividing by ζk > 0 and

taking limits, we obtain that

−vI ∈ Q2.

We also have that μk
i + ρkgi(y

k) − νki = 0 for i ∈ {1, . . . , l} ⊂ I by the structure
of Q, and for i ∈ {l + 1, . . . ,m} \ I2 by the definition of I2. By the same definition,
μk
i + ρkgi(y

k)− νki = μk
i + ρkgi(y

k) < 0 for i ∈ I2. Hence, ρkgI(yk)− (νkI −μk
I) ∈ Q◦

2.
Using the linearity of ΠK(·), we then obtain that

ΠK(Q◦
2) � lim

k→∞
ΠK

(
1

ζk
(ρkgI(yk)− (νkI − μk

I))
)

= lim
k→∞

(
ρk
ζk

ΠK(gI(yk))−ΠK

(
νkI − μk

I
ζk

))
= −ΠK(vI) = −vI ,

where the second equality follows from (3.22) and the last equality holds since vI ∈ K.
Hence, −vI = ΠK(ξI) for some ξI ∈ Q◦

2. Since −vI ∈ Q2 ∩K and K is a subspace,
we then obtain that

0 ≥ 〈−vI , ξI〉 = 〈−vI ,ΠK(ξI)〉 = ‖vI‖2,

so that vI = 0. Combining this with (3.18) and (3.21), we obtain that (u, v) = 0, in
contradiction with (3.15). This completes the proof.
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We have, therefore, established that the conditions in (2.7) and (2.8) hold if xk+1

is the exact local minimizer x̂ of L̄(·, μk; ρk) in x̄+ δμ̄B, and we define in (2.8) ĉ = c1
given by Proposition 3.3.

Now taking ĉ > c1 in (2.8) and an appropriately small εk > 0 in (2.7), by the
continuity of all the involved quantities it follows that (2.7) and (2.8) hold for any
xk+1 close enough to x̂. We are now in position to state our main convergence result,
which also makes precise the choice of the truncation parameter εk. The proof of the
first item in Theorem 3.4 below is an adaptation of the corresponding part in [18,
Theorem 1].

Theorem 3.4. Let (x̄, μ̄) satisfy SOSC (1.6), and let ψ : IR+ → IR+ be any
function ψ(t) = o(t).

Then there exist ε̄, ρ̄ > 0 such that if (x0, μ0) ∈ ((x̄, μ̄) + ε̄B)∩ (IRn ×Q) and the
sequence {(xk, μk)} is generated according to (2.7)–(2.9) with ĉ ≥ c1, ρk ≥ ρ̄ for all k
and εk = ψ(σ(xk , μk)), the following assertions hold:

(i) The sequence {(xk, μk)} is well-defined and converges to (x̄, μ̂), with some
μ̂ ∈ M(x̄).

(ii) For any q ∈ (0, 1) there exists ρ̄q such that if ρk ≥ ρ̄q for all k, then the
convergence rate of {(xk, μk)} to (x̄, μ̂) is Q-linear with quotient q.

(iii) If ρk → +∞, the convergence rate is Q-superlinear.
(iv) If εk ≤ t1σ(x

k, μk)s and ρk ≥ t2/σ(x
k, μk)s−1, where t1, t2 > 0 and s > 1,

then the Q-order of superlinear convergence is at least s.
Proof. If σ(xk, μk) = 0 for any iteration index k, the point (xk, μk) satisfies the

KKT conditions (1.4) and the algorithm should, naturally, stop. We assume that this
does not happen and σ(xk, μk) > 0 for all k.

Let ε0, γ0, τ0 satisfy (2.14), β2 satisfy (2.15), ε1, c1 be given by Proposition 3.3,
ρμ̄ be given by Proposition 3.1, and let ĉ in (2.8) satisfy ĉ > c1.

For any ψ(t) = o(t), there exists ε2 > 0 such that

ψ(σ(x, μ)) ≤ 1

4β2τ0
σ(x, μ) ∀ (x, μ) ∈ (x̄, μ̄) + ε2B.(3.23)

Define

ρ̄ = max{4ĉβ2τ0, ρμ̄}, ε′ = min

{
2τ0γ0,

ε0
ĉβ2 + 1

, ε1, ε2

}
, ε̄ =

ε′

2ĉβ2 + 1
.(3.24)

To shorten notation, let w̄ = (x̄, μ̄), wk = (xk, μk) and σk = σ(xk, μk).
We shall argue by induction. Suppose we have wj ∈ IRn × Q, j = 0, . . . , k,

satisfying

‖wj − w̄‖ ≤ ε′,(3.25)

∥∥∥∥∂L∂x (wj+1)

∥∥∥∥ ≤ εj , ‖wj+1 − wj‖ ≤ ĉσj ,(3.26)

where we recall (2.10) for the first relation in (3.26). Note that if w0 ∈ (w̄ + ε̄B) ∩
(IRn ×Q), then (3.25) holds for j = 0 since ε̄ ≤ ε′ ≤ ε1, and there exists w ∈ IRn ×Q
such that ∂L

∂x (w) = 0 by Corollary 3.2, and ‖w−w0‖ ≤ ĉσ0 by Proposition 3.3 (by the
remarks preceding the statement of Theorem 3.4 appropriate approximate solutions
for the first iteration satisfy the required conditions as well). Hence, w1 is well-defined,
and the conditions (3.25), (3.26) hold for j = 0. We next show that if (3.25), (3.26)
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hold for j = 0, . . . , k, then wk+2 is well-defined and the conditions in question hold
for j = k + 1.

By (2.15),

σj ≤ β2‖wj − w̄‖.(3.27)

Thus, using (3.25) and (3.24), we have that

‖wj+1 − w̄‖ ≤ ‖wj+1 − wj‖+ ‖wj − w̄‖ ≤ (ĉβ2 + 1)ε′ ≤ ε0.

Also, for pj = (εjϑ, (μ
j+1 − μj)/ρj) with ϑ ∈ B and εj = ψ(σj), we obtain

‖pj‖ ≤ εj +
1

ρj
‖wj+1 − wj‖ ≤

(
1

4β2τ0
+
ĉ

ρ̄

)
σj ≤

(
1

4τ0
+

1

4τ0

)
ε′ ≤ γ0,

where we use (3.23), (3.25), and (3.24). Hence, since wj+1 ∈ w̄+ ε0B, pj ∈ γ0B, and
(2.12) holds, from (2.14) we obtain (2.17) for j = 0, . . . , k. We then have that

dist(wj+1,Σ∗) ≤ τ0

(
εj +

ĉ

ρj
σj

)
≤
(

1

4β2
+

1

4β2

)
σj ≤ 1

2
dist(wj ,Σ∗),

where in the second inequality we use (3.23) and the fact that ρj ≥ ρ̄ ≥ 4ĉβ2τ0, and
in the last inequality we use (2.15). It then follows that

dist(wj+1,Σ∗) ≤ 1

2j+1
dist(w0,Σ∗),(3.28)

for j = 0, . . . , k. Combining this relation with (3.26) and (2.15), we obtain

‖wk+1 − w0‖ ≤
k∑

i=0

‖wi+1 − wi‖

≤ ĉ
k∑

i=0

σi

≤ ĉβ2

k∑
i=0

dist(wi,Σ∗)

≤ ĉβ2

k∑
i=0

1

2i
dist(w0,Σ∗)

≤ 2ĉβ2dist(w
0,Σ∗).(3.29)

To show that (3.25) holds for j = k + 1, note that

‖wk+1 − w̄‖ ≤ ‖wk+1 − w0‖+ ‖w0 − w̄‖ ≤ (2ĉβ2 + 1)‖w0 − w̄‖ ≤ (2ĉβ2 + 1)ε̄ = ε′,

where we use that w̄ ∈ Σ∗ and (3.29) for the second inequality, and (3.24) for the
last inequality. Now, since wk+1 ∈ IRn × Q and ε′ ≤ ε1, by Corollary 3.2 and
Proposition 3.3 there exists w ∈ IRn×Q such that ∂L

∂x (w) = 0 and ‖w−wk+1‖ ≤ ĉσk+1.
Thus, wk+2 in (2.7)–(2.9) is well-defined and (3.26) holds for j = k + 1.

The argument above shows that the sequence generated according to (2.7)–(2.9)
is well-defined. We next prove that it converges. Note that (3.25) implies that {wk}
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is bounded. By (3.28), dist(wk,Σ∗) → 0 and all accumulation points of {wk} belong
to Σ∗. Suppose {wk} has two different accumulation points ŵ and w̃. Using the same
argument as that leading to (3.29), for any i, k ∈ IN with k < i it holds that

‖wi − wk‖ ≤ 2ĉβ2dist(w
k,Σ∗).(3.30)

Choosing the indices k such that the corresponding subsequence of {wk} converges
to ŵ and the indices i such that the corresponding subsequence of {wk} converges to
w̃, the left-hand side in (3.30) stays bounded away from zero, while the right-hand
side tends to zero. Hence, {wk} cannot have different accumulation points, i.e., it
converges (to a point ŵ ∈ Σ∗).

Next, fixing any k and passing onto the limit as i→ ∞ in the relation ‖wk−ŵ‖ ≤
‖wi − wk‖+ ‖wi − ŵ‖, using (3.30) we conclude that

‖wk − ŵ‖ ≤ 2ĉβ2dist(w
k,Σ∗).(3.31)

Hence, using also (3.26) and (2.17), we have that

‖wk+1 − ŵ‖ ≤ 2ĉβ2dist(w
k+1,Σ∗)

≤ 2ĉβ2τ0

(
εk +

1

ρk
‖μk+1 − μk‖

)

≤ 2ĉβ2τ0

(
εk
σk

+
ĉ

ρk

)
σk

≤ 2ĉβ2
2τ0

(
εk
σk

+
ĉ

ρk

)
dist(wk,Σ∗)

≤ 2ĉβ2
2τ0

(
εk
σk

+
ĉ

ρk

)
‖wk − ŵ‖.(3.32)

For item (ii) of the assertion in Theorem 3.4, let q ∈ (0, 1) and define ρ̄q =
2ĉ2β2

2τ0/q. Since εk = o(σk) and ρk ≥ ρ̄q, from (3.32) we obtain that

lim sup
k→∞

‖wk+1 − ŵ‖
‖wk − ŵ‖ ≤ lim sup

k→∞
2ĉβ2

2τ0

(
εk
σk

+
ĉ

ρ̄q

)
=

1

ρ̄q
2ĉ2β2

2τ0 = q.

For item (iii), since εk = o(σk) and ρk → +∞, from (3.32) we have that

lim
k→∞

‖wk+1 − ŵ‖
‖wk − ŵ‖ ≤ lim

k→∞
2ĉβ2

2τ0

(
εk
σk

+
ĉ

ρk

)
= 0.

Finally, for item (iv), using that εk ≤ t1σ
s
k and ρk ≥ t2/σ

s−1
k , from (3.32) we

obtain

‖wk+1 − ŵ‖ ≤ 2ĉβ2
2τ0
(
t1σ

s−1
k + ĉσs−1

k /t2
) ‖wk − ŵ‖

≤ 2ĉβs+1
2 τ0 (t1 + ĉ/t2) ‖wk − ŵ‖s,

i.e., the order of convergence is at least s > 1.
Our next result establishes that if minimization in the subproblems is exact, then

the primal sequence converges with the sameQ-rate as the primal-dual sequence. This
appears to be the first assertion of primal Q-rate of convergence for the augmented
Lagrangian methods, as opposed to the usual (weaker) R-rate.
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Corollary 3.5. If in Theorem 3.4 εk = 0 for all k, then the primal sequence
{xk} converges to x̄ with the same Q-order as that of the convergence of the primal-
dual sequence {(xk, μk)} to (x̄, μ̂).

Proof. Let μ̂k = ΠM(x̄)(μ
k). If εk = 0, then it holds that

0 =
∂L̄

∂x
(xk, μk−1; ρk−1) = f ′(xk) + (g′(xk))�μk.

Hence,

f ′(x̄) + (g′(x̄))�μk = f ′(x̄)− f ′(xk) + (g′(x̄)− g′(xk))�μ̂k

+(g′(x̄)− g′(xk))�(μk − μ̂k).(3.33)

Since {ρk} is bounded away from zero and (xk, μk) → (x̄, μ̂) with μ̂i = 0 and gi(x̄) < 0
for i ∈ J , it holds that μk−1

i /ρk−1+gi(x
k) < 0 for all i ∈ J and k large enough. Then

μk
J = 0. Using also that μk ∈ Q, by the Hoffman’s error bound for linear systems [15,

Lemma 3.2.3] there exists c0 > 0 such that

‖μk − μ̂k‖ ≤ c0‖f ′(x̄) + (g′(x̄))�μk‖
≤ c0‖f ′(x̄)− f ′(xk) + (g′(x̄)− g′(xk))�μ̂k‖

+ c0‖(g′(x̄)− g′(xk))�(μk − μ̂k)‖
≤ c1‖xk − x̄‖+ c2‖xk − x̄‖‖μk − μ̂k‖,

where we used (3.33) and the fact that {μ̂k} is bounded (because {μk} is convergent).
Since ‖xk − x̄‖ → 0, we have that c2‖xk − x̄‖ ≤ 1/2 for k large enough, so that the
last relation above implies

‖μk − μ̂k‖ ≤ 2c1‖xk − x̄‖.
Then,

‖wk − ŵ‖ ≤ 2ĉβ2dist(w
k,Σ∗)

= 2ĉβ2
(‖xk − x̄‖2 + ‖μk − μ̂k‖2)1/2

≤ 2ĉβ2

√
1 + 4c21‖xk − x̄‖,

where the first inequality is by (3.31) and the equality is by (2.16). Hence,

‖xk+1 − x̄‖
‖xk − x̄‖ ≤ ‖wk+1 − ŵ‖

‖xk − x̄‖

=
‖wk − ŵ‖
‖xk − x̄‖

‖wk+1 − ŵ‖
‖wk − ŵ‖

≤ 2ĉβ2

√
1 + 4c21

‖wk+1 − ŵ‖
‖wk − ŵ‖ .(3.34)

If convergence of {wk} to ŵ is superlinear, then (3.34) shows that the rate of
convergence of {xk} to x̄ is at least as fast.

Concerning the linear rate of convergence, the conclusion follows as in the proof
of item (ii) of Theorem 3.4 redefining ρ̄q = 4ĉ3β3

2

√
1 + 4c21τ0/q, which makes the

upper-limit of right-hand side in (3.34) no larger than q ∈ (0, 1).
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4. Some related developments.

4.1. Boundedness of the penalty parameters. In computational implemen-
tations, boundedness of the penalty parameters is important to avoid ill-conditioning
in the subproblems of minimizing augmented Lagrangians (although there exist some
strategies for dealing with ill-conditioning in this context, they seem to be not quite
competitive at this time).

Penalty parameter updates are different in various sources. To fix the setting, we
consider the proposal of [7], implemented within the latest version of ALGENCAN
[34].

For α ∈ (0, 1) and r > 1 fixed, define

ρk+1 =

{
ρk if σ(xk+1, μk+1) ≤ ασ(xk , μk),
rρk otherwise,

(4.1)

where we recall that σ(·) stands for the natural residual of the KKT conditions (2.3).
If solutions of subproblems are exact, then the iterations yield stationarity of the
Lagrangian at every step (recall (2.10)). In that case, the corresponding part in σ(·)
is zero in each iteration, and thus the test in (4.1) to decide on the increase of the
penalty parameter measures the feasibility-complementarity progress. In this sense,
this strategy is similar to what is commonly employed in other augmented Lagrangian
methods.

Conditions that guarantee boundedness of the sequence of penalty parameters
{ρk} generated by the scheme (4.1) arise naturally from our analysis above. Since

g(xk+1)− 1

ρk
(μk+1 − μk) ∈ NQ(μ

k+1),

it holds that

μk+1 = ΠQ

(
μk+1 + g(xk+1)− 1

ρk
(μk+1 − μk)

)
.

Now, using the nonexpansivity of the projection, we have

‖μk+1 −ΠQ(μ
k+1 + g(xk+1))‖ ≤ 1

ρk
‖μk+1 − μk‖.

Thus, recalling again the definition (2.3) of σ(·), for (xk+1, μk+1) satisfying (2.7)–(2.9)
we obtain that

σ(xk+1, μk+1) ≤
(
ε2k +

1

ρ2k
‖μk+1 − μk‖2

)1/2

≤ εk +
ĉ

ρk
σ(xk, μk).(4.2)

Hence, the boundedness of {ρk} is ensured if ρk > ĉ/α and εk ≤ (α− ĉ/ρk)σ(x
k, μk).

The desired result then follows from Theorem 3.4.
Corollary 4.1. If in the setting of Theorem 3.4 the sequence of penalty param-

eters {ρk} is generated according to the rule (4.1) with ρ0 ≥ ρ̄, then {ρk} is bounded.
Proof. By Theorem 3.4 we have that εk = o(σ(xk , μk)) and the sequence {(xk, μk)}

converges to (x̄, μ̂) with σ(x̄, μ̂) = 0 (in particular, σ(xk, μk) → 0).
Suppose that ρk → +∞. Using (4.2) we then obtain

σ(xk+1, μk+1)

σ(xk, μk)
≤ εk
σ(xk, μk)

+
ĉ

ρk
< α

for all k large enough. But then (4.1) implies that ρk+1 = ρk for all k large enough,
in contradiction with the assumption ρk → +∞.
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4.2. Relations with the classical results. In the analysis above the initial
multiplier approximation must be close enough to a Lagrange multiplier satisfying
SOSC (1.6). The classical results (cited in the introduction), while requiring sig-
nificantly stronger assumptions, allow the initial approximation to be far from the
(unique in that setting) optimal multiplier μ̄ at the price of increasing proportion-
ally the threshold value for the penalty parameters. Keeping in mind the practical
requirement of using moderate values of penalty parameters, this is perhaps not an
important difference since the penalty parameters would introduce a bound on how
far the initial multiplier can be taken. Nevertheless, it would be nice to complete
the picture by clarifying whether or not increasing the penalty threshold one can also
take far away multipliers assuming SOSC (1.6) only. At this time, this is an open
question. Here, we show that a result similar to the classical can be derived from our
analysis under some stronger assumptions.

In the context of generalized equations, we replace the upper-Lipschitzian prop-
erty (2.14) of Σ(p) by the stronger Aubin property of Σ at (0, w̄): there exist constants
ε0, γ0, τ0 > 0 such that

Σ(p) ∩ (w̄ + ε0B) ⊆ Σ(q) + τ0‖p− q‖B ∀p, q ∈ γ0B.(4.3)

This condition guarantees that Σ is nonempty and single-valued near the origin. More-
over, it was shown in [14, Theorem 6] that in the context of the optimization problem
(1.1) the Aubin property (4.3) for w̄ = (x̄, μ̄) is equivalent to the combination of the
linear independence constraint qualification (LICQ) at x̄ (i.e., the set {g′i(x̄), i ∈ I}
is linearly independent) with the strong second-order sufficient optimality condition
(SSOSC) at (x̄, μ̄), i.e.,〈

∂2L

∂x2
(x̄, μ̄)u, u

〉
> 0 ∀u ∈ C+(x̄) \ {0},(4.4)

where

C+(x̄) = {u ∈ IRn | 〈g′i(x̄), u〉 = 0 for i ∈ I1(μ̄)} .
Note that under the strict complementarity condition μ̄i > 0 for all i ∈ I, used in the
classical results, it holds that C+(x̄) = C(x̄), and thus SSOSC (4.4) and SOSC (1.6)
are the same in that case.

We next show that under the assumptions of LICQ and SSOSC, and without
strict complementarity, our analysis can handle initial multiplier estimates far from
the optimal μ̄, similar to the classical results.

Proposition 4.2. Let x̄ satisfy LICQ and let (x̄, μ̄) satisfy SSOSC (4.4). Then

there exist η̂, ρ̂, δ̂, τ̂ > 0 such that for each (μ, ρ, ϑ) in the set

D =

{
(μ, ρ, ϑ) ∈ IRm+1+n

∣∣∣∣∣
(
‖ϑ‖2 + 1

ρ2
‖μ− μ̄‖2

)1/2

≤ η̂, ρ ≥ ρ̂

}
,

there exists the unique vector x̂ ∈ x̄+ δ̂B satisfying

∂L̄

∂x
(x̂, μ; ρ) = ϑ.

Moreover, it holds that∥∥∥∥
[
x̂− x̄
μ̂− μ̄

]∥∥∥∥ ≤ τ̂

(
‖ϑ‖2 + 1

ρ2
‖μ− μ̄‖2

)1/2

,

where μ̂ = ΠQ(μ+ ρg(x̂)).
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Proof. By the assumptions, we have that Σ satisfies the Aubin property (4.3).
Define

τ̂ = 2τ0, δ̂ = ε0, γ̃ = min{γ0, ε0/τ0}, η̂ = γ̃/2, ρ̂ = 2ε0/γ̃,(4.5)

and take any (μ, ρ, ϑ) ∈ D. Let v = (μ − μ̄)/ρ and let p0 = (−ϑ,−v). Since ‖p0‖ ≤
η̂ ≤ γ0, by (4.3) there exists (x1, μ1) = w1 ∈ Σ(p0) such that ‖w1− w̄‖ ≤ τ0‖p0‖ ≤ ε0.
Similarly, we can define the sequences {pj} and {wj = (xj , μj)} such that

pj =

(
−ϑ, 1

ρ
(μj − μ̄)− v

)
, wj ∈ Σ(pj−1), and ‖wj − w̄‖ ≤ ε0

for all j ≥ 1. This construction can be done because

‖pj‖2 = ‖ϑ‖2 +
∥∥∥∥1ρ (μj − μ̄)− v

∥∥∥∥
2

≤ 2

(
1

ρ2
‖μj − μ̄‖2 + ‖ϑ‖2 + ‖v‖2

)

≤ 2

(
1

ρ2
ε20 +

1

4
γ̃2
)

≤ γ̃2,

where the last two relations come from (4.5) and the fact that (μ, ρ, ϑ) ∈ D. Now,
using (4.3), for any k > j we obtain

‖wk − wj‖ ≤ τ0‖pk − pj‖
=
τ0
ρ
‖μk−1 − μj−1‖ ≤ τ0

ρ
‖wk−1 − wj−1‖

≤
(
τ0
ρ

)j−1

‖wk−j+1 − w1‖

≤
(
τ0
ρ

)j−1

τ0‖pk−j − p0‖

=

(
τ0
ρ

)j

‖μk−j − μ̄‖ ≤ 1

2j
ε0,

where for the last inequality we use the facts that ‖wk−j − w̄‖ ≤ ε0 and ρ ≥ ρ̂ ≥ 2τ0.
Thus, since {wj} is a Cauchy sequence, there exists ŵ such that wj → ŵ = (x̂, μ̂).
Hence, pj → p̂ = (−ϑ, 1ρ(μ̂− μ̄)− v) and ŵ ∈ Σ(p̂). Then,

ϑ = f ′(x̂) + (g′(x̂))�μ̂,(4.6)

g(x̂) + v − 1

ρ
(μ̂− μ̄) ∈ NQ(μ̂).(4.7)

By (4.7) and using that v = (μ − μ̄)/ρ we have μ + ρg(x̂) − μ̂ ∈ NQ(μ̂), which is
equivalent to μ̂ = ΠQ(μ+ ρg(x̂)). Thus, from (4.6) we obtain

∂L̄

∂x
(x̂, μ; ρ) = f ′(x̂) + (g′(x̂))�μ̂ = ϑ.

The uniqueness of x̂ comes from the fact that Σ is single-valued.
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To prove the last relation, by (4.3) and using that w̄ ∈ Σ(0), we obtain

‖x̂− x̄‖2 + ‖μ̂− μ̄‖2 = ‖ŵ − w̄‖2 ≤ τ20 ‖p̂‖2

≤ 2τ20

(
1

ρ2
‖μ̂− μ̄‖2 + ‖ϑ‖2 + ‖v‖2

)

≤ 2τ20 (‖ϑ‖2 + ‖v‖2) + 1

2
‖μ̂− μ̄‖2,

where we used that ρ ≥ ρ̂ ≥ 2τ0 for the last inequality. Then,

‖x̂− x̄‖2 + ‖μ̂− μ̄‖2 ≤ 4τ20 (‖ϑ‖2 + ‖v‖2).

Thus, the desired result follows noticing that τ̂ = 2τ0.
Note that in the case of equality-constrained problems the above reproduces

the classical result (see [4, Proposition 2.14]), while in the presence of inequality
constraints there is an improvement, as the strict complementarity condition is not
needed.

Thus, under the assumptions of LICQ and SSOSC, we can take an initial mul-
tiplier μ0 far from μ̄, at the expense of increasing the penalty parameter. Moreover,
our Theorem 3.4 can be used from the next (i.e., second) iteration. To that end,
considering η̂ ≤ ε̄/τ̂ and ρ̂ ≥ ρ̄, if we take (μ0, ρ0, ϑ) ∈ D, we obtain

(x1, μ1) = (x̂,ΠQ(μ
0 + ρ0g(x̂))) ∈ ((x̄, μ̄) + ε̄B) ∩ (IRn ×Q) .

We would like to emphasize that the definition of the set D depends on the unique
multiplier μ̄. For the degenerate case, the definition of an appropriate set D allowing
initial multiplier estimates far from the multiplier set joint with the corresponding
existence result is an open question.

4.3. Extension to the case with upper and lower level constraints. When
there are some simple (bound or, more generally, linear) constraints, these are often
treated by augmented Lagrangian methods directly [9, 1] (i.e, such constraints are not
included into the augmented Lagrangian); instead the partial augmented Lagrangian
composed with general constraints is minimized subject to the simple constraints. To
that end, consider the problem (1.1) with additional linear constraints:

min f(x),
s.t. gi(x) = 0, i = 1, . . . , l,

gi(x) ≤ 0, i = l+ 1, . . . ,m,
Ax ≤ a,

where A is an q × n matrix and a ∈ IRq. The Lagrangian L : IRn × IRm × IRq → IR
of this problem is given by L(x, μ, λ) = f(x) + 〈μ, g(x)〉+ 〈λ,Ax − a〉.

The partial augmented Lagrangian with respect to general constraints is then
defined by (2.6) as before, and the subproblem consists of solving

min L̄(x, μk; ρk), s.t. Ax ≤ a.(4.8)

The multiplier update formula for μk+1 is the usual (1.3), and the new multipliers
λk+1 associated to the linear constraints are those resulting from solving the subprob-
lem (4.8).
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Using considerations analogous to (2.10) and (2.11) before, the optimality condi-
tions for (4.8) can be written as

0 ∈

⎡
⎢⎢⎢⎣

∂L

∂x
(xk+1, μk+1, λk+1)

−g(xk+1) +
1

ρk
(μk+1 − μk)

Axk+1 − a

⎤
⎥⎥⎥⎦+N (xk+1, μk+1, λk+1),

where

N (x, μ, λ) = {0} × NQ(μ)×NIRq
+
(λ).

It is clear that the structure at hand is again a perturbed GE representing the
KKT conditions for the problem in consideration, with the same type of perturbations
as before for general constraints and the associated multipliers, and with zero pertur-
bations associated to the linear constraints. The preceding analysis easily extends.

5. Concluding remarks. We have established convergence and rate of conver-
gence of the augmented Lagrangian method under the sole assumption that the dual
starting point is close enough to a multiplier satisfying the usual second-order suffi-
cient optimality condition. No constraint qualifications and no strict complementarity
were assumed. Some possible directions of future research concern extending the anal-
ysis to various modifications of the classical algorithm. These include using different
penalty parameters for different constraints, nonquadratic penalty terms, etc. Also,
extensions of the method of multipliers to variational problems could be considered.
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