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Abstract For solving nonsmooth convex constrained optimization problems, we
propose an algorithm which combines the ideas of the proximal bundle methods with
the filter strategy for evaluating candidate points. The resulting algorithm inherits
some attractive features from both approaches. On the one hand, it allows effective
control of the size of quadratic programming subproblems via the compression and
aggregation techniques of proximal bundle methods. On the other hand, the filter cri-
terion for accepting a candidate point as the new iterate is sometimes easier to satisfy
than the usual descent condition in bundle methods. Some encouraging preliminary
computational results are also reported.
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1 Introduction

We consider the optimization problem

minimize f (x)
subject to c(x) ≤ 0,

(1)

where f, c : IRn → IR are convex functions, in general nondifferentiable. It is very
appropriate to dedicate this work to Professor Alfred Auslender, who made numerous
profound contributions to the theory and numerical methods for nonsmooth opti-
mization. In fact, to the best of our knowledge, Auslender [1] was the first to use
the so-called improvement function [defined by (3) below] to construct numerical
methods for solving (1). This function will also play a central role in our algorithmic
development.

We note that there is no loss of generality in formulating problem (1) with only one
scalar constraint: if necessary, c can be defined as the pointwise maximum of finitely
many convex functions, thus covering the case of multiple inequality constraints. We
assume that an oracle is available, which for any given x ∈ IRn computes the values
f (x) and c(x), and one subgradient for each of the functions, i.e., some g f ∈ ∂ f (x)
and some gc ∈ ∂c(x). As usual in nonsmooth optimization, we do not assume that
there is any control over which particular subgradients are computed by the oracle.

Any nonlinear programming algorithm must deal with two different (and possibly
conflicting!) criteria related, respectively, to optimality and to feasibility. Optimality
is naturally measured by the objective function f ; feasibility is typically measured by
penalization of constraint violation, for example, by the function c+ : IRn → IR+,
where

c+(x) = max{0, c(x)}.
Both measures must be optimized eventually, and the algorithm should follow a certain
balance between the two criteria, at every step of the iterative process. Traditionally,
this task was approached by minimizing a weighted sum of f and c+, i.e., by minimiz-
ing a penalty function. In the context of bundle methods for nonsmooth optimization,
the use of penalty functions has been explored in [14,17]. More recently, for smooth
problems an alternative idea, called filter strategy, has been introduced in [6]. Global
convergence of various filter-based methods can be found in [4,10].

Filter algorithms define a forbidden region in a clever way, by memorizing optimal-
ity and infeasibility pairs ( f (xi ), c+(xi )) from well chosen past iterations i , and then
avoiding points dominated by these pairs according to the usual Pareto domination
rule:

“x dominates y if and only if f (y) ≥ f (x) and c+(y) ≥ c+(x)”.
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Roughly speaking, a candidate point is accepted by the filter as the next iterate
whenever it is not dominated by any of the previous iterates (as a practical matter,
a slightly stronger condition is required: with respect to every pair in the filter, at
least one of the measures should be reduced by a sufficient margin, measured in terms
of c+).

At least part of the motivation for filter algorithms consists in avoiding the need to
estimate a suitable value of penalty parameter, which is often a delicate task. Also, if
a large value of the parameter is required to guarantee exactness of a given penalty
function, then numerical difficulties may arise.

The use of filter strategy in the nonsmooth case is, up to now, limited to [5]. The
method of [5] is based on solving linear programming subproblems obtained by replac-
ing the objective and constraint functions by their respective cutting-planes models,
subject to a box-constrained trust region. Specifically, if yi , i = 1, . . . , k, are the
points observed prior to the kth iteration, [5] solves the following subproblem:

minimize η

subject to η ≥ f (yi )+ 〈gi
f , y − xk〉, i = 1, . . . , k,

0 ≥ c(yi )+ 〈gi
c, y − xk〉, i = 1, . . . , k,

‖y − xk‖∞ ≤ ρk,

(2)

where xk is the last serious iterate, gi
f ∈ ∂ f (yi ), gi

c ∈ ∂c(yi ) and ρk > 0 is the trust
region parameter. We note that, as stated, the method of [5] does not guarantee that
the number of affine constraints in the subproblems can be kept smaller than a given
desired bound, even if “inactive cuts” are discarded at each iteration. Without this
feature, a method cannot be guaranteed to be practical.

Another approach for solving nonsmooth constrained problems, which uses nei-
ther penalty functions nor filters, has recently been proposed in [30]. Given a current
(“serious”) iterate x ∈ IRn , the method of [30] applies the usual unconstrained bundle
technique to the improvement function hx (·), where

IRn 	 y 
→ hx (y) := max{ f (y)− f (x), c(y)}, (3)

until descent for this function with respect to the value hx (x) is achieved (the so-called
serious step condition). At this time, the corresponding candidate is accepted as the
next (serious) iterate and the algorithm proceeds, working with the new improvement
function, corresponding to the new (serious) iterate. This algorithm builds on the
theory of the well-developed unconstrained bundle methods [3,11,13] and in partic-
ular, it allows effective control of (the quadratic programming) subproblem sizes by
suitably revised compression and aggregation techniques.

In this paper, we propose a new approach which combines some of the ideas of
filter methods and of the bundle method of [30]. More specifically, instead of using
the usual descent condition to evaluate candidate points, we shall employ the filter
criterion. The resulting algorithm preserves the possibility of using compression and
aggregation techniques. In some parts, the required convergence analysis becomes
quite different from [30], as well as from the usual filter analysis [5,10]. Ignoring for
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now the aggregation feature, subproblems in our method are based on the cutting-
planes model of the improvement function (3) and have the following structure:

minimize η + µk‖y − xk‖2/2
subject to η ≥ f (yi )− f (xk)+ 〈gi

f , y − xk〉, i s.t. f (yi )− f (xk) ≥ c(yi ),

η ≥ c(yi )+ 〈gi
c, y − xk〉, i s.t. f (yi )− f (xk) < c(yi ),

(4)

where µk > 0 is the proximal parameter, xk is the last serious iterate, and yi , i =
1, . . . , k, are the previously observed points. When compared to (2), note that apart
from using the proximal term instead of a trust region, subproblems (4) are also struc-
turally different. Not only the number of constraints in (4) is twice less than in (2), but
all the constraints are, in fact, different (the “ f -constraints” are shifted by the value
f (xk), while the “c-constraints” contain the variable η).

Some other bundle-type methods for constrained nonsmooth optimization, not cited
above, are [9,13,16,18,26,27]. A more detailed discussion and comparison of these
methods can be found in [30]. As for the improvement function (3), its use as a the-
oretical tool in convergence analysis of bundle-type methods can be traced back to
[26], see also [13]. However, in none of these works the improvement function is used
in the algorithms themselves. As already mentioned above, the first (and apparently
the only, apart from the recent proposal [30]) work where the improvement function
is directly involved in constructing numerical methods for nonsmooth optimization is
Auslender’s paper [1]. The methods of [1] are of inexact proximal point type and can
be considered as predecessors of [30] and of the current proposal. Indeed, our methods
can be thought of as constructive realizations of inexact proximal point algorithms of
[1], where the requirement of solving proximal subproblems with some prescribed
precision is replaced by making one descent step with respect to the proximal center
in [30] or one filter-acceptable step in the method introduced below.

The paper is organized as follows. Our constrained proximal bundle filter method
is described in Sect. 2. Sects. 3 and 4 contain, respectively, convergence analysis and
numerical results.

Our notation is fairly standard. The Euclidean inner product in IRn is denoted by
〈x, y〉 = ∑n

j=1 x j y j , and the associated norm by ‖ · ‖. The positive-part function is
denoted by x+ := max{x, 0}. For a set X in IRn , conv X denotes its convex hull.
Given some ε ≥ 0, we denote the ε-subdifferential of a convex function h at the point
x ∈ IRn by ∂εh(x) = {g ∈ IRn | h(y) ≥ h(x)+〈g, y − x〉− ε}, with ∂0h(x) = ∂h(x)
being the usual subdifferential.

Before proceeding, we recall some useful properties of the improvement function.
Directly by the definition (3), we have that

∂hx (y) =
⎧
⎨

⎩

∂ f (y) if f (y)− f (x) > c(y) ,
conv{∂ f (y)

⋃
∂c(y)} if f (y)− f (x) = c(y) ,

∂c(y) if f (y)− f (x) < c(y) .
(5)

In addition,

hx (x) = c+(x) = max{c(x), 0} for all x ∈ IRn .
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In our convergence analysis, we shall assume that the Slater constraint qualification
[25] holds, i.e., there exists x ∈ IRn such that c(x) < 0. Under this assumption, the
following holds (e.g., [13, Lemma 2.16, p.17]).

Theorem 1 Suppose that the Slater constraint qualification is satisfied for (1). Then
the following statements are equivalent:

(i) x̄ is a solution to (1);
(ii) min{hx̄ (y) | y ∈ IRn} = hx̄ (x̄) = 0;

(iii) 0 ∈ ∂hx̄ (x̄), i.e., 0 ∈ ∂ϕ(x̄), where ϕ(·) := hx̄ (·).

2 Description of the algorithm

The description of the algorithm is quite involved, which seems to be unavoidable
given the relative complexity both of bundle methods and of filter methods. We shall
start with conceptual comments, passing to technical details gradually.

The main ideas of the method are as follows. Given the last serious iterate xk (the
starting point x0 is regarded as the first serious iterate), we generate candidate points
by iterating with the unconstrained proximal bundle method applied to the function
hxk (·) until the next serious iterate xk+1 is obtained. However, to decide whether some
candidate point can be declared the next serious iterate, we use a filter strategy instead
of the usual descent condition in bundle methods. Once the new serious iterate xk+1

has been computed, we start working with the new function hxk+1(·). Note, however,
that because the sequence { f (xk)} need not be monotone, at this stage some spe-
cial care should be taken to obtain a valid cutting-planes approximation for the new
improvement function, as will be shown later.

2.1 The bundle technique

The bundle subroutine of our algorithm consists in performing null steps of the uncon-
strained proximal bundle method applied to the function

hk(·) := hxk (·) = max
{

f (·)− f (xk), c(·)
}
,

where xk is a given serious iterate, until an acceptable new serious iterate xk+1 is
generated (our criteria for declaring a serious step will be specified later).

Generating candidate points. Let � be the current iteration index, where iterations
include both the serious steps xk and the null steps y� (candidate points which were
not declared serious). In particular, {xk} ⊂ {y�}, with x0 = y0. Let k = k(�) be
the index of the last serious iterate preceding iteration �. Given a proximal parameter
µ� > 0, to find a new serious iterate xk+1, our bundle subroutine generates candidate
points y� by solving quadratic programming problems derived from the problem

min
y∈IRn

ψ�(y)+ 1

2
µ�‖y − xk‖2 , (6)
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where ψ�(·) is a cutting-planes approximation for the improvement function hk(·).
Subproblem (6) has the structure described by (4). Introducing its dual, it can be
solved as a quadratic program with simplicial feasible set. This structure is effectively
exploited by specialized solvers, [8,15].

The following characterization of the solution to (6) is well-known, (e.g., [3, Lemma
9.8]).

Lemma 1 The unique solution y� to (6) satisfies the following relations:

(i) y� = xk − 1
µ�

ĝ�, where ĝ� ∈ ∂ψ�(y�);
(ii) ĝ� ∈ ∂ε̂k

�
hk(xk), where 0 ≤ ε̂k

� := hk(xk)− ψ�(y�)− µ�‖y� − xk‖2.

To define the cutting-planes approximation, the subroutine accumulates information
from past points yi , i ≤ �, in a bundle B� formed by two subsets. The first subset,
denoted by Boracle

� , collects information corresponding to (some of the) previously
computed oracle data:

fi = f (yi ), gi
f ∈ ∂ f (yi ) and ci = c(yi ), gi

c ∈ ∂c(yi ) i ≤ �.

The second subset, denoted by Bagg
� , refers to information of the form (ε̂k

� , ĝ�), defining
the so-called aggregate function (see [3, Chap. 9]):

lk,�(y) := hk(x
k)− ε̂k

� + 〈ĝ�, y − xk〉.

Just as ψ�, this aggregate function is also a lower approximation to hk . This function
is fundamental for keeping the number of elements in the bundle [and hence, the size
of subproblems (6)] computationally manageable, as we discuss next.

Compressing the bundle. Whenever the number of elements in the bundle reaches
some chosen upper bound, the bundle has to be compressed, i.e, some elements need to
be deleted, without impairing convergence of the algorithm. Actually, any number of
elements can be deleted, provided we include in the subset Bagg

� information about the
aggregate function lk,�, and in the subset Boracle

� information about the cutting-plane
at the last point y�, as is done in Step 7 of Algorithm 1 below. In fact, the total number
of elements can be kept as small as two, at every step of the method. That said, the
less information is used, the slower is convergence. We refer the reader to [3, Chap.9]
for a more detailed discussion of aggregation in bundle methods.

To see how aggregation should be done in our setting, we consider the compact
representation for the oracle bundle data, which makes use of linearization errors at
yi with respect to xk . In particular, we define

ef
k,i := f (xk)− fi − 〈gi

f , xk − yi 〉,
ec

k,i := c(xk)− ci − 〈gi
c, xk − yi 〉, (7)

which are nonnegative, by the convexity of f and c.
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In [30, Lemma 3.1] it is shown that for elements in Boracle
� choosing

{
ek

i := ef
k,i + c+(xk) and gi

hk
:= gi

f , if fi − f (xk) ≥ ci ,

ek
i := ec

k,i + c+(xk)− c(xk) and gi
hk

:= gi
c, if fi − f (xk) < ci ,

(8)

where the linearization errors are shifted, guarantees that

gi
hk

∈ ∂ek
i
hk(x

k) with ek
i ≥ 0.

With this notation, bundle subsets can be rewritten in the compact form

Boracle
� ⊆

⋃

i<�

{(
fi , ci , ef

k,i , ec
k,i , gi

f ∈ ∂ef k,i f (xk), gi
c ∈ ∂eck,i c(xk)

)}

,

Bagg
� ⊆

⋃

i<�

{(
ε̂k

i , ĝi ∈ ∂ε̂k
i
hk(x

k)
)}

.

(9)

Furthermore, the cutting-planes function

ψ�(y) := c+(xk)

+ max

{

max
i∈Boracle

�

{
−ek

i + 〈gi
hk
, y − xk〉

}
, max

i∈Bagg
�

{
−ε̂k

i + 〈ĝi , y − xk〉
}}

,

k = k(�), (10)

is a correct lower approximation for hk , see [30].
The bundle subroutine is terminated and y� is declared to be the next serious step

xk+1 when it is accepted by the filter strategy described below. Otherwise, the data
computed at the new point is added to the bundle, the bundle is compressed if needed,
and we proceed to generate a new candidate point.

Updating linearization errors. When a serious step is declared, the model ψ� has
to be properly revised to make sure that a correct lower approximation for hk+1 is
obtained. In the given setting, a special care is required for the following reason: since
f (xk+1) > f (xk) is perfectly possible, we may have hk+1(·) ≤ hk(·), where the
inequality can be strict for some points. This means that a lower approximation for
hk may no longer be valid for hk+1. The correct update of linearization errors which
does the job is given by the following formulas, see [30, Lemma 3.2] for a proof.

We update the linearization errors for i ∈ Boracle
�+1 according to the relations

ef
k+1,i = ef

k,i + f (xk+1)− f (xk)+ 〈gi
f , xk − xk+1〉,

ec
k+1,i = ec

k,i + c(xk+1)− c(xk)+ 〈gi
c, xk − xk+1〉, (11)

and the aggregate errors for i ∈ Bagg
�+1 according to the relation

ε̂k+1
i = ε̂k

i + c+(xk+1)− c+(xk)+
(

f (xk+1)− f (xk)
)+ + 〈ĝi , xk − xk+1〉. (12)
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2.2 Filter strategy

Let parameters α f , αc ∈ (0, 1) be given. These parameters are used to define the
forbidden region by shifting the optimality and feasibility values by a certain margin,
as described next.

At kth iteration, the filter Fk is formed by the union of pairs

( f̃i , c̃+
i ) :=

(
f (xi )− α f c+(xi ), αcc+(xi )

)
, i < k,

where indices correspond to (some of) past serious iterations, such that no pair in Fk

is dominated (in the Pareto sense) by any other pair.
Given the last serious iterate xk , at the beginning of the kth iteration the pair

( f̃ , c̃+) :=
(

f (xk)− α f c+(xk), αcc+(xk)
)

is temporarily introduced into the filter, see Step 1 of Algorithm 1 below. Together
with pairs in Fk , this pair defines the current forbidden region F̄k . Essentially, the bun-
dle subroutine (by generating candidate points) aims at producing a point that is not
forbidden. This point will be the new serious iterate xk+1. There are some subtleties
to our filter strategy, however. Those subtleties stem from the need to relate the usual
filter objects to the natural measure of optimality of a candidate y� associated with the
bundle technique. Specifically, this measure of optimality (recall Lemma 1) is given
by

δ� := hk(x
k)−

(

ψ�(y
�)+ 1

2
µ�‖y� − xk‖2

)

= ε̂k
� + 1

2µ�
‖ĝ�‖2. (13)

If “infeasibility is bigger than nonoptimality” (in the sense that c+(xk) > m2δ�, where
m2 ∈ (0, 1), see relation (14) of Algorithm 1), then simply having y� outside the for-
bidden region is enough to accept this point as the next serious iterate. But in the
situation where the candidate point is “more feasible than optimal” (in the sense that
(14) in Algorithm 1 does not hold), an additional (almost-)descent condition on f (in
the sense that f (y�) ≤ f (xk)+ c+(xk)− m1δ�, where m1 ∈ (0, 1), see relation (15)
in Algorithm 1), is required to declare a serious step. This additional condition seems
to be similar in spirit to some other filter methods, e.g., [5].

After having found a new serious iterate, the temporary pair enters the new filter
Fk+1 only if this iteration did not produce a decrease in f . Such iterations are called
c+-iterations. Serious iterations which did reduce the objective function are referred
to as f -iterations; see Step 8 of Algorithm 1. Whenever the filter has changed, it is
cleaned: every pair dominated by the newly added pair is removed, and the algorithm
proceeds.

As usual in filter methods, the algorithm also needs an auxiliary restoration phase
(Step 6 of Algorithm 1) to recover from certain situations. We emphasize that situations
which require restoration phase in our setting are different in nature from those in filter
methods for standard smooth nonlinear programming. In particular, they have nothing
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to do with infeasibility of subproblems (our subproblems are always feasible). Those
differences are actually natural, having in mind that smooth and nonsmooth cases
require significantly different tools. In our setting, the restoration phase is activated in
the following case. If we already accumulated enough null steps to satisfy the bundle
descent condition for hk (condition (16) in Algorithm 1), but y� is still not acceptable,
then we compute the next serious iterate by generating a point which is less infeasible
than any point in the current filter. This can be done by making a few iterations of
an unconstrained bundle method applied to the unconstrained problem of minimizing
c+(x) (possibly even one iteration, if we start from a point with the smallest infeasibil-
ity). We emphasize that while apparently indispensable for convergence analysis, the
restoration step was actually never needed in our computational experience (reported
in Sect. 4).

2.3 Statement of the algorithm

We are now in position to formally state our method.

Algorithm 1 Constrained Proximal Bundle Filter Method (cpbfm)

Step 0. Initialization.
Choose parameters m1,m2 ∈ (0, 1), filter parameters α f , αc ∈ (0, 1), a
stopping tolerance tol ≥ 0, and a maximum bundle size |B|max ≥ 2.
Choose x0 ∈ IRn . Set y0 := x0, and compute ( f0, c0, g0

f , g0
c ). Set k = 0,

�= 1, ef
0,0 := 0, ec

0,0 := 0 and define the starting bundles Boracle
1 :=

{(ef
0,0, ec

0,0, f0, c0, g0
f , g0

c )} and Bagg
1 := ∅.

Set F0 = ∅, F0 = ∅.
Step 1. Filter Regions. Define the temporary pair, the current filter and for-

bidden region, respectively, as follows:

( f̃ , c̃+) := ( f (xk)− α f c+(xk), αcc+(xk)),

F̄k := Fk ∪ {( f̃ , c̃+)},
F̄k := Fk

⋃
{x ∈ IRn | f (x) ≥ f̃ , c+(x) ≥ c̃+}.

Step 2. Quadratic Programming Subproblem.
Having ψ� defined by (9) and (10), choose µ� > 0 and compute y�, the
solution to (6). Compute the bundle-related quantities

ĝ� = µ�(x
k − y�), ε̂k

� = c+(xk)− ψ�(y
�)− 1

µ�
‖ĝ�‖2,

δ� = ε̂k
� + 1

2µ�
‖ĝ�‖2.

Compute the oracle data ( f�, c�, g�f , g�c) at y� and define the linearization

errors (ef
k,�, ec

k,�) by using (7) written with i = �.
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Step 3. Stopping test.
If δ� ≤ tol, stop.

Step 4. Filter tests. If y� �∈ F̄k , and either

c+(xk) > m2δ� (14)

or

c+(xk) ≤ m2δ� and f (y�) ≤ f (xk)+ c+(xk)− m1δ� , (15)

declare iterate y� accepted (serious step) and go to Bundle
Management.

Step 5. Bundle descent (restoration) test. If

hk(y
�) ≤ c+(xk)− m1δ�, (16)

then go to Restoration Step. Otherwise, declare a null step and go to
Bundle Management.

Step 6. Restoration Step. Compute y� such that

c+(y�) < min
{

c̃+
j | ( f̃ j , c̃+

j ) ∈ F̄k

}
.

Declare the iterate y� accepted (serious step).
Step 7. Bundle Management.

Set Boracle
�+1 := Boracle

� and Bagg
�+1 := Bagg

� .
If the bundle has reached the maximum bundle size, i.e.,
if |Boracle

�+1 ∪Bagg
�+1| = |B|max, then delete at least two elements from Boracle

�+1 ∪
Bagg
�+1 and insert the aggregate couple (ε̂k

� , ĝ�) in Bagg
�+1.

Append (ef
k,�, ec

k,�, f�, c�, g�f , g�c) to Boracle
�+1 .

In case of null step (iterate y� was not accepted), set � = � + 1 and go to
Step 2.

Step 8. Model adjustment and Filter update (after a
serious step).
Define the next stability center:

(
xk+1, f (xk+1), c(xk+1)

) := (
y�, f�, c�

)
.

Update the linearization errors for i ∈ Boracle
�+1 according to (11).

Update the aggregate errors for i ∈ Bagg
�+1 according to (12).

If f (xk+1) < f (xk) then

Fk+1 = Fk, Fk+1 = Fk ( f -iteration),

else

Fk+1 = F̄k, Fk+1 = F̄k (c+-iteration).
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In the latter case, remove from the filter every pair dominated by the newly
added pair.
Set k = k + 1, � = �+ 1 and go to Step 1.

For convergence, the proximal parameters would be required to satisfy

0 < µ ≤ µ� ≤ µ < +∞,

and be nondecreasing on consecutive null steps. Those requirements are somewhat
stronger than in standard unconstrained bundle methods (see [3]), but are not signifi-
cantly different from the computational point of view.

3 Convergence analysis

First note that if δ� = 0 after Step 2 of Algorithm 1, then at Step 3 the algorithm stops.
In this case, xk is solution to (1). Indeed, δ� = 0 implies that ε̂k

� = 0 and ĝ� = 0.
By Lemma 1, it then holds that 0 ∈ ∂hk(xk), which means that xk solves (1), by
Theorem 1.

We assume, from now on, that δ� > 0 for all iterations � and that the stopping
tolerance is set to zero. After showing in Proposition 2 below that our method is well
defined, this would mean that an infinite sequence {y�} is generated.

We start with some relations which follow directly from the construction of the
algorithm.

Proposition 1 For Algorithm 1, the following statements hold:

(i) Given k ∈ IN, if a serious iterate xk+1 is generated then at least one of the
following two conditions holds:

c+(xk+1) < αc c+(xk),

f (xk+1) < f (xk)− α f c+(xk).

(ii) If f (y�) < f̃ j and c+(y�) ≤ c̃+
j for some ( f̃ j , c̃+

j ) ∈ F̄k , then y� /∈ F̄k .

(iii) Given k ∈ IN, c̃+
j > 0 for all j ∈ IN such that ( f̃ j , c̃+

j ) ∈ Fk.

(iv) If c+(y�) < c̃+
j for all ( f̃ j , c̃+

j ) ∈ F̄k , then y� /∈ F̄k .

(v) Given any j ∈ IN, if there exists a serious iterate x j+p, p ≥ 1, then x j+p /∈
F j+1.

Proof (i) If the serious iterate was declared by Step 4, then the assertion is a conse-
quence of the fact that xk+1 /∈ F̄k . If it was declared by Step 6 then it should hold, in
particular, that c+(xk+1) < c̃+ = αc c+(xk).

(ii) Take any other pair ( f̃i , c̃+
i ) ∈ F̄k . Since no pair in the filter dominates any other

pair, we have that f (y�) < f̃ j < f̃i or c+(y�) ≤ c̃+
j < c̃+

i . It follows that y� /∈ F̄k .

(iii) The pair ( f̃ , c̃+) is included in the filter if and only if this iteration is a (serious
step) c+-iteration. If c+(xk) = 0, then the first relation in item (i) is not possible.
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Hence, the second relation holds. Therefore, f (xk+1) < f (xk). In particular, the
iteration k is an f -iteration. It follows that an inclusion into the filter can occur only
when c+(xk) > 0, in which case c̃+ > 0, implying the assertion.

(iv) The assertion is obvious, because y� with this property is not dominated by any
pair in F̄k .

(v) By construction, x j+p /∈ F̄ j+p−1 (this is explicit if x j+p is declared a serious
iterate by Step 4; if it is declared by Step 6, then the same fact follows from item (iv)).

As is easily seen, the forbidden region cannot contract: F j+1 ⊂ F j+p. Also, the for-
bidden region is contained in the temporary forbidden region of the previous iteration:
F j+p ⊂ F̄ j+p−1. It follows that x j+p /∈ F j+1. ��

Some ideas of the proofs below are based on the following considerations. By [30,
Theorem 4.5], it is known that if xk is not a solution to (1) then, after a finite number of
null steps, y� would satisfy the descent condition (16) unless, of course, the filter tests
of Step 4 are satisfied first. In fact, we shall prove that in some situations (16) implies
the filter tests of Step 4, and, thus, the filter tests are satisfied after a finite number of
null steps and we do not enter the restoration phase. Furthermore, if the method does
not generate the next serious step xk+1, this means that, over an infinite sequence of
null steps associated to the fixed function hk , we do not satisfy the filter conditions of
Step 4 and do not enter the restoration phase of Step 6. The latter, in particular, implies
that the descent condition of Step 5 is never achieved. This can only happen if xk is a
solution to (1), see Theorem 2 below.

For future reference, note that, by definition of the improvement function, condition
(16) is equivalent to the combination of the following two relations:

f (y�)− f (xk) ≤ c+(xk)− m1δ� , (17)

and

c(y�) ≤ c+(xk)− m1δ� . (18)

We next show that our algorithm is well-defined.

Proposition 2 Algorithm 1 is well-defined.

Proof The method is just solving a sequence of well-posed quadratic programs (6),
except for the possibility of entering the restoration phase (Step 6).

The restoration phase is well-posed whenever c̃+ > 0 (i.e., c+(xk) > 0), because
c̃+

j > 0 for all j ∈ IN such that ( f̃ j , c̃+
j ) ∈ Fk , by Proposition 1(iii).

We next show that if c+(xk) = 0 then the filter tests of Step 4 are satisfied no later
than condition (16) of Step 5. Consequently, we do not enter the restoration phase of
Step 6.

Assume (16) [equivalently, (17) and (18)]. Then (18) implies that c(y�)≤ −
m1δ� < 0, and thus,

c+(y�) = 0 = αcc+(xk).
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By (17), we also have that

f (y�) ≤ f (xk)− m1δ� < f (xk) = f (xk)− α f c+(xk).

By Proposition 1 (ii), used with

( f̃ j , c̃+
j ) = ( f̃ , c̃+) = (

f (xk)− α f c+(xk), αcc+(xk)
) ∈ F̄k,

we conclude that y� �∈ F̄k .
Furthermore, since c+(xk) = 0, the relation

c+(xk) ≤ m2δ�

holds trivially. And, as shown above,

f (y�) ≤ f (xk)− m1δ� = f (xk)+ c+(xk)− m1δ�,

which gives (15). Hence, y� is accepted by the filter tests in Step 4 and we cannot
enter the restoration phase of Step 6. ��

For each k, let �(k) be the index such that xk+1 = y�(k), i.e., y�(k) has been declared
the (k +1)-st serious iterate. As customary in bundle methods, we consider two cases:
either the serious step sequence {xk} is finite or it is infinite.

Theorem 2 Suppose Algorithm 1 with tol = 0 generates a finite sequence of serious
steps followed by infinitely many null steps. Let xk be the last serious iterate. If

µ̄ ≥ µ�+1 ≥ µ� ∀ � ≥ �(k − 1), (19)

then xk is a solution to (1).

Proof We are in the situation where the method enters an infinite loop of null steps
without ever generating a new serious step. This can only happen if, for � > �(k − 1),
iterates y� are never accepted by the filter (Step 4) and the restoration phase (Step 6) is
never visited. The fact that we never enter the restoration phase, in particular, means
that the descent test (16) is never satisfied for the fixed function hk . In this case, the
convergence analysis of [30, Theorem 4.5] applies to claim that xk is a solution. ��

We next show that if xk is not a solution, then Algorithm 1 always generates the
next serious iterate.

Proposition 3 Consider Algorithm 1 with tol = 0. At any given iteration k, if xk is not
a solution to (1) and if parameters µ� are chosen for the subsequent (null) iterations
according to (19), then the next serious iterate xk+1 is generated.

Proof If xk is not a solution then [30, Theorem 4.5] guarantees that the descent con-
dition (16) of Step 5 would be satisfied after a finite number of null steps, unless filter
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tests of Step 4 are satisfied first (note that we cannot enter the restoration step before
(16) is satisfied). If the filter tests hold first, the assertion follows.

As exhibited in the proof of Proposition 2 above, condition (16) can be satisfied
before the filter tests only when xk is infeasible. In the latter case, we go to the res-
toration phase of Step 6, and Proposition 2 shows that it is well-posed in the case of
infeasible xk . So, the next serious iterate is generated. ��

To show that an infinite sequence {xk} of serious steps is minimizing, we consider
separately the cases of feasible and infeasible accumulation points.

Proposition 4 Suppose Algorithm 1 with tol = 0 generates an infinite sequence
of serious steps. Consider a subsequence of serious iterates {xki } converging to x̄ .
Assume that 0 < µ�(ki ) ≤ µ̄ < +∞ for all i .

If x̄ is feasible but is not a solution to (1), then the corresponding subsequence
{δ�(ki )} is bounded away from zero:

∃γ > 0 such that δ�(ki ) ≥ γ ∀ i. (20)

Moreover, there exists an index i0 such that

f (xki )− f (xki +1) ≥ m1γ /2 ∀ i ≥ i0. (21)

In particular, all iterations indexed by ki with i ≥ i0 are f -iterations.

Proof Suppose, for contradiction purposes, that (20) does not hold. Then there exists

an infinite set K ⊂ {ki | i ∈ IN} such that δ�(k)
K→ 0. By (13) and the boundedness

assumption on µ�(ki ), we conclude that

ε̂k
�(k)

K→ 0 and ĝ�(k)
K→ 0.

By item (ii) in Lemma 1 and the definition of ε-subgradient, for any y ∈ IRn and
k ∈ K, it holds that

hk(x
k + y) ≥ hk(x

k)+ 〈ĝ�(k), y〉 − ε̂k
�(k). (22)

By the continuity of the functions involved, for a fixed but arbitrary y ∈ IRn , we have
that

lim
k→∞,k∈K

hk(x
k + y) = lim

k→∞,k∈K
max

{
f (xk + y)− f (xk), c(xk + y)

}

= max { f (x̄ + y)− f (x̄), c(x̄ + y)}
= hx̄ (x̄ + y).

In particular, choosing y = 0 yields the relation hk(xk)
K→ hx̄ (x̄) = c+(x̄) = 0,

because x̄ is feasible.
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Hence, passing to the limit in (22) we obtain that, for any y ∈ IRn ,

hx̄ (x̄ + y) ≥ hx̄ (x̄) = c+(x̄) = 0,

which means that x̄ is a minimum of hx̄ (·) with zero optimal value. Using the equiv-
alence between items (ii) and (i) in Theorem 1, we obtain a contradiction with the
hypothesis that x̄ is not a solution to (1). Hence, (20) holds.

To prove (21), we show that for all iteration indices sufficiently large, the method
does not enter the restoration phase and the filter test is satisfied with condition (15).
Once this claim is established, (15) immediately gives the desired result, because

f (xki )− f (y�(ki )) ≥ m1δ�(ki ) − c+(xki ) ≥ m1γ /2,

by (20) and by the fact that c+(xki ) → c+(x̄) = 0.
To prove the claim, we start by noting that when i is sufficiently large, the filter test

with option (14) cannot be satisfied, because c+(xki ) → c+(x̄) = 0, while {δ�(ki )}
is bounded away from zero. Therefore, the first condition in (15) eventually always
holds.

It remains to show that if at some iteration � > �(ki − 1), with i sufficiently large,
the point y� satisfies the descent test (16), then y� �∈ F̄ki and (15) holds (this would
mean that we never enter the restoration phase, as the filter test is satisfied before,
yielding xki +1 = y�).

Observe that the second condition in (15) is the same as (17), which is a part of (16).
Thus, we only have to prove that y� �∈ F̄ki whenever y� satisfies (16) [equivalently,
(17) and (18)].

Observe that by (20) and because c+(xki ) → 0, we have, for sufficiently large i,
that

c+(xki )− m1δ� < −α f c+(xki )

and

c+(xki )− m1δ� < αcc+(xki ).

By (18), we obtain that

c(y�) ≤ c+(xki )− m1δ� < αcc+(xki ).

Hence,

c+(y�) ≤ αcc+(xki ). (23)

Similarly, by (17),

f (y�) ≤ f (xki )+ c+(xki )− m1δ� < f (xki )− α f c+(xki ).
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Together with (23), the latter relation implies that y� �∈ F̄ki by Proposition 1(ii). The
proof is complete. ��

We now address the case of the sequence of serious steps accumulating at an infea-
sible point.

Proposition 5 Suppose Algorithm 1 with tol = 0 generates an infinite sequence of
serious steps. Consider a subsequence of serious iterates {xki } converging to x̄ .

If x̄ is infeasible, then there exists an index i0 such that each iteration ki with i ≥ i0
is an f -iteration.

Proof For contradiction purposes, suppose that there exists an infinite set
K ⊂ {ki | i ∈ IN} such that all iterations in K are c+-iterations. By the continuity
of c+ and f , we have that

c+(xk)
K→ c+(x̄) and f (xk)

K→ f (x̄).

Hence, since x̄ is infeasible, we have the following relations:

c+(xk)− αcc+(x j )
j,k∈K−→ (1 − αc)c

+(x̄) > 0,

and

f (xk)− f (x j )+ α f c+(x j )
j,k∈K−→ α f c+(x̄) > 0.

It follows that for sufficiently large j, k ∈ K, say with j < k,

c+(xk) > αcc+(x j ) and f (xk) > f (x j )− α f c+(x j ).

The latter relations mean that xk ∈ F̄ j . Furthermore, since j ∈ K, this index corre-
sponds to a c+-iteration, defining the next filter by F j+1 = F̄ j . As a result, xk ∈ F j+1,
which contradicts Proposition 1 (v), written with p = k − j . ��

The following convergence result assumes boundedness of the sequence of iter-
ates and affirms optimality of at least one of its accumulation points. Convergence
results of this nature are typical for filter methods [7,10]. Boundedness of the iterates
(sometimes passed in the form of including a bounded polyhedral set into the problem
constraints and then inserting it into subproblems of the algorithm) is also a common
assumption for constrained bundle methods [5,17,18,26]. It would be interesting to
remove the boundedness assumption, for which the ideas of [2] could be useful.

Theorem 3 Suppose Algorithm 1 with tol = 0 and {µ�} bounded above generates
an infinite sequence of serious steps. If the sequence {xk} is bounded, then it has an
accumulation point which is a solution to (1).
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Proof Suppose first that there exists an infinite number of c+-iterations. Taking a
convergent subsequence {xki } along those indices, we obtain an accumulation point
x̄ . Since all iterations indexed by {ki } are c+-iterations, by Proposition 5, x̄ must
be feasible. Then, by Proposition 4, either x̄ is a solution to (1) or all iterations ki

for i sufficiently large must be f -iterations. Since the latter contradicts the current
assumption, we conclude that in this case x̄ is a solution to (1).

Now assume that the number of c+-iterations is finite, i.e., all iterations indexed by
k ≥ k0 are f -iterations. Then the sequence { f (xk)} is monotone (for k ≥ k0). Since
it is bounded (by boundedness of {xk} and continuity of f ), it converges. Hence,

f (xk)− f (xk+1) → 0. (24)

Suppose there exists an infinite set K ⊂ IN such that the second relation in Propo-
sition 1 (i) holds for all k ∈ K. In that case,

α f c+(xk) ≤ f (xk)− f (xk+1), k ∈ K,

and (24) implies that c+(xk)
K→ 0.

If there is no set K with the above property, then there exists k1 ∈ IN such that the
first relation in Proposition 1(i) holds for all k > k1. In that case, it easily follows that
c+(xk) → 0 (at a linear rate).

In either case, {xk} has a feasible accumulation point x̄ . It can now be seen that x̄
must be a solution to (1). Indeed, if it is not, then the relation (21) of Proposition 4
holds, in contradiction with (24). ��

4 Computational experiments

For preliminary validation of our approach, we wrote a Fortran implementation
of Algorithm 1, and analyzed its performance on a battery of test problems that we
describe below.

Test problems. We used the following set of test problems:

− Constrained MAXQUAD, LOCAT, MINSUM, ROSEN, and HILBERT.
− Problems 10, 11, 12, 22, 100, 113, 227, 228, 264, 284 and 285 from [12], referred

to as HKnnn in the sequel.
− Twenty randomly generated problems (see [18]) of the form

minimize 〈a, x〉
subject to Ax ≤ b,

‖Qi x − qi‖2 ≤ ρi i = 1, . . . ,m,
‖x‖∞ ≤ 10 ,

where a ∈ IRn , A is an ml × n matrix, b ∈ IRml and, for i = 1, . . . ,m, qi ∈ IRk

and Qi are k × n matrices. To be able to compare with solvers that accept linear
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constraints only, ten instances are linear programming problems denoted byLIN j ,
for j = 1, . . . , 10. The remaining ten instances contain nonlinear constraints and
are denoted by RND j , j = 1, . . . , 10.

The first set of problems above is standard in nonsmooth convex optimization; see
[30, Sect. 5] for a detailed description. To this standard collection, we added those
problems from [12] which we identified as being convex. Note that problems in [12]
are smooth. We created nonsmooth problems by defining the constraint using the max-
operation. The randomly generated problems are taken from [18], and we refer to the
numerical section in [18] for full details about the random generator and its input
parameters.

Table 1 shows some relevant data for the first 16 problems, such as their dimension,
optimal value, and the chosen starting points. The column entitled c(x) has values lin
or cvx to indicate whether the respective test problem has only linear or general con-
vex constraints. For the first four problems we used both a feasible and an infeasible
starting point. The fifth problem, HILBERT, is a feasibility problem for which we
used two different infeasible starting points. Starting points for HKnnn problems are
those given in the Fortran code of test problems for nonlinear programming available
at http://www.uni-bayreuth.de/departments/math/~kschittkowski/.

Table 2 reports relevant data for the 20 randomly generated problems LINj and
RNDj. For all these problems the starting point is xi = 0.1 for all i = 1, . . . , n.

Solvers. Since all the problems in Tables 1 and 2 have known optimal values, the
exact improvement function hx̄ is available. For comparison purposes, we use the
following solvers:

Table 1 Some problem data

Name n c(x) f (x̄) Feasible x0 Infeasible x0

MAXQUAD 10 lin −0.368166 xi = 0 xi = 10

LOCAT 4 cvx 23.88676767 (15, 22, 26, 11) xi = 10

MINSUM 6 lin 68.82956 (0, 0, 0, 0, 3, 0) xi = 10

ROSEN 4 cvx −44 xi = 0 (−1, 2,−3,−4)

HILBERT 50 cvx 0 – xi = 0 and xi = 10

HK010 2 cvx −1 – (−10, 10)

HK011 2 cvx −8.4984642231 – (4.9, 0.1)

HK012 2 cvx −30 (0, 0) –

HK022 2 cvx 1 – (2, 2)

HK100 7 cvx 680.6300572 (1, 2, 0, 4, 0, 1, 1) –

HK113 10 cvx 24.3062090641 (2, 3, 5, 5, 1, 2, 7, 3, 6, 10) –

HK227 2 cvx 1 (0.5, 0.5) –

HK228 2 cvx −3 (0, 0) –

HK264 4 cvx −0.44 (0, 0, 0, 0) –

HK284 15 cvx −1840 xi = 0 –

HK285 15 cvx −8,252 xi = 0 –
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Table 2 Problem data for randomly generated problems

Name n c(x) ml m k f (x̄)

LIN01 3 lin 2 0 0 2343.10

LIN02 5 lin 3 0 0 2983.86

LIN03 10 lin 3 0 0 −5191.87

LIN04 10 lin 6 0 0 −12820.62

LIN05 10 lin 10 0 0 7580.54

LIN06 15 lin 3 0 0 4353.87

LIN07 15 lin 10 0 0 −1612.96

LIN08 15 lin 15 0 0 −3872.07

LIN09 30 lin 5 0 0 4003.20

LIN10 30 lin 10 0 0 −3410.63

RND01 2 cvx 0 1 1 −26.50

RND02 3 cvx 3 2 1 −48774.07

RND03 10 cvx 0 2 2 79.69

RND04 10 cvx 1 3 2 1923.58

RND05 15 cvx 5 2 2 −68746.10

RND06 15 cvx 3 8 4 53562.60

RND07 15 cvx 2 6 6 −31665.67

RND08 20 cvx 5 5 2 28177.93

RND09 30 cvx 3 10 2 18231.20

RND10 30 cvx 2 17 7 4117.29

• clev and nlev, two constrained variants of the level bundle method in [18].
• pbun, pnew, and pvar, corresponding, respectively, to the bundle, Newton, and

variable metric nonsmooth methods described in [23]; see also [21] and [22]. The
corresponding source codes are available at [24].

• n1cv2 (applied to minimize hx̄ ), the proximal bundle method from [19]; see http://
www-rocq.inria.fr/estime/modulopt/optimization-routines/n1cv2.html.

• icpbm, the Infeasible Constrained Proximal Bundle Method from [30].

Since the set of solvers pbun, pnew, and pvar is designed specifically for linearly
constrained problems, these methods are only applicable to MAXQUAD, MINSUM, and
LINj, j = 1, . . . , 10. Solvers clev and nlev have the option of handling linear and
nonlinear constraints separately. For the sake of comparison of general-purpose solv-
ers, in our implementation all the constraints are treated as general nonlinear convex
constraints.

For solving the quadratic programming subproblems, clev and nlev use QL0001,
developed by K. Schittkowski in 1987 on the basis of algorithm ZQPCVX in [28].
Solver pbun uses the dual space range method [20]. Finally, n1cv2, icpbm and Algo-
rithm 1 use the method described in [15].

Parameters. For solvers clev, nlev, pbun, pnew, and pvar, parameters were set
to the default values suggested by the respective codes. We also set a maximum of
100 oracle calls and a tolerance threshold for optimality equal to 10−4.
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Parameters of Algorithm 1 are set as follows: m1 = 0.1, m2 = 0.5, α f = 0.0001,
αc = 0.9999.

Optimality is declared when

ε̂k
� ≤ 10−4 and ‖ĝ�‖2 ≤ 10−8,

corresponding to taking tol = (1 + 1
2µ�

10−4)10−4 in Step 3 of Algorithm 1. The
above split stopping criterion, independent of µ�, is generally preferable to the one
based on δ�.

The proximal parameter µ� in (6) is only changed at serious steps (µ� = µk(�) at
null steps). The modification is performed by the safeguarded version of the reversal
quasi-Newton scalar update in n1cv2; see [3, Sect. 9.3.3]. More precisely, recalling
that xk+1 = y�(k), we set µ := 0.01, µ := 1, and define

µk+1 := max
(
µ,min

(
µn1cv2

k+1 , µ
))
,

where

µn1cv2
0 := 5‖gh0(x

0)‖2

‖h0(x0)‖ ,

µn1cv2
k+1 := ‖g�(k)hk

− g�(k−1)
hk

‖2

〈g�(k)hk
− g�(k−1)

hk
, xk+1 − xk〉

.

With this choice of µ�, none of the runs of Algorithm 1 ever entered the restoration
phase of Step 6.

Solvers icpbm and n1cv2 have essentially identical settings, with the following
exceptions. The safeguards µ and µ were set so that to optimize performance of each
solver. In addition, n1cv2 modifies µ� at every iteration (not only at serious steps),
according to the curve-search described in [19].

Results. Since we are considering the setting when the objective and constraint func-
tions are given by an oracle, effectiveness of an algorithm is not computed in terms
of time, but in terms of the number of oracle calls made. More precisely, having set
the optimality tolerance to 10−4 in all the algorithms, we compare their accuracy by
using the expression

RelAcc :=
− log10

(
| f (xbest )− f (x̄)

f (x̄) |
)

#orcalls
,

where xbest is the best point found by a given algorithm and #orcalls is the number of
oracle calls required to compute xbest . When f (x̄) = 0, we replace the denominator
in the logarithm by 1. The value of RelAcc can be understood as the number of exact
digits gained per oracle call used. The solver with highest values is considered the
most successful.
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Our numerical results are reported in Tables 3 and 4, where Algorithm 1 is referred
to as cpbfm, for Constrained Proximal Bundle Filter Method. For test problems with
more than one starting point, we give the average value of RelAcc. We note that for
all the algorithms the accuracy obtained was similar both for feasible and infeasible
starting points. Furthermore, in all the runs, the final value obtained for the constraint
violation was less than 10−4.

Table 3 reports relative accuracy for the eight solvers: clevel, nlevel, pbun,
pnew, pvar, n1cv2, icpbm and cpbfm, applied to the 12 linearly constrained prob-
lems in the battery.

The summary of results in Table 3 puts in evidence the importance of incorporating
into the method all the information available for a given problem. Not surprisingly,
solvers pbun, pnew, and pvar, which are specifically designed to treat separately
affine and box constraints (by inserting these constraints directly into subproblems)
are most efficient. Similarly, solver n1cv2, which uses information about the opti-
mal value, is also efficient. Solvers implemented in general-purpose mode, i.e., clev,
nlev and icpbm, cpbfm, are comparable to each other but show much lower accuracy
values than solvers using additional information.

Table 4 reports the RelAcc values obtained when running solvers clevel, nlevel,
n1cv2, icpbm, and cpbfm on all the test problems given in Tables 1 and 2.

In our opinion, the results obtained show reasonably good performance of cpbfm.
In terms of accuracy, all approaches counting with similar information, i.e., clev,
nlev, icpbm, and cfpbm are overall comparable, perhaps with a slight preference
for cpbfm. We note that in terms of computing times, solvers clev and nlev stalled
on some problems when the dimensions increased. For nlev we also observed some
failures (which appear as 0.00 in Table 4). In average cpbfm succeeds in obtaining a
reasonably high accuracy, at the price of less than 3.3 times the number of oracle calls
required by n1cv2 to solve the “ideal” unconstrained problem of minimizing hx̄ .

Table 3 RelAcc values for linearly constrained problems

clevel nlevel pbun pnew pvar n1cv2 icpbm cpbfm

MAXQUAD 0.09 0.09 0.60 0.00 0.10 0.07 0.06 0.15

MINSUM 0.08 0.11 0.83 0.33 0.83 0.07 0.12 0.06

Lin01 0.25 0.86 5.33 5.33 4.00 4.00 0.21 0.09

Lin02 0.20 0.11 3.00 2.00 2.60 1.25 0.13 0.07

Lin03 0.28 0.09 1.30 1.00 1.50 3.20 1.20 0.80

Lin04 0.19 0.00 1.50 1.00 1.20 0.93 0.10 0.07

Lin05 0.24 0.57 1.40 1.40 1.20 0.64 0.10 0.08

Lin06 0.17 0.00 0.73 0.60 1.07 1.08 0.16 0.05

Lin07 0.17 0.05 0.87 0.67 0.87 1.88 0.17 0.08

Lin08 0.22 0.04 0.87 0.53 1.00 1.00 0.22 0.05

Lin09 0.19 0.07 0.43 0.53 0.33 1.36 0.16 0.06

Lin10 0.20 0.63 0.43 0.33 0.50 1.45 0.17 0.11

Mean 0.19 0.22 1.44 1.14 1.27 1.41 0.23 0.14
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Table 4 Summary of RelAcc values

clevel nlevel n1cv2 icpbm cpbfm

HILBERT 1.78 1.78 0.50 1.60 1.60

HK010 0.06 0.08 0.11 0.13 0.30

HK011 0.30 0.29 0.36 0.09 0.54

HK012 0.08 0.00 0.28 0.30 0.33

HK022 0.33 0.19 0.33 0.60 0.26

HK100 0.08 0.00 4.00 0.06 0.06

HK113 0.07 0.09 2.29 0.04 0.08

HK227 0.18 0.20 0.23 0.14 0.38

HK228 0.10 0.17 2.29 0.46 1.88

HK264 0.03 0.10 0.07 0.04 0.14

HK284 0.03 0.00 0.14 0.03 0.22

HK285 0.07 0.00 0.08 0.05 0.15

LOCAT 0.02 0.45 0.33 0.20 0.35

MAXQUAD 0.09 0.09 0.07 0.06 0.15

ROSEN 0.15 0.19 0.16 0.09 0.12

MINSUM 0.08 0.11 0.07 0.12 0.06

Lin01 0.25 0.86 4.00 0.21 0.09

Lin02 0.20 0.11 1.25 0.13 0.07

Lin03 0.28 0.09 3.20 1.20 0.80

Lin04 0.19 0.00 0.93 0.10 0.07

Lin05 0.24 0.57 0.64 0.10 0.08

Lin06 0.17 0.00 1.08 0.16 0.05

Lin07 0.17 0.05 1.88 0.17 0.08

Lin08 0.22 0.04 1.00 0.22 0.05

Lin09 0.19 0.07 1.36 0.16 0.06

Lin10 0.20 0.63 1.45 0.17 0.11

Cvx01 0.18 0.36 0.38 0.41 0.16

Cvx02 0.10 0.43 0.24 0.10 0.09

Cvx03 0.09 0.04 0.11 0.16 0.17

Cvx04 0.08 0.22 0.33 0.09 0.08

Cvx05 0.08 0.12 0.04 0.08 0.07

Cvx06 0.05 0.16 0.02 0.08 0.05

Cvx07 0.10 0.03 0.04 0.07 0.03

Cvx08 0.09 0.11 0.04 0.10 0.04

Cvx09 0.04 0.12 0.02 0.07 0.08

Cvx10 0.05 0.06 0.05 0.08 0.10

Mean 0.18 0.22 0.82 0.22 0.25

We finish by mentioning that for cpbfm and icpbm, “suitable” settings for the
proximal parameter µ� are not clear so far. From our preliminary numerical results,
we observed that allowing this parameter to vary abruptly from one iteration to the
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next made both algorithms slow down (sometimes, dramatically). In our runs, we
controlled this variation by choosing µ and µ “close enough”. The study of compu-
tationally good and theoretically sound choices of the proximal parameter for solving
constrained problems deserves further investigation, possibly along the lines of the
update in [19]; see also [29]. Similarly, tuning and adjusting filter strategy specifically
for the nonsmooth case requires further investigation and improvements.

References

1. Auslender, A.: Numerical methods for nondifferentiable convex optimization. Math. Program.
Study 30, 102–126 (1987)

2. Auslender, A.: How to deal with the unbounded in optimization: theory and algorithms. Math. Pro-
gram. 79, 3–18 (1997)

3. Bonnans, J.F., Gilbert, J.-Ch., Lemaréchal, C., Sagastizábal C.: Numerical Optimization. Theoretical
and Practical Aspects. Universitext. Springer, Berlin (2003)

4. Fletcher, R., Gould, N., Leyffer, S., Toint, P., Wächter, A.: Global convergence of trust-region and
SQP-filter algorithms for general nonlinear programming. SIAM J. Optim. 13, 635–659 (2002)

5. Fletcher, R., Leyffer, S.: A bundle filter method for nonsmooth nonlinear optimization. Numerical
Analysis Report NA/195. Department of Mathematics, The University of Dundee, Scotland (1999)

6. Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Program 91,
239–269 (2002)

7. Fletcher, R., Leyffer, S., Toint, P.L.: On the global convergence of a filter-SQP algorithm. SIAM J.
Optim. 13, 44–59 (2002)

8. Frangioni, A.: Solving semidefinite quadratic problems within nonsmooth optimization algo-
rithms. Comput. Oper. Res. 23, 1099–1118 (1996)

9. Frangioni, A.: Generalized bundle methods. SIAM J. Optim. 13, 117–156 (2002)
10. Gonzaga, C.C., Karas, E.W., Vanti, M.: A globally convergent filter method for nonlinear program-

ming. SIAM J. Optim. 14, 646–669 (2003)
11. Hiriart-Urruty, J.-B., Lemaréchal C.: Convex Analysis and Minimization Algorithms. Number 305–306

in Grund. der Math. Wiss. Springer, Heidelberg (1993)
12. Hock, W., Schittkowski, K.: Test Examples for Nonlinear Programming Codes. Lecture Notes in Eco-

nomics and Mathematical Systems, vol. 187. Springer, Berlin (1981)
13. Kiwiel, K.C.: Methods of Descent for Nondifferentiable Optimization. Lecture Notes in Mathematics,

vol. 1133. Springer, Berlin (1985)
14. Kiwiel, K.C.: An exact penalty function algorithm for nonsmooth convex constrained minimization

problems. IMA J. Numer. Anal. 5, 111–119 (1985)
15. Kiwiel, K.C.: A method for solving certain quadratic programming problems arising in nonsmooth

optimization. IMA J. Numer. Anal. 6, 137–152 (1986)
16. Kiwiel, K.C.: A constraint linearization method for nondifferentiable convex minimization. Numer.

Math. 51, 395–414 (1987)
17. Kiwiel, K.C.: Exact penalty functions in proximal bundle methods for constrained convex nondiffer-

entiable minimization. Math. Program. 52, 285–302 (1991)
18. Lemaréchal, C., Nemirovskii, A., Nesterov, Yu.: New variants of bundle methods. Math. Pro-

gram. 69, 111–148 (1995)
19. Lemaréchal, C., Sagastizábal, C.: Variable metric bundle methods: from conceptual to implementable

forms. Math Program 76, 393–410 (1997)
20. Lukšan L: Dual method for solving a special problem of quadratic programming as a subproblem at

linearly constrained nonlinear minimax approximation. Kybernetika 20, 445–457 (1984)
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