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Abstract We show that if the equation mapping is 2-regular at a solution in some nonzero
direction in the null space of its Jacobian (in which case this solution is critical; in particular,
the local Lipschitzian error bound does not hold), then this direction defines a star-like do-
main with nonempty interior from which the iterates generated by a certain class of Newton-
type methods necessarily converge to the solution in question. This is despite the solution
being degenerate, and possibly non-isolated (so that there are other solutions nearby). In
this sense, Newtonian iterates are attracted to the specific (critical) solution. Those results
are related to the ones due to A. Griewank for the basic Newton method but are also appli-
cable, for example, to some methods developed specially for tackling the case of potentially
non-isolated solutions, including the Levenberg–Marquardt and the LP-Newton methods for
equations, and the stabilized sequential quadratic programming for optimization.
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1 Introduction

We consider a nonlinear equation
Φ(u) = 0, (1)

where the mapping Φ : Rp → Rp is smooth enough (precise smoothness assumptions will
be stated later as needed). This paper is concerned with convergence properties of Newton-
type methods for solving the equation (1) when it has a singular solution ū (i.e., the matrix
Φ ′(ū) is singular). Of particular interest is the difficult case when ū may be a non-isolated
solution of (1). Note that if ū is a non-isolated solution, it is necessarily singular.

To describe the class of methods in question, we define the perturbed Newton method
(pNM) framework for equation (1) as follows. For the given iterate uk ∈Rp, the next iterate
is uk+1 = uk + vk, with vk satisfying the following linear equation in v:

Φ(uk)+(Φ ′(uk)+Ω(uk))v = ω(uk). (2)

In (2), the mappings Ω : Rp→Rp×p and ω : Rp→Rp are certain perturbation terms which
may have different roles, and individually or collectively define specific methods within the
general pNM framework. In particular, if Ω ≡ 0 and ω ≡ 0, then (2) reduces to the iteration
system of the basic Newton method. The most common setting would be for Ω to char-
acterize a perturbation of the iteration matrix of the basic Newton method (i.e., the differ-
ence between the matrix a given method actually employs, compared to the exact Jacobian
Φ ′(uk)), and for ω to account for possible inexactness in solving the corresponding linear
system of equations. An example of this setting within this paper, is the stabilized Newton-
Lagrange method (stabilized sequential quadratic programming for equality-constrained op-
timization), considered in Section 3.3 below. However, we emphasize that our framework is
not restricted to this situation. In particular, subproblems of a given method need not even
be systems of linear equations, as long as they can be related to (2) a posteriori. One exam-
ple is the linear-programming-Newton (LP-Newton) method discussed in Section 3.2 below,
which solves linear programs, and for which the perturbation term ω is implicit (i.e., it does
not have an explicit analytical formula, but its properties are known). In this respect, we also
comment that the way we shall employ the perturbation mappings Ω and ω is somewhat
unusual, in the following sense. They may describe a given method not necessarily on the
whole neighborhood of a solution of interest, but possibly only in some relevant star-like do-
main of convergence; see the discussion of the Levenberg–Marquardt method in Section 3.1
and of the LP-Newton method in Section 3.2. This, however, is exactly what is needed in
the presented convergence analysis, as it is shown that the generated iterates do in fact stay
within the domain in question and, within this set, Ω and ω that we construct do adequately
represent the given algorithms. Finally, we note that the specific methods that we consider
in this paper have been designed to tackle the difficult cases when (1) has degenerate/non-
isolated solutions, and in this sense the perturbation terms in (2) that describe these methods
can be regarded as “structural”, i.e., introduced intentionally for improving convergence
properties in the degenerate cases. The assumptions imposed on Ω and ω are only related
to their “size”, which allows ω to cover naturally precision control when the subproblems
are solved approximately. However, as already commented, the use of ω can also be quite
different. In the analysis of the LP-Newton method in Section 3.2, ω is implicit and is not
related to solving subporoblems approximately.

Our convergence results assume a certain 2-regularity property of the solution of (1),
which implies that this solution is “critical” in the sense of [15]. We next state the relevant
definitions, and discuss the relations between those concepts.
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Recall first that if Φ is differentiable at a solution ū of the equation (1), then it holds that

TΦ−1(0)(ū)⊂ kerΦ
′(ū),

where Φ−1(0) is the solution set of (1), and by TS(u) we denote the contingent cone to a set
S⊂ Rp at u ∈ S, i.e. the tangent cone as defined in [26, Definition 6.1]:

TS(u) = {v ∈ Rp | ∃{tk} ⊂ R+ : {tk}→ 0+, dist(u+ tkv, S) = o(tk)}.

Recall that according to [26, Corollary 6.29] (see also [26, Definition 6.4] and the original
definition in [3, Definition 2.4.6]), assuming that a set S⊂Rp is closed near u ∈ S, this set is
Clarke-regular at u if the multifunction TS(·) is inner semicontinuous at u relative to S (the
latter meaning that for any v∈ TS(u) and any sequence {uk}⊂ S convergent to u, there exists
a sequence {vk} convergent to v such that vk ∈ TS(uk) for all k).

The following notion was introduced in [15].

Definition 1 Assuming that Φ is differentiable at a solution ū of the equation (1), this solu-
tion is referred to as noncritical if the set Φ−1(0) is Clarke-regular at ū, and

TΦ−1(0)(ū) = kerΦ
′(ū). (3)

Otherwise, the solution ū is referred to as critical.

Observe that according to the above definition, any isolated singular solution is neces-
sarily critical.

As demonstrated in [15], if Φ satisfies some mild and natural smoothness assumptions,
then noncriticality of ū is equivalent to the local Lipschitzian error bound on the distance to
the solution set in terms of the natural residual of the equation (1):

dist(u, Φ
−1(0)) = O(‖Φ(u)‖)

holds as u ∈ Rp tends to ū. Moreover, it is also equivalent to the upper-Lipschitzian stabil-
ity with respect to right-hand side perturbations of (1): any solution u(w) of the perturbed
equation

Φ(u) = w,
close enough to ū, satisfies

dist(u(w), Φ
−1(0)) = O(‖w‖)

as w∈Rp tends to 0. Accordingly, criticality of ū means the absence of the properties above.
The interest in critical/noncritical solutions of nonlinear equations originated from the

study of special Lagrange multipliers in equality-constrained optimization, also called crit-
ical [13,18,19,14,22], [21, Chapter 7]. For the relations between critical solutions of equa-
tions and critical multipliers in optimization, see [15]. It had been demonstrated that critical
Lagrange multipliers tend to attract dual sequences generated by a number of Newton-type
methods for optimization [18,19], [21, Chapter 7]. In this paper, we show that critical solu-
tions of nonlinear equations also serve as attractors, in this case for methods described by
the pNM framework (2).

For a symmetric bilinear mapping B : Rp×Rp→ Rp and an element v ∈ Rp, we define
the linear operator B[v] : Rp→ Rp by B[v]u = B[v, u]. The notion of 2-regularity is a useful
tool in nonlinear analysis and optimization theory; see, e.g., the book [1], as well as [2,16,
17,9,10] for some applications. The essence of the construction is that when a mapping
Φ is irregular at ū (Φ ′(ū) is singular), first-order information is insufficient to adequately
represent Φ around ū, and so second-order information has to come into play. To this end,
we have the following.
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Definition 2 Assuming that Φ is twice differentiable at ū ∈Rp, Φ is said to be 2-regular at
the point ū in the direction v ∈ Rp if the p× p-matrix

Ψ(ū; v) = Φ
′(ū)+ΠΦ

′′(ū)[v] (4)

is nonsingular, where Π is the projector in Rp onto an arbitrary fixed complementary sub-
space of imΦ ′(ū), along this subspace.

In our convergence analysis of Newton-type methods described by (2), we shall assume
that Φ is 2-regular at a solution ū of (1) in some direction v ∈ kerΦ ′(ū) \ {0}. It turns out
that this implies that the solution ū is necessarily critical in the sense of Definition 1. We
show this next.

Proposition 1 Let Φ be twice differentiable at a solution ū of the equation (1) and 2-regular
at this solution in some direction v ∈ kerΦ ′(ū)\{0}.

Then (3) does not hold and, in particular, ū is a critical solution of (1).

Proof Let v∈ kerΦ ′(ū)\{0}. Suppose that (3) holds. Then v∈ TΦ−1(0)(ū). Thus, there exist
a sequence {tk} of positive reals and a sequence {rk} ⊂ Rp such that {tk} → 0, rk = o(tk),
and for all k it holds that

0 = Φ(ū+ tkv+ rk) = Φ
′(ū)rk +

1
2

t2
k Φ
′′(ū)[v, v]+o(t2

k ).

Therefore,
t2
k Φ
′′(ū)[v, v]+o(t2

k ) ∈ imΦ
′(ū),

which implies that
Φ
′′(ū)[v, v] ∈ imΦ

′(ū).

Hence, ΠΦ ′′(ū)[v, v] = 0, where Π is specified in Definition 2. Since also Φ ′(ū)v = 0, from
(4) we conclude that v ∈ kerΨ(ū; v). As v 6= 0, this contradicts 2-regularity (specifically, the
nonsigularity of Ψ(ū; v)). Thus, (3) cannot hold, and ū must be a critical solution. ut

In Section 2, we shall prove that if Φ is 2-regular at a (critical) solution ū of (1) in
some direction v ∈ kerΦ ′(ū)\{0}, then v defines a domain star-like with respect to ū, with
nonempty interior, from which the iterates that satisfy the pNM framework (2) necessarily
converge to ū. In this sense, the iterates are “attracted” specifically to ū, even though there
may be other nearby solutions. These results are related to [11], where the pure Newton
method was considered (i.e., (2) with Ω ≡ 0 and ω ≡ 0). An interesting extension of the
results in [11] to the case when Φ is not necessarily twice differentiable, but has a Lipschitz-
continuous first derivative, has been proposed in [25]. The latter reference also gives an
application to smooth equation reformulations of complementarity problems.

In Section 3, we demonstrate how the general results for the pNM framework (2) apply
to some specific Newton-type methods. These include the classical Levenberg–Marquardt
method [24, Chapter 10.2] and the LP-Newton method [6] for nonlinear equations, and
the stabilized Newton–Lagrange method for optimization (or stabilized sequential quadratic
programming) [28,12,7,20]; see also [21, Chapter 7].

We finish this section with some words about our notation. Throughout, 〈·, ·〉 is the
Euclidian inner product, and unless specified otherwise, ‖ · ‖ is the Euclidian norm, where
the space is always clear from the context. Then the unit sphere is S= {u | ‖u‖= 1}. For a
linear operator (a matrix) A, we denote by kerA its null space, and by imA its image (range)
space. The notation I stands for the identity matrix. A set U is called star-like with respect
to u ∈U if tû+(1− t)u ∈U for all û ∈U and all t ∈ [0, 1].
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2 Local convergence of pNM iterates to a critical solution

Results of this section are related to those in [11], where the basic Newton method was
considered (i.e, pNM (2) with Ω ≡ 0 and ω ≡ 0). To the best of our knowledge, this is the
only directly related reference, as it also allows for non-isolated solutions. Other literature on
the basic Newton method for singular equations uses assumptions that imply that a solution,
though possibly singular, must be isolated.

Let ū be a solution of the equation (1). Then every u ∈ Rp is uniquely decomposed into
the sum u = u1+u2, with u1 ∈ (kerΦ ′(ū))⊥ and u2 ∈ kerΦ ′(ū). The corresponding notation
will be used throughout the rest of the paper.

We start with the following counterpart of [11, Lemma 4.1], which establishes that,
under appropriate assumptions, the pNM subproblem (2) has the unique solution for all uk

close enough to ū, in a certain star-like domain.

Lemma 1 Let Φ : Rp→ Rp be twice differentiable near ū ∈ Rp, with its second derivative
Lipschitz-continuous with respect to ū, that is,

Φ
′′(u)−Φ

′′(ū) = O(‖u− ū‖)

as u→ ū. Let ū be a solution of the equation (1), and assume that Φ is 2-regular at ū
in a direction v̄ ∈ Rp ∩S. Let Π stand for the orthogonal projector onto (imΦ ′(ū))⊥. Let
Ω : Rp→ Rp×p satisfy the following properties:

Ω(u) = O(‖u− ū‖) (5)

as u→ ū, and for every ∆ > 0 there exist ε > 0 and δ > 0 such that for every u ∈ Rp \{ū}
satisfying

‖u− ū‖ ≤ ε,

∥∥∥∥ u− ū
‖u− ū‖

− v̄
∥∥∥∥≤ δ , (6)

it holds that
‖ΠΩ(u)‖ ≤ ∆‖u− ū‖. (7)

Let ω : Rp→ Rp satisfy
ω(u) = O(‖u− ū‖2) (8)

as u→ ū.
Then there exist ε̄ = ε̄(v̄)> 0 and δ̄ = δ̄ (v̄)> 0 such that for every u ∈ Rp \{ū} satis-

fying

‖u− ū‖ ≤ ε̄,

∥∥∥∥ u− ū
‖u− ū‖

− v̄
∥∥∥∥≤ δ̄ , (9)

the equation (2) with uk = u has the unique solution v, satisfying

u1 + v1− ū1 = O(‖u− ū‖2), (10)

u2 + v2− ū2 =
1
2
(u2− ū2)+O(‖u1− ū1‖)

+O(‖u− ū‖−1
Πω(u))+O(‖ΠΩ(u)‖)+O(‖u− ū‖2) (11)

as u→ ū.
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Proof Under the stated smoothness assumptions, without loss of generality we can assume
that ū = 0 and

Φ(u) = Au+
1
2

B[u, u]+R(u), (12)

where A = Φ ′(0) ∈Rp×p, B = Φ ′′(0) is a symmetric bilinear mapping from Rp×Rp to Rp,
and the mapping R : Rp→ Rp is differentiable near 0, with

R(u) = O(‖u‖3), R′(u) = O(‖u‖2) (13)

as u→ 0.
Substituting the form of Φ stated in (12) into (2), and multiplying (2) be (I−Π) and by

Π , we decompose (2) into the following two equations:

(A+(I−Π)(B[u]+R′(u)+Ω(u)))v1 = −Au1− (I−Π)

(
1
2

B[u, u]+R(u)−ω(u)
)

−(I−Π)(B[u]+R′(u)+Ω(u))v2, (14)

and

Π(B[u]+R′(u)+Ω(u))(v1 + v2) =−Π

(
1
2

B[u, u]+R(u)−ω(u)
)
. (15)

Let ε̄ > 0 and δ̄ > 0 be arbitrary and fixed for now. From this point on, we consider only
those u ∈ Rp \{0} that satisfy (9).

Define the family of linear operators A (u) : (kerA)⊥→ imA as the restriction of (A+
(I−Π)(B[u]+R′(u)+Ω(u))) to (kerA)⊥. Let ¯A : (kerA)⊥→ imA be the restriction of A
to (kerA)⊥. Then, taking into account (8) and (13), the equality (14) can be written as

A (u)v1 =− ¯A u1− (I−Π)(B[u]+R′(u)+Ω(u))v2 +O(‖u‖2) (16)

as u→ 0. Evidently, ¯A is invertible, and according to (5) and (13),

A (u) = ¯A +O(‖u‖).

The latter implies that A (u) is invertible, provided ε̄ > 0 is small enough, and

(A (u))−1 = ( ¯A )−1 +O(‖u‖)

as u→ 0 (see, e.g., [21, Lemma A.6]). Therefore, (16) can be written as

v1 =−u1 +M (u)v2 +O(‖u‖2), (17)

where M (u) : kerA→ (kerA)⊥,

M (u) =−(A (u))−1(I−Π)(B[u]+R′(u)+Ω(u)) = O(‖u‖) (18)

as u→ 0.
Substituting (17) into (15), and taking into account (13), we obtain that

Π(B[u]+R′(u)+Ω(u))(I +M (u))v2 = −Π

(
1
2

B[u, u]−ω(u)
)
+Π(B[u]+Ω(u))u1

+O(‖u‖3). (19)
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Define the family of linear operators B(u) : kerA→ (imA)⊥ as the restriction of Π(B[u]+
R′(u)+Ω(u))(I +M (u)) to kerA. Let B̄(u) : kerA→ (imA)⊥ be the restriction of ΠB[u]
to kerA. Then (19) can be written as

B(u)v2 =−
1
2
B̄(u)u2 +Π

((
1
2

B[u]+Ω(u)
)

u1 +ω(u)
)
+O(‖u‖3) (20)

as u→ 0.
The 2-regularity of Φ at 0 in the direction v̄ means precisely that B̄(v̄) is nonsingular.

Then, possibly after reducing δ̄ > 0, by [21, Lemma A.6] we obtain the existence of C > 0
such that for every u∈Rp \{0} satisfying the second relation in (9), B̄(u/‖u‖) is invertible,
and ∥∥∥(B̄ (‖u‖−1u

))−1
∥∥∥≤C. (21)

According to (13), (5), (18), it holds that

B
(
‖u‖−1u

)
= B̄

(
‖u‖−1u

)
+‖u‖−1

ΠΩ(u)+O(‖u‖).

Choosing ∆ > 0 small enough, and further reducing ε̄ > 0 and δ̄ > 0 if necessary, by (7)
and (21), and by [21, Lemma A.6], we now obtain that B

(
‖u‖−1u

)
is invertible, and

(
B
(
‖u‖−1u

))−1
=
(
B̄
(
‖u‖−1u

))−1
+O

(
‖u‖−1‖ΠΩ(u)‖

)
+O(‖u‖).

Employing again (5), we further conclude that

(B(u))−1 = (B̄(u))−1 +O
(
‖u‖−2‖ΠΩ(u)‖

)
+O(1) = O

(
‖u‖−1) .

Therefore, (20) is uniquely solvable, and its unique solution has the form

v2 =−
1
2

u2+(B̄(u))−1
Π

(
1
2

B[u, u1]+ω(u)
)
+O(‖ΠΩ(u)‖)+O(‖u‖2) =O(‖u‖) (22)

as u→ 0, where the last estimate employs (5) and (8).
Substituting (22) into (17), and employing (18) again, we finally obtain that

v1 =−u1 +O(‖u‖2) (23)

as u→ 0.
From (22) and (23), we have the needed estimates (10) and (11). ut

Remark 1 From the proof of Lemma 1 it can be seen that under the assumptions of this
lemma (removing the assumptions on ω which are not needed for the following), the values
ε̄ = ε̄(v̄) > 0 and δ̄ = δ̄ (v̄) > 0 can be chosen in such a way that for every u ∈ Rp \ {ū}
satisfying (9), the matrix Φ ′(u)+Ω(u) is invertible, and (Φ ′(u)+Ω(u))−1 = O(‖u− ū‖−1)
as u→ ū. When Ω ≡ 0, this result is a particular case of [11, Lemma 3.1].

We proceed to establish convergence of the iterates satisfying the pNM framework
(2), from any starting point in the relevant domain. This result is a generalization of [11,
Lemma 5.1].
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Theorem 1 Let Φ : Rp→Rp be twice differentiable near ū∈Rp, with its second derivative
being Lipschitz-continuous with respect to ū, that is,

Φ
′′(u)−Φ

′′(ū) = O(‖u− ū‖)

as u→ ū. Let ū be a solution of the equation (1), and assume that Φ is 2-regular at ū in a
direction v̄ ∈ kerΦ ′(ū)∩S. Let Ω : Rp→ Rp×p and ω : Rp→ Rp satisfy the estimates (5),
(8), as well as

ΠΩ(u) = O(‖u1− ū1‖)+O(‖u− ū‖2) (24)

and
Πω(u) = O(‖u− ū‖‖u1− ū1‖)+O(‖u− ū‖3) (25)

as u→ ū.
Then for every ε̄ > 0 and δ̄ > 0, there exist ε = ε(v̄) > 0 and δ = δ (v̄) > 0 such that

any starting point u0 ∈ Rp \{ū} satisfying

‖u0− ū‖ ≤ ε,

∥∥∥∥ u0− ū
‖u0− ū‖

− v̄
∥∥∥∥≤ δ (26)

uniquely defines the sequence {uk} ⊂ Rp such that for each k it holds that vk = uk+1− uk

solves (2), uk
2 6= ū2, the point u = uk satisfies (9), the sequence {uk} converges to ū, the

sequence {‖uk− ū‖} converges to zero monotonically,

‖uk+1
1 − ū1‖

‖uk+1
2 − ū2‖

= O(‖uk− ū‖) (27)

as k→ ∞, and

lim
k→∞

‖uk+1
2 − ū2‖
‖uk

2− ū2‖
=

1
2
. (28)

Proof We again assume that ū = 0, and Φ is given by (12) with R satisfying (13).
Considering that v̄1 = 0, observe first that if u ∈ Rp \{0} satisfies the second condition

in (6) with some δ ∈ (0, 1), then

‖u1‖
‖u‖

=

∥∥∥∥ u1

‖u‖
− v̄1

∥∥∥∥≤ ∥∥∥∥ u
‖u‖
− v̄
∥∥∥∥≤ δ .

This implies that
‖u1‖ ≤ δ‖u‖, (29)

and hence,
‖u‖ ≤ ‖u1‖+‖u2‖ ≤ δ‖u‖+‖u2‖,

so that
(1−δ )‖u‖ ≤ ‖u2‖. (30)

Then ∥∥∥∥ u2

‖u2‖
− v̄
∥∥∥∥ ≤ ∥∥∥∥ u2

‖u‖
− v̄2

∥∥∥∥+∥∥∥∥ u2

‖u2‖
− u2

‖u‖

∥∥∥∥
≤
∥∥∥∥ u
‖u‖
− v̄
∥∥∥∥+ ‖u‖−‖u2‖

‖u‖

≤ δ +1− ‖u2‖
‖u‖

≤ 2δ , (31)
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where the second inequality employs the fact that u2/‖u‖ is the metric projection of u/‖u‖
onto kerA.

From (24) and (29) it evidently follows that Ω satisfies the corresponding assumptions
in Lemma 1. Therefore, according to this lemma, there exist ε̄ > 0 and δ̄ > 0 such that for
every u ∈Rp \{ū} satisfying (9), the equation (2) with uk = u has the unique solution v, and

u1 + v1 = O(‖u‖2)

and
u2 + v2 =

1
2

u2 +O(‖u1‖)+O(‖u‖2)

as u→ 0, where (24) and (25) were again taken into account.
In what follows, we use these values ε̄ and δ̄ , with the understanding that if we prove

the assertion of the theorem for these specific values of ε̄ and δ̄ , it will also be valid for any
larger values of those constants. At the same time, since Lemma 1 allows for these ε̄ and δ̄ ,
it certainly allows for any smaller values.

Therefore, there exists C > 0 such that

‖u1 + v1‖ ≤C‖u‖2, (32)∥∥∥∥u2 + v2−
1
2

u2

∥∥∥∥≤ ∥∥∥∥u+ v− 1
2

u2

∥∥∥∥≤C(‖u1‖+‖u‖2), (33)

and hence,

1
2
‖u2‖−C(‖u1‖+‖u‖2)≤ ‖u2 + v2‖ ≤ ‖u+ v‖ ≤ 1

2
‖u2‖+C(‖u1‖+‖u‖2). (34)

From (9), (29) and (30) with δ = δ̄ , and from (34), we further derive that(
1− δ̄

2
−C(δ̄ + ε̄)

)
‖u‖ ≤ ‖u2 + v2‖ ≤ ‖u+ v‖ ≤

(
1
2
+C(δ̄ + ε̄)

)
‖u‖.

Reducing ε̄ > 0 and δ̄ > 0 if necessary, so that

δ̄

2
+C(δ̄ + ε̄)<

1
2
,

and setting

q− =
1− δ̄

2
−C(δ̄ + ε̄), q+ =

1
2
+C(δ̄ + ε̄),

we then obtain that
q−‖u‖ ≤ ‖u2 + v2‖ ≤ ‖u+ v‖ ≤ q+‖u‖, (35)

where
0 < q− < q+ < 1. (36)

By (33), the right inequality in (34), and the left inequality in (35), we have that∥∥∥∥ u+ v
‖u+ v‖

− u2

‖u2‖

∥∥∥∥ =
‖(u+ v)‖u2‖−u2‖u+ v‖‖

‖u2‖‖u+ v‖

≤ 2C(‖u1‖+‖u‖2)

q−‖u‖

=
2C
q−

(
‖u1‖
‖u‖

+‖u‖
)
, (37)
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‖u2 + v2‖
− u2

‖u2‖

∥∥∥∥ =
‖(u2 + v2)‖u2‖−u2‖u2 + v2‖‖

‖u2‖‖u2 + v2‖

≤ 2C(‖u1‖+‖u‖2)

q−‖u‖

=
2C
q−

(
‖u1‖
‖u‖

+‖u‖
)
. (38)

Now choose ε ∈ (0, ε̄], δ ∈ (0, δ̄ ] satisfying

2δ +
2C
q−

(
δ +

(
C
q−

+1
)

ε

1−q+

)
≤ δ̄ , (39)

and assume that (26) holds for u0 ∈ Rp \ {0}. Suppose that u j ∈ Rp \ {0}, satisfy (2) and
(9) with u = u j for all j = 1, . . . , k. Then by the choice of ε̄ > 0 and δ̄ > 0, there exists the
unique uk+1 satisfying (2), and by (29), (31), (32), (35), (36), (37), (38), it holds that

0 < ‖uk+1‖ ≤ q+‖uk‖ ≤ q2
+‖uk−1‖ ≤ . . .≤ qk+1

+ ‖u0‖ ≤ qk+1
+ ε ≤ ε ≤ ε̄,

∥∥∥∥ uk+1

‖uk+1‖
− v̄
∥∥∥∥ ≤ ∥∥∥∥ uk

2

‖uk
2‖
− v̄
∥∥∥∥+∥∥∥∥ uk+1

‖uk+1‖
−

uk
2

‖uk
2‖

∥∥∥∥
≤

∥∥∥∥∥ uk−1
2

‖uk−1
2 ‖

− v̄

∥∥∥∥∥+
∥∥∥∥∥ uk

2

‖uk
2‖
−

uk−1
2

‖uk−1
2 ‖

∥∥∥∥∥+
∥∥∥∥ uk+1

‖uk+1‖
−

uk
2

‖uk
2‖

∥∥∥∥
≤ . . .

≤
∥∥∥∥ u0

2

‖u0
2‖
− v̄
∥∥∥∥+ k

∑
j=1

∥∥∥∥∥ u j
2

‖u j
2‖
−

u j−1
2

‖u j−1
2 ‖

∥∥∥∥∥+
∥∥∥∥ uk+1

‖uk+1‖
−

uk
2

‖uk
2‖

∥∥∥∥
≤ 2δ +

k

∑
j=1

2C
q−

(
‖u j−1

1 ‖
‖u j−1‖

+‖u j−1‖

)
+

2C
q−

(
‖uk

1‖
‖uk‖

+‖uk‖
)

≤ 2δ +
2C
q−

k

∑
j=0

(
‖u j

1‖
‖u j‖

+‖u j‖

)

≤ 2δ +
2C
q−

(
‖u0

1‖
‖u0‖

+
k

∑
j=1

C‖u j−1‖
q−

+
k

∑
j=0
‖u j‖

)

≤ 2δ +
2C
q−

(
δ +

C
q−

k

∑
j=1

q j−1
+ ε +

k

∑
j=0

q j
+ε

)

≤ 2δ +
2C
q−

(
δ +

C
q−

ε

1−q+
+

ε

1−q+

)
≤ 2δ +

2C
q−

(
δ +

(
C
q−

+1
)

ε

1−q+

)
≤ δ̄ ,

where the last inequality is by (39). Therefore, (9) holds with u = uk+1.
We have thus established that there exists the unique sequence {uk} ⊂ Rp such that for

each k the point uk satisfies (2) and (9) with u = uk. By (35) and (36), it then follows that
uk 6= ū for all k, and {uk} converges to 0.
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According to (32) and (35), it holds that

‖uk+1
1 ‖
‖uk+1

2 ‖
≤ C

q−
‖uk‖

for all k. This yields (27).
Furthermore, according to (34),

1
2
−C
‖uk

1‖+‖uk‖2

‖uk
2‖

≤
‖uk+1

2 ‖
‖uk

2‖
≤ 1

2
+C
‖uk

1‖+‖uk‖2

‖uk
2‖

,

where by (27) both sides tend to 1/2 as k→ ∞. This gives (28). ut

Remark 2 In Theorem 1, by the monotonicity of the sequence {‖uk− ū‖}, for every k large
enough it holds that ‖uk+1

2 − ū2‖ ≤ ‖uk+1− ū‖ ≤ ‖uk− ū‖. Therefore, (27) implies the esti-
mates

‖uk+1
1 − ū1‖
‖uk+1− ū‖

= O(‖uk− ū‖)

and
‖uk+1

1 − ū1‖= O(‖uk− ū‖2) (40)

as k→ ∞.
Furthermore,

‖uk+1
2 − ū2‖

‖uk
1− ū1‖+‖uk

2− ū2‖
≤
‖uk+1

2 − ū2‖
‖uk− ū‖

≤
‖uk+1

2 − ū2‖
‖uk

2− ū2‖
,

where by (27) and (28) both sides tend to 1/2 as k→ ∞. Therefore,

lim
k→∞

‖uk+1
2 − ū2‖
‖uk− ū‖

=
1
2
. (41)

Finally,

‖uk+1
2 − ū2‖−‖uk+1

1 − ū1‖
‖uk− ū‖

≤ ‖u
k+1− ū‖
‖uk− ū‖

≤
‖uk+1

1 − ū1‖
‖uk− ū‖

+
‖uk+1

2 − ū2‖
‖uk− ū‖

where by (40) and (41) both sides tend to 1/2 as k→ ∞. Therefore,

lim
k→∞

‖uk+1− ū‖
‖uk− ū‖

=
1
2
.

Theorem 1 establishes the existence of a set with nonempty interior, which is star-like
with respect to ū, and such that any sequence satisfying the pNM relation (2) and initialized
from any point of this set, converges linearly to ū. Moreover, if Φ is 2-regular at ū in at
least one direction v̄ ∈ kerΦ ′(ū), then the set of such v̄ is open and dense in kerΦ ′(ū)∩S:
its complement is the null set of the nontrivial homogeneous polynomial detB̄(·) consid-
ered on kerΦ ′(ū)∩ S. The union of convergence domains coming with all such v̄ is also
a star-like convergence domain with nonempty interior. In the case when Φ ′(ū) = 0 (full
degeneracy), this domain is quite large. In particular, it is “asymptotically dense”: the only
excluded directions are those in which Φ is not 2-regular at ū, which is the null set of a
nontrivial homogeneous polynomial. Beyond the case of full degeneracy, the convergence
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domain given by Theorem 1 is at least not “asymptotically thin”. Though it is also not
“asymptotically dense”.

For the (unperturbed) Newton method, the existence of “asymptotically dense” star-like
domain of convergence was established in [11, Theorem 6.1]. Specifically, it was demon-
strated that one Newton step from a point u0 in this domain leads to the convergence domain
coming with the appropriate v̄ = π(u0)/‖π(u0)‖, where

π(u0) =
1
2
(u0

2− ū2)+
1
2
(B̄(u0− ū))−1

ΠB[u0− ū, u0
1− ū1];

see (22) above. Deriving a result like this for the pNM scheme (2) is hardly possible in
general, at least without rather restrictive assumptions on perturbation terms. Perhaps re-
sults along those lines can be derived for specific methods, rather than for the general pNM
framework, but such developments are not known at this time.

3 Applications to some specific algorithms

In this section we show how our general results for the pNM framework (2) can be applied
to some specific methods. In particular, we consider the following algorithms, all developed
for tackling the difficult case of non-isolated solutions: the Levenberg–Marquardt method
and the LP-Newton method for equations, and the stabilized Newton–Lagrange method for
optimization.

We start with observing that the assumptions (5), (8), (24) and (25) on the perturbations
terms in Theorem 1 hold automatically if

Ω(u) = O(‖Φ(u)‖), ω(u) = O(‖u− ū‖‖Φ(u)‖) (42)

as u→ ū. Indeed, this readily follows from the relation

Φ(u) = Φ
′(ū)(u1− ū1)+O(‖u− ū‖2)

as u→ ū.
Thus, to apply Theorem 1, in the part of perturbations properties it is sufficient to verify

(42).

3.1 Levenberg–Marquardt method

An iteration of the classical Levenberg–Marquardt method [24, Chapter 10.2] consists in
solving the following subproblem:

minimize
1
2
‖Φ(uk)+Φ

′(uk)v‖2 +
1
2

σ(uk)‖v‖2, v ∈ Rp, (43)

where uk ∈ Rp is the current iterate and σ : Rp→ R+ defines the regularization parameter.
In [29], it was established that under the Lipschitzian error bound condition (i.e., being

initialized near a noncritical solution ū of (1)), the method described by (43) with σ(u) =
‖Φ(u)‖2 generates a sequence which is quadratically convergent to a (nearby) solution of
(1). For analysis under the Lipschitzian error bound condition of a rather general framework
that includes the Levenberg–Marquardt method, see [5,8]. Our interest here is the case of
critical solutions, when the error bound does not hold.
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First, note that the unique (if σ(uk)> 0) minimizer of the convex quadratic function in
(43) is characterized by the linear system

(Φ ′(uk))T
Φ(uk)+((Φ ′(uk))T

Φ
′(uk)+σ(uk)I)v = 0. (44)

We next show how (44) can be embedded into the pNM framework (2). In particular, we
construct the perturbation terms for which the conditions (42) hold, and hence Theorem 1
is applicable, and which correspond to (44) on the relevant domain of convergence. As a
result, we obtain the following convergence assertions.

Corollary 1 Let Φ :Rp→Rp be twice differentiable near ū∈Rp, with its second derivative
Lipschitz-continuous with respect to ū. Let ū be a solution of the equation (1), and assume
that Φ is 2-regular at ū in a direction v̄ ∈ kerΦ ′(ū)∩S.

Then for any τ ≥ 2, there exist ε = ε(v̄) > 0 and δ = δ (v̄) > 0 such that any starting
point u0 ∈ Rp \ {ū} satisfying (26) uniquely defines the sequence {uk} ⊂ Rp such that for
each k it holds that vk = uk+1−uk solves (43) with σ(u) = ‖Φ(u)‖τ , uk

2 6= ū2, the sequence
{uk} converges to ū, the sequence {‖uk− ū‖} converges to zero monotonically, and (27) and
(28) hold. Moreover, if Φ ′(ū) = 0, then the same assertion is valid with any τ ≥ 3/2.

Proof Define ε̄ = ε̄(v̄)> 0 and δ̄ = δ̄ (v̄)> 0 according to Remark 1, where we set Ω ≡ 0.
Define the set

K = K(v̄) = {u ∈ Rp \{ū} | (9) holds}. (45)

Then Φ ′(u) is invertible for all u ∈ K, and (Φ ′(u))−1 = O(‖u− ū‖−1) as u→ ū (this can
also be concluded directly from [11, Lemma 3.1], with an appropriate choice of ε̄ > 0 and
δ̄ > 0).

We next define the mappings Ω and ω . First, we set Ω(u) = 0 and ω(u) = 0 for all
u ∈Rp \K. Of course, those vanishing perturbation terms for u 6∈ K have no relation to (44).
The point is that we next show that with the appropriate definitions for u ∈ K, we obtain Ω

and ω satisfying (42). Then Theorem 1 ensures that if the starting point satisfies (26) with
appropriate ε > 0 and δ > 0, it follows that the subsequent iterates are well defined and
remain in the set K. Finally, in K, the constructed Ω and ω do correspond to (44).

Let u ∈ K. Considering (44) with uk = u, and multiplying both sides of this relations by
the matrix (((Φ ′(uk))T)−1 = (((Φ ′(uk))−1)T, we obtain that

Φ(uk)+(Φ ′(uk)+σ(uk)((Φ ′(uk))−1)T)v = 0,

which is the pNM iteration system (2) with the perturbation terms given by

Ω(u) = σ(u)(((Φ ′(u))−1)T, ω(u) = 0, u ∈ K.

Then
Ω(u) = O(‖u− ū‖−1

σ(u)).

Therefore, the needed first estimate in (42) would hold if

σ(u) = O(‖u− ū‖‖Φ(u)‖) (46)

as u ∈ K tends to ū.
Let σ(u) = ‖Φ(u)‖τ with τ > 0. Then (46) takes the form

‖Φ(u)‖τ−1 = O(‖u− ū‖),

and since Φ(u) = O(‖u− ū‖), the last estimate is satisfied as u→ ū if τ ≥ 2.
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Moreover, in the case when Φ ′(ū) = 0 (full singularity) it holds that Φ(u) =O(‖u− ū‖2)
as u→ ū, and hence, in this case, the appropriate values are all τ ≥ 3/2.

The construction is complete. As the exhibited Ω and ω satisfy (42) as u→ ū (regardless
of whether u stays in K or not), Theorem 1 is applicable. In particular, it guarantees that for
appropriate starting points all the iterates stay in K. In this set, the perturbation terms define
the Levenberg–Marquardt iterations (44). Thus, the assertions follow from Theorem 1. ut

The following example is taken from DEGEN test collection [4].
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(a) Iterative sequences (b) Domain of attraction to the critical solution

Fig. 1: Levenberg–Marquardt method with τ = 1 for Example 1.

Example 1 (DEGEN 20101) Consider the equality-constrained optimization problem

minimize x2

subject to x2 = 0.

Stationary points and associated Lagrange multipliers of this problem are characterized by
the Lagrange optimality system which has the form of the nonlinear equation (1) with

Φ : R2→ R2, Φ(u) = (2x(1+λ ), x2), u = (x, λ ).

The unique feasible point (hence, the unique solution, and the unique stationary point) of
this problem is x̄ = 0, and the set of associated Lagrange multipliers is the entire R. There-
fore, the solution set of the Lagrange system (i.e., the primal-dual solution set) is {x̄}×R.
The unique critical solution is ū = (x̄, λ̄ ) with λ̄ = −1, the one for which Φ ′(ū) = 0 (full
singularity).

In Figures 1 and 2, the vertical line corresponds to the primal-dual solution set. These
figures show some iterative sequences generated by the Levenberg–Marquardt method, and
the domains from which convergence to the critical solution was detected. Using zoom in,
and taking smaller areas for starting points, does not significantly change the picture in
Figure 1, corresponding to τ = 1. At the same time, such manipulations with Figures 2a and
2b put in evidence that for τ = 3/2, the domain of convergence is in fact asymptotically
dense (see Figures 2c and 2d). These observations are in agreement with Theorem 1.
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Fig. 2: Levenberg–Marquardt method with τ = 3/2 for Example 1.

3.2 LP-Newton method

The LP-Newton method was introduced in [6]. For the equation (1), the iteration subproblem
of this method has the form

minimize γ

subject to ‖Φ(uk)+Φ ′(uk)v‖ ≤ γ‖Φ(uk)‖2,
‖v‖ ≤ γ‖Φ(uk)‖,
(v, γ) ∈ Rp×R.

(47)

The subproblem (47) always has a solution if Φ(uk) 6= 0 (naturally, if Φ(uk) = 0 the method
stops). If the l∞-norm is used, this is a linear programming problem (hence the name). As
demonstrated in [5,6] (see also [8]), local convergence properties of the LP-Newton method
(under the error bound condition, i.e., near noncritical solutions) are the same as for the
Levenberg–Marquardt algorithm. Again, our setting is rather that of critical solutions.

The proof of the following result is again by placing (47) within the pNM framework
(2). It is interesting that in this case Ω ≡ 0, while ω(·) is defined implicitly: there is no
analytic expression for it.
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Corollary 2 Under the assumptions of Corollary 1, there exist ε = ε(v̄)> 0 and δ = δ (v̄)>
0 such that for any starting point u0 ∈ Rp \{ū} satisfying (26) the following assertions are
valid:

(a) There exists a sequence {uk} ⊂ Rp such that for each k the pair (vk, γk+1) with vk =
uk+1−uk and some γk+1 solves (47).

(b) For any such sequence, uk
2 6= ū2 for each k, the sequence {uk} converges to ū, the se-

quence {‖uk− ū‖} converges to zero monotonically, and (27) and (28) hold.

Proof By the second constraint in (47), the equality (2) holds for Ω ≡ 0 and some ω(·)
satisfying

‖ω(u)‖ ≤ γ(u)‖Φ(u)‖2, (48)

where γ(u) is the optimal value of the subproblem (47) with uk = u. Note that ω(·) would
satisfy (42), and thus the assumptions of Theorem 1, if

γ(u) = O(‖Φ(u)‖−1‖u− ū‖) (49)

as u→ ū. Indeed, from the first constraint in (47) we then obtain that

‖Φ(u)+Φ
′(u)v‖ ≤ γ(u)‖Φ(u)‖2 = O(‖u− ū‖‖Φ(u)‖),

which implies the second estimate in (42).
We thus have to establish (49) on the relevant set. In this respect, the construction is

similar to what had been done in Section 3.1 above.
Define ε̄ = ε̄(v̄) > 0 and δ̄ = δ̄ (v̄) > 0 according to Lemma 1 applied with Ω ≡ 0

and ω ≡ 0, and define the set K according to (45). Then the step v(u) of the (unperturbed)
Newton method from any point u ∈ K exists, it is uniquely defined, and by (10) and (11), it
holds that v(u) = O(‖u− ū‖).

We now define the mappings Ω and ω . Similarly to the case of the Levenberg–Marquardt
method, we first set them identically equal to zero on Rp \K. Let u ∈ K. Then the point
(v, γ) = (v(u), ‖v(u)‖/‖Φ(u)‖) is feasible in (47), and hence,

γ(u)≤ γ = ‖Φ(u)‖−1‖v(u)‖= O(‖Φ(u)‖−1‖u− ū‖)

as u ∈ K tends to ū.
As in the proof of Corollary 1, we note that the constructed Ω and ω satisfy (42) as

u→ ū. Therefore, Theorem 1 ensures that for appropriate starting points all the iterates stay
in K, and in this set the perturbation terms defined hereby correspond to (47). In particular,
the assertions then follow from Theorem 1. ut

Observe that for the LP-Newton method, the values of ω(·) are defined in a posteriori
manner, after vk is computed. For this reason, Theorem 1 cannot yield uniqueness of the
iterative sequence: the next iterate can be defined by any ω(·) satisfying (48) for u = uk, and
different choices of appropriate ω(·) may give rise to different next iterates.

Figure 3 shows the same information for the LP-Newton method as Figure 2 for the
Levenberg–Marquardt algorithm, with the same conclusions.
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Fig. 3: LP-Newton method for Example 1.

3.3 Equality-constrained optimization and the stabilized Newton–Lagrange method

We next turn our attention to the origin of the critical solutions issues, namely, to the
equality-constrained optimization problem

minimize f (x) subject to h(x) = 0, (50)

where f : Rn → R and h : Rn → Rl are smooth. The Lagrangian L : Rn×Rl → R of this
problem is given by

L(x, λ ) = f (x)+ 〈λ , h(x)〉.
Then stationary points and associated Lagrange multipliers of (50) are characterized by the
Lagrange optimality system

∂L
∂x

(x, λ ) = 0, h(x) = 0,

with respect to x ∈ Rn and λ ∈ Rl .
The Lagrange optimality system is a special case of nonlinear equation (1), correspond-

ing to setting p = q = n+ l, u = (x, λ ),

Φ(u) =
(

∂L
∂x

(x, λ ), h(x)
)
. (51)
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The stabilized Newton–Lagrange method (or stabilized sequential quadratic program-
ming) was developed for solving the Lagrange optimality system (or optimization problem)
when the multipliers associated to a stationary point need not be unique [28,12,7,20]; see
also [21, Chapter 7]. For the current iterate uk = (xk, λ k)∈Rn×Rl , the iteration subproblem
of this method is given by

minimize 〈 f ′(xk),ξ 〉+ 1
2

〈
∂ 2L
∂x2 (x

k, λ
k)ξ ,ξ

〉
+

σ(uk)

2
‖η‖2

subject to h(xk)+h′(xk)ξ −σ(uk)η = 0,

where the minimization is in the variables (ξ , η) ∈ Rn×Rl , and σ : Rn×Rl → R+ now
defines the stabilization parameter. Equivalently, the following linear system (characterizing
stationary points and associated Lagrange multipliers of this subproblem) is solved:

∂L
∂x

(xk, λ
k)+

∂ 2L
∂x2 (x

k, λ
k)ξ +(h′(xk))T

η = 0, h(xk)+h′(xk)ξ −σ(uk)η = 0. (52)

With a solution (ξ k, ηk) of (52) at hand, the next iterate is given by uk+1 = (xk + ξ k, λ k +
ηk). Note that if σ ≡ 0, then (52) becomes the usual Newton–Lagrange method, i.e., the
basic Newton method applied to the Lagrange optimality system.

For a given Lagrange multiplier λ̄ associated with a stationary point x̄ of problem (50),
define the linear subspace

Q(x̄, λ̄ ) =

{
ξ ∈ kerh′(x̄)

∣∣∣∣ ∂ 2L
∂x2 (x̄, λ̄ )ξ ∈ im

(
h′(x̄)

)T
}
.

Recall that the multiplier λ̄ is called critical if Q(x̄, λ̄ ) 6= {0}; see [13,18]. Otherwise λ̄ is
noncritical.

As demonstrated in [20], if initialized near a primal-dual solution with a noncritical dual
part, the stabilized Newton–Lagrange method with σ(u) = ‖Φ(u)‖, where Φ is given by
(51), generates a sequence which is superlinearly convergent to a (nearby) solution. Again,
of current interest is the critical case.

Evidently, the iteration (52) fits the pNM framework (2) for Φ defined in (51), taking

Ω(u) =
(

0 0
0 −σ(u)I

)
, ω ≡ 0.

These perturbations satisfy the assumptions in Theorem 1 if, e.g., σ(u) = ‖Φ(u)‖τ , τ ≥ 1.
We thus conclude the following.

Corollary 3 Let f : Rn→R and h : Rn→Rl be three times differentiable near a stationary
point x̄ ∈ Rn of problem (50), with their third derivatives Lipschitz-continuous with respect
to x̄, and let λ̄ ∈ Rl be a Lagrange multiplier associated to x̄. Assume that the mapping Φ

defined in (51) is 2-regular at ū = (x̄, λ̄ ) in a direction v̄ ∈ kerΦ ′(ū)∩S.
Then for any τ ≥ 1, there exist ε = ε(v̄)> 0 and δ = δ (v̄)> 0 such that any starting point

u0 = (x0, λ 0) ∈ (Rn×Rl) \ {ū} satisfying (26) uniquely defines a sequence {(xk, λ k)} ⊂
Rn×Rl such that for each k it holds that (ξ k, ηk) = (xk+1− xk, λ k+1− λ k) solves (52)
with σ(u) = ‖Φ(u)‖τ , uk

2 6= ū2, the sequence {uk} converges to ū, the sequence {‖uk− ū‖}
converges to zero monotonically, and (27) and (28) hold.
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Table 1: Cases of convergence to λ̄ =−1 in Example 1 (%)

ε L-M L-M L-M LP-N sN-L N-L
τ = 1 τ = 3/2 τ = 2

1 38 44 56 54 42 83
0.5 34 52 68 55 57 86
0.25 36 57 79 58 73 86
0.1 38 68 86 73 83 90
0.01 38 84 86 86 88 86

Table 2: Cases of convergence to λ̄ = (1,
√

3) in Example 2 (%)

ε L-M L-M L-M LP-N sN-L N-L
τ = 1 τ = 3/2 τ = 2

1 21 26 31 42 4 65
0.5 21 27 37 45 7 75
0.25 23 29 47 48 15 82
0.1 23 33 63 55 26 91
0.01 24 60 89 82 59 97

It is worth to mention that the above results and discussion can be extended to variational
problems (of which optimization is a special case), see [7], [21, Chapter 7].

We proceed with some further considerations. A multiplier is said to be critical of order
one if dimQ(x̄, λ̄ ) = 1. The following was established in [15].

Proposition 2 Let f : Rn→R and h : Rn→Rl be three times differentiable at a stationary
point x̄ ∈ Rn of problem (50), and let λ̄ ∈ Rl be a Lagrange multiplier associated to x̄. Let
Q(x̄, λ̄ ) be spanned by some ξ̄ ∈ Rn \{0}, i.e., λ̄ is a critical multiplier of order one.

If rankh′(x̄) = l−1, then kerΦ ′(ū) contains elements of the form v = (ξ̄ ,η) with some
η ∈ Rl , and Φ is 2-regular at ū in every such direction if and only if h′′(x̄)[ξ̄ , ξ̄ ] 6∈ imh′(x̄).

If rankh′(x̄)≤ l−2, then Φ cannot be 2-regular at ū in any direction v ∈ kerΦ ′(ū).
If h′(x̄) = 0, and l ≥ 2 or h′′(x̄)[ξ̄ , ξ̄ ] = 0, then Φ cannot be 2-regular at ū in any

direction v ∈ kerΦ ′(ū).

In the last two cases specified in the proposition above, Theorem 1 is not applicable;
these cases require special investigation. In the last case, when l ≥ 2 but h′′(x̄)[ξ̄ , ξ̄ ] 6= 0,
allowing for non-isolated critical multipliers, the effect of attraction of the basic Newton-
Lagrange method to such multipliers had been studied in [23] for fully quadratic problems.

On the other hand, if, e.g., l = 1, h′(x̄) = 0, and h′′(x̄)[ξ̄ , ξ̄ ] 6= 0, then Theorem 1 is
applicable with v̄ = (ξ̄ , η) for every η ∈ R. Taking here η = 0 recovers the results in [27]
for the basic Newton-Lagrange method and the fully quadratic case. Moreover, this is exactly
the situation that we have in Example 1. Table 1 reports on the percentage of detected cases
of dual convergence to the unique critical multiplier λ̄ =−1 in Example 1, for the algorithms
discussed above, depending on the size ε of the region for starting points around (x̄, λ̄ ). In
the table, L-M refers to the Levenberg–Marquardt method (with different values for the
power τ that defines the regularization parameter), LP-N refers to the LP-Newton method,
N-L to the Newton-Lagrange method (i.e., (52) with σ ≡ 0), and sN-L to the stabilized
Newton-Lagrange method.

The case when dimQ(x̄, λ̄ ) ≥ 2 (i.e., when λ̄ is critical of order higher than 1) opens
wide possibilities for 2-regularity in the needed directions, and such solutions are often
specially attractive for Newton-type iterates.
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Fig. 4: Critical multipliers in Example 2.

Example 2 (DEGEN 20302) Consider the equality-constrained optimization problem

minimize x2
1− x2

2 +2x2
3

subject to −1
2

x2
1 + x2

2−
1
2

x2
3 = 0, x1x3 = 0.

Here, x̄ = 0 is the unique solution, h′(x̄) = 0, and the set of associated Lagrange multipliers
is the entire R2. Critical multipliers are those satisfying λ1 = 1 or (λ1− 3)2− λ 2

2 = 1. In
Figure 4, critical multipliers are those forming the vertical straight line and two branches of
the hyperbola.

According to Proposition 2, the 2-regularity property cannot hold for Φ defined in
(51), at (x̄, λ ) for any direction v ∈ kerΦ ′(ū), for all critical multipliers λ , except for
λ̄ = (1,±

√
3), which are the two intersection points of the vertical line and the hyper-

bola. One can directly check that the mapping Φ is indeed 2-regular at ū = (x̄, λ̄ ) in some
directions v ∈ kerΦ ′(ū).

Table 2 reports on the percentage of detected cases of dual convergence to λ̄ = (1,
√

3),
for the algorithms discussed above, depending on the size ε of the region for starting points
around (x̄, λ̄ ).
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