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Abstract. Equilibrium problems with equilibrium constraints are appropriate modeling formulations in a7
number of important areas, such as energy markets, transportation planning, and logistics. These models often8
correspond to bilevel games, in which certain dual variables, representing the equilibrium price, play a fundamental9
role. We consider multi-leader single-follower equilibrium problems having a linear program in the lower level.10
Because in this setting the lower-level response to the leaders’ decisions may not be unique, the game formulation11
becomes ill-posed. We resolve possible ambiguities by considering a sequence of bilevel equilibrium problems, en-12
dowed with a special regularization term. We prove convergence of the approximating scheme. Our technique proves13
useful numerically, over several instances related to energy markets. When using PATH to solve the corresponding14
mixed-complementarity formulations, we exhibit that, in the given context, the regularization approach computes15
a genuine equilibrium price almost always, while without regularization the outcome is quite the opposite.16
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1. Introduction. Multi-agent hierarchical decision-making can be modelled by equilibrium20

problems with equilibrium constraints (EPEC). This is a suitable setting for competitive environ-21

ments, with sales and purchases that involve bids whose payment depends on balancing supply22

and demand. The price that clears the market is an important output in such transactions. For23

the energy sector, in particular, the EPEC corresponds to a multi-leader single-follower bilevel24

game. In the upper level, agents define their bids of price and generation, subject to operational25

constraints. The leaders aim to maximize their individual profit. The social planner problem in26

the lower level, shared by all the leaders, is solved by the independent system operator (ISO).27

The ISO collects bids from all the leaders and defines the optimal dispatch and its price. This28

primal-dual pair solves a linear program that minimizes social cost over a set of system-wide oper-29

ational requirements. Multipliers associated to balancing constraints, ensuring that the dispatched30

generation meets the demand, provide the clearing price.31

Our study is motivated by pitfalls that arise when prices are determined as in the energy32

example. Efficient market mechanisms should aim to maximize the total welfare of producers and33

consumers, respectively represented by the leaders and the follower. However, the efficacy of La-34

grange multipliers for pricing purposes has been questioned in the literature; [14]. It was observed35

that Lagrange multipliers of multi-leader single-follower games sometimes result in overpricing36

and, hence, in lesser social welfare. Remark 2.1 explains this issue in more detail.37

We therefore consider noncooperative bilevel games involving several leaders and a single38

follower, with a focus on the dual output of the process. Each leader’s objective function depends39

on the product of the follower’s primal and dual solution to a linear complementarity problem40

that is parameterized by all the leaders’ decisions.41

The considered setting, with only one follower player whose optimization problem is a linear42
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program, is theoretically and numerically challenging. One reason is that the lower-level problem43

is shared by all the leaders. Another point is certain ambiguity in the interaction between the44

two levels. This issue, already present in bilevel programming, refers to situations in which the45

response of the lower level is not unique. To eliminate the ambiguity, many works assume the46

lower objective function to be strictly convex, as in [17]; see also the final comments in [2, Sec.47

2]. While this assumption makes the lower-level response unique regarding the primal variable48

(the dispatch in the energy example), it still leaves pending the ambiguity for the dual variables49

(the important clearing prices). A similar difficulty regarding nonuniqueness of prices is pointed50

out with simple stochastic games with risk-averse leaders in [10]. Finally, the assumption of strict51

convexity is not always realistic. For large systems (like Brazil’s energy market, as one example),52

it is sound to formulate the lower-level problem as a linear program, a model which precludes53

any hope of strict convexity. We discuss this point and relate with the existing literature in § 2.354

below.55

Ill-posedness is a drawback inherent to EPEC models involving multi-agent hierarchical deci-56

sion making. Yet, bilevel multi-leader single-follower games represent the market behavior well in57

many applications. In order to mitigate the model’s negative aspects, we introduce a sequence of58

approximating EPECs, depending on a certain regularization parameter that is driven to zero.59

Rather than forcing strict convexity, so that the follower gives a unique primal output, we60

allow the lower level to maintain its linear programming problem structure. The scheme penalizes61

the dual of the follower’s problem by means of a fairly general class of regularizing functions,62

that includes ℓr-norms. When r = 1 or +∞, the regularized lower-level problem remains a linear63

program, as in the original EPEC. To each value of the regularization parameter corresponds an64

EPEC whose regularized lower-level problem yields a specific primal-dual value in the (possibly65

set-valued) follower’s response. With our approach, social welfare is maximized when the regular-66

ization parameter goes to zero. This can be seen in Theorems 4.3 and 3.3 below, where it is shown67

that, in the limit, the regularized lower level delivers a solution to the original EPEC whose dual68

component has minimal norm.69

The rest of this work is organized as follows. In Section 2 we start with some notation and70

introduce a simple EPEC model for the energy market that is used throughout to motivate and71

illustrate the development. Section 3 is devoted to our regularization scheme. The methodology is72

explained first in Section 3.1 for the simple energy EPEC, using the dual formulation. Section 3.273

focuses on general EPECs, formed by several leaders solving bilevel programs with a single follower74

solving a linear programming problem in the lower level. The dual regularization approach is75

reformulated for a general EPEC from a primal point of view also in Section 3.2. Section 476

discusses various properties of the regularized energy problem. Section 5 extends the regularization77

technique to a multi-market model, which amounts to the follower solving a variational inequality78

instead of a linear program; see Section 5.1. Finally, to illustrate the type of numerical difficulties79

that must be addressed when solving EPECs, Section 5.2 reports on several experiments with the80

PATH solver [6] using GAMS, for models with one and two markets. The benchmark provides81

insights on how our approach helps in obtaining solutions to the complementarity system that are82

equilibria for the EPEC. In the last section, some concluding remarks are provided.83

2. On energy markets. We start with a particular EPEC model that corresponds to the84

Brazilian energy system described in [3]. In this stylized static version, there is no uncertainty85

neither dynamic relations. The model will be used to illustrate the proposed methodology.86

2.1. The setting. Suppose the market is composed by N leaders who bid on energy for one87

time period. For the ith agent, i ∈ {1, . . . , N}, the bid 0 ≤ (pi, gi) ∈ R2 consists, respectively, of88

a selling price and the amount of energy that the agent is willing to generate for this price. The89

unit cost of generation is φi, and upper bounds for the bid are denoted by (pmax
i , gmax

i ) > 0.90

The ISO is the single follower, who receives all the bids, that is (p, g) ∈ R2N , where p =91

(p1, p2, . . . , pN ) and g = (g1, g2, . . . , gN ). Taking into account the bids (p, g) as parameters, and92

considering the social cost and system-wide constraints related to demand and network, the ISO93

decides the generation dispatch l = (l1, l2, . . . , lN ) ∈ RN and the market price P ∈ R, to be paid94

for each unit of energy (the same price for all the agents, pricing is uniform).95
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Regarding the lower-level output l, it is clearly not possible for the ISO to dispatch amounts96

larger than the quantity bids (li ≤ gi for all i). Partial dispatch is possible (lk < gk for some97

k ∈ {1, . . . , N}), for example to clear the market. The market regulator determines when to98

partially dispatch an agent and how to treat tie-breaks.99

Regarding the price P , its value is given by a function defined by the market rules. An ISO100

that prefers not to over-pay would set101

(2.1) P (p, g, l) := max {pj : lj > 0 , j = 1, . . . , N} .102

In this case, the clearing price is the highest value of the bids, among all the prices bid by agents103

who were dispatched by the ISO. The dependence of the price function P (·) on the generation bid104

g is indirect, through the dispatch. A more accurate writing (notationally more heavy) would be105

P = P (l(p, g)). Finally, notice that the rule (2.1) is implicit, it depends on how the leaders and106

the follower interact, until an equilibrium is attained and the market is cleared.107

Figure 1 represents a market with two leaders. The arrows in the diagram display the output108

of one level that enters as a parameter in the optimization problem of the other level.

(p, g, l) ∈ S iso
shared

P = P (p, g, l)

{
min
(p2,g2)

f 2(p2, g2, l2, P )

s.t. (p2, g2) ∈ Sop
2

{
min
(p1,g1)

f 1(p1, g1, l1, P )

s.t. (p1, g1) ∈ Sop
1

(p1, g1)

(g1, g2) ∈ Sop
shared

(l1, P ) (l2, P )

(p2, g2)

Fig. 1: Market with two agents and the ISO. In the upper level, the leaders decide their bids
on price and generation, taking into account operational constraints (sets Sop

i for i = 1, 2).
Some operational constraints can be shared (set Sop

shared). The leaders’ objective function is
parameterized by the dispatch and market price, which is the follower’s output. The decision
on dispatch and price in the lower level is done by the ISO, taking into account system
constraints (set S iso

shared), and having the bids as parameters.

109

In Figure 1, the ith agent determines bids by solving a bilevel minimization problem, using110

an objective function that represents a disutility, such as the negative of profit,111

f i(pi, gi, li, P ) = φili − liP ,112

or some convex function to hedge against downside profit risk. The feasible region is defined by113

three sets, Sop
i , Sop

shared and S iso
shared, with different structure. Operational constraints, depending on114

the technology employed to generate energy, are included in the first set, Sop
i , that is endogenous,115

specific to each agent. For example,116

(2.2) Sop
i := {(p, g) : φi ≤ p ≤ pmax

i , 0 ≤ g ≤ gmax
i } .117

The lower bounds for price and generation are the marginal cost of generation and zero, respec-118

tively. Other choices are possible. In models with temporal dynamics, ramping and warm-up/shut-119

down requirements constrain the generation. In order to be operational at full capacity at peak120

times (when prices are higher), at times preceding the peak leaders bid low prices, to encourage121

the ISO to dispatch their utility. This is achieved by setting the price lower bound below cost.122
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The second feasible set, Sop
shared, includes operational constraints that are shared by several123

leaders. This situation arises for a group of agents generating hydropower from a set of cascaded124

reservoirs. Like the first set of constraints, this second set is explicitly described by equality and125

inequality constraints involving components of the generation vector g (e.g., stream-flow balance126

constraint, exchange limits, etc.).127

The third set, S iso
shared, is shared by all the agents, leaders and follower. Market-clearing and128

network system-wide constraints are part of this set, that we write abstractly as follows:129

(2.3) S iso
shared := {(p, g, l) : l ∈ D(p, g)} ,130

where the dispatch multifunction D : RN ×RN ⇒ RN returns, for a given bid (p, g), a set D(p, g)131

of dispatched quantities. In a manner similar to the pricing rule (2.1), the dispatch multifunction132

is available only implicitly, as it is the outcome of the ISO solving an optimization problem133

parameterized by the leaders’ decisions. Typically, the ISO lower-level problem minimizes the134

consumers’ expenses or maximizes social welfare, as in problem (2.5) below.135

Remark 2.1 (Social cost and clearing prices from Lagrange multipliers). Even though very136

intuitive, (2.1) turns out to be difficult to implement. Because the rule is not explicit, to solve the137

EPEC in practice, the function P (·) therein is replaced by the Lagrange multiplier corresponding138

to the market clearing constraint in S iso
shared, denoted below by π. In many situations, however, such139

replacement provides only an upper bound. When this happens, the EPEC price at equilibrium140

is larger than the right-hand side in (2.1). While it is reasonable for dispatched generators to be141

remunerated at least the price they bid, as stated by (2.1), it is not sound for the ISO to settle142

the price at values higher than the largest bidding price. From the leaders’ side, higher prices are143

better, but not from the side of the consumers. If social welfare is reduced, the ISO is not fulfilling144

its role and the market is said to be inefficient.145

Overpricing is not uncommon in multi-leader single-follower games. In the disutility, the term146

liP is the agent’s remuneration and the Lagrange multiplier replacement yields147

(2.4) f i(pi, gi, li, π) = φili − liπ .148

Since the upper-level problems maximize profit (or minimize disutility), in situations in which149

multipliers are not unique, the leaders will always favor larger values of π, making the price150

replacement an overestimation of the rule (2.1). □151

In order to deal with the undesirable overpricing, we regularize the dual of the follower problem.152

By this token, when the regularization parameter goes to zero, the Lagrange multiplier in the limit153

will be the price signal with minimum norm, that is, corresponding to the right-hand side in (2.1).154

We explain the technique first for an illustrative formulation representing the ISO decision process.155

2.2. A simple ISO problem. Having the bidding prices p and quantities g as parameters,156

the ISO minimizes the total expense, p⊤l, in a manner that satisfies the demand d ∈ R:157

(2.5)



min
l

p⊤l

s.t. 0 ≤ l
l ≤ g (λ)
N∑
j=1

lj = d (π) .

158

The right-most variables in parentheses, λ and π, denote the Lagrange multipliers associated to159

the constraints on the left of them. The meaning of these multipliers (the dual variables) as shadow160

prices is well-known. An economic interpretation of the optimal multiplier λ∗ as marginal rent161

will be discussed in Section 3. The optimal multiplier π∗ is the marginal price, representing the162

infinitesimal change in the expense arising from an infinitesimal change in the demand.163

The simple formulation (2.5) has optimal primal and dual solutions that can be expressed in164

a closed form. To do so, the statement and its proof below use the following notation:165
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– the agent whose bid completes the demand is called marginal and is denoted by index jmg:166 ∑
k<mg

gjk < d ≤
∑
k≤mg

gjk .167

– The N -dimensional vector with all components equal to 1 is denoted by 1.168

– For two vectors of matching dimensions, u ⊥ v means that u⊤v = 0.169

– For a scalar c, we write [c]+ = max{0, c}.170

Proposition 2.2 (Solution to ISO problem (2.5)). Re-ordering the indices if necessary,171

suppose in problem (2.5) the bidding prices satisfy the relation pj1 ≤ pj2 ≤ · · · ≤ pjN , and set172

pjN+1
:= ∞. The following holds:173

(i) The dispatch defined by174

l∗j =


gj if j ∈ {jk : 1 ≤ k < mg}
d−

∑
k<mg

l∗jk = d−
∑
k<mg

gjk if j = jmg

0 otherwise,

175

solves (2.5) and, hence, l∗ ∈ D(p, g), the set-valued mapping from (2.3).176

(ii) The optimal Lagrange multipliers associated to the demand constraint in (2.5) are177

Π∗ =


{pjmg} if l∗jmg < gjmg[
pjmg , min

k>mg,gjk>0
pjk

]
if l∗jmg = gjmg , and jmg < N[

pjmg ,+∞
)

if l∗jmg = gjmg , and jmg = N .

178

possibly non-unique.179

(iii) For each π∗ in the set-valued mapping Π∗, the vector λπ∗
with components

λπ∗

j = [π∗ − pj ]
+ for 1, . . . , N

is an optimal multiplier for the capacity constraint in (2.5).180

Proof. The vector l∗ is clearly feasible for (2.5) and λπ∗ ≥ 0. Also, we have that181

λπ∗

j =

{
π∗ − pj if j ∈ {jk : 1 ≤ k ≤ mg}
0 otherwise

182

and if l∗jmg < gjmg , then π∗ = pjmg and so λπ∗

jmg
= 0. Taking into account all these relations and the183

definition of l∗, yields the complementarity relation184

0 ≤ g − l∗ ⊥ λπ∗
≥ 0.185

On the other hand, note that186

p+ λπ∗
− π∗1 = ([π∗ − pj ]

+ − (π∗ − pj))
N
j=1 ≥ 0187

and, since l∗jk = 0 for k > mg, we have also that188

0 ≤ l∗ ⊥ p+ λπ∗
− π∗1 ≥ 0 ,189

which shows that the primal-dual point (l∗, π∗, λπ∗
) is optimal for (2.5). Finally, taking another190

pair of multipliers (π̄, λ̄), since l∗jmg > 0, from l∗jmg(pjmg+λ̄jmg−π̄) = 0, we have that 0 ≤ λ̄jmg ≤ π̄−pjmg .191

Also, when l∗jmg < gjmg it holds that λ̄jmg = 0 which implies pjmg = π̄. In case l∗jmg = gjmg , and k > mg,192

with gjk > 0. Since l∗jk = 0 and (gjk − l∗jk)λ̄jk = 0 we have that λ̄jk = 0 and using that193

pjk + λ̄jk − π̄ ≥ 0 yields pjk ≥ π̄, as stated.194
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Remark 2.3 (On the lack of uniqueness for the dispatch). By Proposition 2.2, whenever sev-195

eral agents bid the same price, and this happens to be the highest dispatched price, the equilibrium196

price will be the same, but not the dispatch, because pjmg is associated with different generation197

offers gjmg,1 , gjmg,2 , . . .. The dispatch function (2.3) is D1(p, g) = {l∗ solving (2.5)} , a set-valued198

mapping (that is, there is more than one minimizer l∗). Incidentally, this is the reason for writing199

(2.3) as an inclusion. This situation creates an indifference set for the ISO regarding the optimal200

dispatch, any distribution of the marginal dispatch d −
∑

k<mg gjk among the marginal agents201

yields the same output from the ISO point of view. The simple model (2.3) has no transmission202

constraints, so all the different gjmg,l are the same when it comes to satisfaction of the demand.203

If there is a network, indifference sets appear when two agents inject power in the same bus and204

bid the same marginal price. Since the ISO problem is part of an EPEC, we observed that this205

phenomenon of indifference leads to numerical difficulties in the solution process.206

To get a unique primal solution from the ISO, the authors of [1] impose a so-called equity207

property which would amount to include in (2.5) constraints of the form208

pi = pj =⇒ li = lj for i, j = 1, . . . , N .209

In the market considered by [1], the leaders’ problems have no operational constraints, their bid is210

only on prices. The equity constraint can be considered in this case, because the ISO decides the211

dispatch without taking into account the generation capacity of the leaders. The same technical212

artifact is not applicable in our setting, with bids of price and generation. □213

The equilibrium problem of interest is the EPEC that results from simultaneously considering214

all the agents’ problems. Suppose for simplicity that there are no coupling operational constraints215

(Sop
shared is void). If the ISO behavior is given by (2.3) and (2.5), we consider the following EPEC:216

Find an
equilibrium,

solving
for i = 1, . . . , N
the bilevel
problems



min
gi,pi,li

f i(pi, gi, li, π)

s.t. 0 ≤ gi ≤ gmax
i

φi ≤ pi ≤ pmax
i

l ∈ argmin(SISO
shared) =



min
l

p⊤l

s.t. 0 ≤ l
l ≤ g (λ)
N∑
j=1

lj = d (π)


.

217

(2.6)218

To handle the difficult implicit constraint S iso
shared, we write the dual of the follower problem (2.5):219

(2.7)


max
π,λ

πd− λ⊤g

s.t. π − λj ≤ pj , j = 1, . . . , N
λ ≥ 0 ,

220

and replace the problem by its optimality conditions. By primal-dual feasibility and strong duality,221

Find an
equilibrium,

solving
for i = 1, . . . , N,
the bilinear
problems



min
gi,pi,li,π,λ

f i(pi, gi, li, π)

s.t. 0 ≤ gi ≤ gmax
i

φi ≤ pi ≤ pmax
i

0 ≤ l ≤ g
N∑
j=1

lj = d

π − λj ≤ pj , j = 1, . . . , N
λ ≥ 0
p⊤l = πd− λ⊤g .

(2.8)222

223

This equivalent formulation: eliminates the bilevel setting, at the expense of adding bilinear terms224

in the constraints, that are not simple to tackle, but have the merit of being explicit.225
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2.3. On related models and solution methods. Research on equilibrium problems is very226

rich. We mention mostly work on energy markets, without any pretension of thoroughness. Initial227

mathematical programming models [11] evolved to more sophisticated equilibrium problems, cast228

as Nash games, complementarity formulations, or EPECs [16], [9], [17]. The last work is a multi-229

leader single-follower model that assumes strict convexity in the lower level. This assumption230

appears frequently in the literature for equilibrium problems with many leaders and one follower.231

For optimality conditions, it can be traced back to [29]. Later it was assumed by [7] and [12].232

Additional works having a strictly convex follower are listed in Section 2 of [2].233

Multi-leader multi-follower and two-stage non-cooperative games are studied in [20] and [26],234

respectively. Multi-agent hierarchical games under uncertainty are the topic of [4]. The taxonomy235

of bilevel convex games therein considers a unifying formulation that again requires strict convexity236

in the case of a single follower (cf. the lower-level problem in [4, 2.3(a)]).237

As explained in the introduction, strict convexity is not a suitable assumption for the follower238

in large hydro-dominated markets (like Brazil’s, as one example). A linear programming lower-239

level problem is more realistic in this case, see [3]. In the work [1], some bids of price can be linear,240

as in the objective function in (2.5). But, as explained in Remark 2.3, the equity property used241

as a replacement of strict convexity is not applicable in our setting.242

Regarding computational schemes, we can mention [8] for a bilevel approach with potentially243

discrete variables, [30] for stochastic variational inequalities, and [24] and [23] for risk-neutral244

and risk-averse stochastic games and relations with complementarity formulations. Finally, for245

a discussion on non-unique EPEC multipliers we refer to [22]; see also the analysis of consistent246

Lagrange multipliers in [20].247

3. Regularizing the lower-level problem. We modify the dual lower-level problem (2.7)248

with a particular regularization term, that is afterwards interpreted in the initial primal problem.249

This justifies the naming “dual-primal” for the proposed approach.250

For the energy model the procedure corresponds to adopting the viewpoint of a dual ISO, that251

could be thought as being more concerned with prices than with dispatch (a dispatch-oriented ISO252

would directly solve the primal problem). If the clearing price is the demand multiplier, then any253

dispatched agent that bids below the market price has a positive λj in (2.7) that represents an254

inframarginal rent. The wording rent, or surplus, refers to an amount that is received without255

any effort (revenue, by contrast, involves some work of the agent, to generate energy that may be256

dispatched). The rent λj is positive only when pj < π, that is, when the agent gets paid more257

than the bid. Generators typically rely upon such rent to cover fixed costs. There is overpricing258

when the marginal agent has a positive marginal rent (λjmg > 0). The phenomenon is avoided with259

our regularization scheme, thanks to the penalization term, that gives preference to lower values260

of the marginal rent.261

3.1. Regularized dual ISO problem of the energy EPEC. By Proposition 2.2, all the262

dispatched agents except the marginal ones are dispatched at their bidding level l∗i = gi, so for263

those agents it holds that λigi = λil
∗
i . If for a marginal agent the dispatch satisfies l∗jmg < gjmg ,264

the rent will be zero, because π∗ = pjmg . Moreover, since in the dual problem (2.7) the objective265

function is πd− λ⊤g , the dual ISO ends in fact maximizing the overall payment to the agents net266

from any rent. On the other hand, the unfavorable situation l∗jmg = gjmg leads to a positive rent for267

the marginal agent and an overall increase in the rent of all the other dispatched agents.268

In order to control the rent, instead of solving (2.7), we define a regularized problem for the269

dual ISO that discourages large values of marginal rent. This is done by penalizing λ through a270

convex function h(λ) satisfying h(λ) > 0 for λ > 0, and h(0) = 0.271

Given a penalty parameter β ≥ 0, the new dual ISO problem is272

(3.1)β


max
π,λ

πd− λ⊤g − βh(λ)

s.t. π − λj ≤ pj , for j = 1, . . . , N
λj ≥ 0 , for j = 1, . . . , N .

273

Notice that when taking β = 0, problem (3.1)0 recovers the original dual linear program (2.7).274
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Regarding assumptions on the regularizing function, they will be stated as needed. For the275

moment we just review briefly two classical concepts from Convex Analysis: the subdifferential276

and the Fenchel conjugate; more detailed explanations can be found in [15].277

Given a convex function h : RN → R and x ∈ RN , the subdifferential of h at x is the set278

(3.2) ∂h(x) = {s : h(y) ≥ h(x) + s⊤(y − x) ∀ y} .279

The elements of ∂h(x) are called subgradients of h at x.280

The Fenchel conjugate h∗ : RN → R ∪ {−∞,∞} of h is defined by281

(3.3) h∗(s) = sup
x∈RN

{x⊤s− h(x)}.282

It is well-known that the subgradient generalizes the concept of gradient, when the convex func-283

tion h is not differentiable (if h is differentiable, the set is a singleton – the usual derivative).284

On the other hand, the Fenchel conjugate h∗ is a convex function with an interesting economic285

interpretation. Suppose h(x) represents the cost of production of a good x that can be sold at a286

price s. Then, the Fenchel conjugate at s defined in (3.3) represents the optimal profit that can287

be achieved for the price s by choosing the quantity x to be produced and sold. Finally, when h288

represents a cost, the subdifferential of h at x is the set of all the prices that ensure an optimal289

profit when x is the production level.290

These concepts are used to express the regularized problem in a primal form, by writing the291

dual problem to (3.1)β . We now explain the process for a multi-leader single-follower setting that292

extends the simple energy problem to a more general EPEC given in (3.4) below.293

3.2. Dual and primal regularized formulations for general EPECs. The regulariza-294

tion scheme ((3.1)β), stated for the particular EPEC instance represented by the energy problem,295

is applicable in a more general setting. We adopt a compact notation, in which each agent i has296

variables xi, and minimizes a function f i that depends on the follower’s primal and dual deci-297

sions, denoted by y and µ, respectively. Operational constraints in the upper level are denoted by298

Gi(xi) ≤ 0. Gathering all the agents decisions in the vector x, the lower-level problem solved by299

the follower is an abstract linear program, parameterized by x. Accordingly, consider the general300

EPEC that results from agents i = 1, . . . , N solving the following problem:301

(3.4)



min
xi

f i(xi, y, µ)

s.t. Gi(xi) ≤ 0

y solves


min
y

c(x)⊤y

s.t. y ≥ 0
By = b(x) (µ) .

302

To see that the energy problem (2.6) is a particular instance of (3.4), it suffices to make the303

following identifications for the upper- and lower-level variables:304

xi = (pi, gi) , and y = (ℓ, w) for a slack variable w ≥ 0.305

Identification for the ith agent’s objective and constraints functions are straightforward, while the306

follower problem amounts to taking307

c(x) = (p, 0) , B =

[
−IN −IN
1⊤ 0

]
, and b(x) =

(
−g
d

)
.308

Note in passing that, thanks to the affine constraint By = b(x), the general setting (3.4) allows to309

handle an ISO dealing with network constraints, modeled in a DC formulation.310

In order to regularize only some of the multipliers (as with the marginal rent in the ISO311

problem), we make use of a row-matrix P to project the dual variable µ onto some of its components312
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(for the stylized problem, P has null components except for those indices corresponding to λ, where313

the entry is 1, so that Pµ = λ). As a result, to the linear program314 {
min
y≥0

c⊤y

s.t. By = b ,
315

we associate the regularized dual316

(3.5)

{
max
µ

b⊤µ− βh(Pµ)

s.t. B⊤µ ≤ c .
317

The dual of this dual problem brings back the formulation to primal setting.318

Proposition 3.1 (Regularized primal problem). Consider the linear program319 {
min
y≥0

c⊤y

s.t. By = b .
320

Given a convex function h satisfying h(λ) ≥ 0 and h(0) = 0, the primal problem associated with321

the regularized dual (3.5) is322

(3.6)

{
min
y≥0,s

c⊤y + βh∗(s)

s.t. By + βP⊤s = b .
323

Proof. The Lagrangian L(µ, y) = −b⊤µ+βh(Pµ)+y⊤(B⊤µ− c) gives for (3.5) the optimality324

conditions325

(3.7) ∃
(
µ, y, s ∈ ∂h(Pµ)

)
s.t.

{
0 = −b+ βP⊤s+By
0 = y⊤(B⊤µ− c) , y ≥ 0 , B⊤µ ≤ c .

326

Using the equivalence s ∈ ∂h(x) ⇐⇒ h(x) + h∗(s) = x⊤s for the objective function in (3.5),327

we then obtain that328

−b⊤µ+ βh(Pµ) = −b⊤µ+ βs⊤(Pµ)− βh∗(s)329

= (−b+ βP⊤s)⊤µ− βh∗(s)330

= −(By)⊤µ− βh∗(s)331

= −c⊤y − βh∗(s) ,332

where the third equality is by the first relation in (3.7), and the last is by the complementarity333

relation in (3.7). Taking into account the change in sign, this completes the proof that (3.6) is the334

primal problem that corresponds to (3.5).335

Tikhonov’s regularization amounts to taking h(·) := 1
2∥·∥

2
2, a self-dual function (h∗ = h). The336

next example shows the interest of considering more general functions. With a suitable function337

h, the corresponding regularized primal and dual problems keep the linear structure of the original338

problem. By contrast, with the Tikhonov approach, the regularized problems become quadratic.339

Example 3.2 (Regularizing with a norm). Problem (3.5) remains a linear program when340

the h is a polyhedral norm. In the family of ℓr-norms, this is the case with r = 1 and r = +∞:341

∥λ∥1 :=

N∑
j=1

|λj | and ∥λ∥∞ := max
{j=1,...,N}

|λj | .342

In particular, by definition of conjugate function,343

if h(λ) = ∥λ∥∞ then h∗(s) =

{
0 if ∥s∥1 ≤ 1
+∞ otherwise,

344
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and the regularized problem is akin to penalizing infeasibility of the constraints, as (3.5) becomes345

(3.8)

{
min
y≥0,s

c⊤y + β∥s∥1
s.t. By + βP⊤s = b ,

346

Explicit formulations for the regularized primal problems can be derived when the function h347

is a norm. Specifically, to each norm h(·) = ∥ · ∥ we associate a dual norm, defined by348

hD(x) = max
h(y)=1

x⊤y .349

Using again the conjugate definition,350

h∗(x) =

{
0 if hD(x) ≤ 1

+∞ otherwise,
351

the regularized primal problem (3.6) can be expressed as352

(3.9)


min
y≥0,s

c⊤y

s.t. By + βP⊤s = b
hD(s) ≤ 1 .

353

The dual norm of the ℓ∞-norm is the ℓ1-norm. Since, in addition,354

s ≥ 0 and ∥s∥1 ≤ 1 ⇐⇒ s ≥ 0 and

N∑
j=1

sj ≤ 1 ,355

the EPEC problem (3.8) is equivalent to356

(3.10)


min
y≥0,s

c⊤y

s.t. By + βP⊤s = b∑N
j=1 sj ≤ 1 .

357

□358

In our numerical experience we observed that, rather than solving the single problem (3.4), it359

is preferable to solve a sequence of regularized EPECs, decreasing the values of the regularization360

parameter. In this approach, a run is warm-started taking as initial values for the upper- and lower-361

level variables the output of the run with the previous β. This technique has the effect of stabilizing362

the computed solutions, in the sense that the output does not depend on the starting point.363

Otherwise, different starting points provided to PATH to solve the single problem (3.4), often364

result in different output. Our next result exhibits that the regularized output in Proposition 3.1365

is continuous in β and always converges to a special price, specified below.366

Theorem 3.3 (Asymptotic properties of regularized multipliers). For a convex function h(λ)367

satisfying h(λ) > 0 for λ > 0 and h(0) = 0, let h∗ denote its conjugate. Consider the family of368

regularized EPECs369

for decreasing β > 0,



min
xi

f i(xi, y, µ)

s.t. gi(xi) ≤ 0

y solves


min
y,s

c(x)⊤y + βh∗(s)

s.t. y ≥ 0 ,
By + βP⊤s = b(x) (µ) .

370

Let µ(β) be a dual solution to the (regularized) lower- level problem above. Then the following371

statements hold, regarding the convergence to a solution of the lower-level problem in the general372

EPEC (3.4).373
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1. As β → 0, the sequences {h(Pµ(β))} and {b⊤µ(β)} are convergent. Furthermore, for any374

dual solution µ∗ of375

(3.11)


min
y

c(x)⊤y

s.t. y ≥ 0
By − b(x) = 0 (µ) ,

376

it holds that limβ→0 h(Pµ(β)) ≤ h(Pµ∗) and limβ→0 b
⊤µ(β) = b⊤µ∗.377

2. Every accumulation point µ̂ of {µ(β)} is a dual solution to (3.11) satisfying378

(3.12) h(Pµ̂) = min{h(Pµ∗) : µ∗dual solution to (3.11)}379

Proof. We drop the dependence on x in what follows. Recall that (3.5) is a dual of the380

regularized lower- level problem (3.6). Taking β = 0, (3.5) also gives the dual problem to (3.11).381

Let µ∗ be any dual solution in (3.11), fixed for now. The fact that µ∗ is a dual solution in382

(3.11) implies that it is feasible in (3.5). Hence,383

b⊤µ∗ − βh(Pµ∗) ≤ b⊤µ(β)− βh(Pµ(β)).384

On the other hand, by the optimality of µ∗ in (3.5) for β = 0 and the fact that µ(β) is feasible for385

it (since it solves (3.5) for β > 0), it holds that386

b⊤µ(β) ≤ b⊤µ∗ .387

Combining the last two relations, we obtain that for all β > 0,388

(3.13) b⊤µ∗ − βh(Pµ∗) ≤ b⊤µ(β)− βh(Pµ(β)) ≤ b⊤µ∗ − βh(Pµ(β)).389

Then, from the first and last terms of (3.13), we conclude that390

0 ≤ h(Pµ(β)) ≤ h(Pµ∗),391

which shows that the sequence {h(Pµ(β))} is bounded. Then, taking the limit as β → 0 in (3.13),392

lim
β→0

b⊤µ(β) = b⊤µ∗.393

For showing convergence of {h(Pµ(β))} as β → 0, consider any subsequences βk → 0, and394

{h(Pµ(βk)} → h(Pµ(β)), passing onto subsequence if necessary (recall that {h(Pµ(β))} had been395

proven to be bounded). For any β > 0, by the optimality of µ(β) in the corresponding problem,396

and as explained in more detail in related considerations above, we have that397

b⊤µ(βk)− βh(Pµ(βk)) ≤ b⊤µ(β)− βh(Pµ(β)) ≤ b⊤µ∗ − βh(Pµ(β)).398

Then, taking the limit in k, we obtain that399

b⊤µ∗ − β lim
k

h(Pµ(βk)) ≤ b⊤µ∗ − βh(Pµ(β)),400

which implies that401

h(Pµ(β)) ≤ lim inf
β→0

h(Pµ(β)).402

Thus,403

lim sup
β→0

h(Pµ(β)) ≤ lim inf
β→0

h(Pµ(β)) ≤ h(Pµ∗),404

which shows the convergence of {h(Pµ(β))}.405

The second item follows directly from the results established above.406
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The aforementioned “special” price is the one satisfying (3.12). If the regularizing function h is a407

norm, this confirms the assertions in the introduction: the limit of the regularized prices is a price408

for the original EPEC that has minimal norm.409

Notice that existence of accumulation points of {µ(β)} is not discussed in Theorem 3.3. This410

is clearly a model-dependent issue. For example, the boundedness of {h(Pµ(β))} and {b⊤µ(β)}411

combined with some additional assumptions, like b > 0, might imply the boundedness of {µ(β)}.412

Also, whenever B has full rank, the dual feasible set of (3.11) is bounded and thus so is {µ(β)}.413

Such is the case for the energy problem, considered in detail in the next section.414

Finally, it is important to keep in mind that existence of lower-level regularized multipliers415

and their limit does not grant the existence of equilibria for the EPEC (3.4). Determining if the416

regularization is beneficial for existence properties remains an open question, beyond the scope of417

this work. For general EPECs, this is a very challenging problem. Barring the clean result in [21],418

existence statements for hierarchical problems are rare in the literature. For more information,419

we refer the reader to the analysis initiated in [27] and extended in [28]; see also [5].420

4. Illustration for the energy market. We next specialize some results to the energy421

market model in Section 2. In particular, notice that Theorem 3.3(ii) implies that every accumu-422

lation point µ̂ of {µ(β)} has the minimal projection Pµ̂ among all dual solutions to (3.11). In423

Theorem 4.3 below we show that the output of the sequence of regularized EPECs provides the424

minimal price in the limit.425

4.1. Dual regularized ISO problems. Example 3.2 shows the regularized scheme when426

penalizing with a norm. However, this is not the only choice that might be useful, and keeping a427

general function h gives better insight into the properties and consequences of dealing with a reg-428

ularization term. For instance, in Theorem 3.3, item (i), we showed that the sequence {h(Pµ(β))}429

is convergent. Under additional assumptions, like h being strictly convex and Assumption 4.1430

below, it is possible to show that actually the projected sequence {Pµ(β)} is convergent as well431

(Theorem 4.3(i)).432

The following properties, which hold for any ℓr-norm h(x) = ∥x∥r with 1 ≤ r ≤ ∞, are433

sufficient in our setting.434

Assumption 4.1 (Conditions on the penalizing function).435

The convex function h : RN → R satisfies h ≥ 0 with h(0) = 0 and the conditions:436
1. If 0 ≤ x ≤ y, then h(x) ≤ h(y).437
2. If 0 ≤ x ≤ y and xj < yj whenever yj > 0, then h(x) < h(y).438
3. For any M ∈ R, the level set {x : h(x) ≤ M} is bounded. □439

In what follows, the positive-part function of a scalar s is defined by440

[s]+ := max(s, 0) .441

Lemma 4.2 (Properties of the regularized dual ISO problem). Let (π(β), λ(β)) be any solution442

to (3.1)β, where the function h satisfies Assumption 4.1. Then the following hold.443

(i) The marginal price is non-negative, π(β) ≥ 0, and the marginal rent defined as444

(4.1) λπ
j (β) := [π(β)− pj ]

+ for j = 1, . . . , N ,445

satisfies λπ(β) ≤ λ(β).446

(ii) The pair (π(β), λπ(β)) is also a solution to problem (3.1)β.447

(iii) Given any two solutions (π1(β), λ1,π(β)) and (π2(β), λ2,π(β)) to problem (3.1)β,448

π1
(β) ≤ π2

(β) ⇐⇒ λ1,π
(β) ≤ λ2,π

(β).449

If, in addition, π1(β) < π2(β) and λ2,π(β) ̸= 0, then h(λ1,π(β)) < h(λ2,π(β)).450

Proof. Given a solution (π(β), λ(β)) of (3.1)β , the fact that π(β) ≥ 0 is clear. Also, it is easy451

to see that the pair (π(β), λπ(β)) is feasible in (3.1)β and that, as stated in item (i), λπ(β) ≤ λ(β).452

To show item (ii), notice that by Assumption (4.1) we have that h(λπ(β)) ≤ h(λ(β)); and since453

g ≥ 0 we have g⊤λπ(β) ≤ g⊤λ(β). Thus π(β)d− g⊤λ(β) − βh(λ(β)) ≤ π(β)d− g⊤λπ(β) − βh(λπ(β)),454

which shows that (π(β), λπ(β)) is also a solution.455
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For item (iii), first note that π1(β) ≤ π2(β), combined with the facts that [·]+ is monotonically456

non-decreasing and (4.1), implies that λ1,π(β) ≤ λ2,π(β). The converse statement assumes that457

λ1,π(β) ≤ λ2,π(β). Now, let us consider the following two cases. Suppose first that λ2,π(β) = 0.458

Then λ1,π(β) = 0 and, by (3.1)β , this forces π
1(β) = minj{pj} = π2(β) .459

In the second case, when λ2,π(β) ̸= 0, from (4.1), there exists some index j such that460

π2
(β)− pj = [π2

(β)− pj ]
+ = λ2,π

j (β) ≥ λ1,π
j (β) = [π1

(β)− pj ]
+ ≥ π1

(β)− pj ,461

from which the desired relation follows. Finally, assuming π1(β) < π2(β), we have that λ1,π(β) ≤462

λ2,π(β) ̸= 0, and for all j,463

π2
(β)− pj > π1

(β)− pj .464

As a result, for all the components j for which λ2,π
j (β) > 0, we have that465

λ2,π
j (β) = π2

(β)− pj > max{π1
(β)− pj , 0} = λ1,π

j (β) ,466

and, by Assumption (4.1), we have that h(λ2,π(β)) > h(λ1,π(β)), which concludes the proof.467

Lemma 4.2 is useful when considering convergence of a sequence of approximations, as the468

regularization parameter tends to zero. In (iii) and (iv) below we show that the approach converges469

to the price with minimal norm. The statement in item (iv), in particular, states that the limit470

price will always be the price bid by the marginal agent.471

Theorem 4.3 (Asymptotic behavior of regularized dual ISO problems). Consider any se-472

quence of solutions to (3.1)β {(π(β), λπ(β))}, parameterized by β. Under the assumptions in473

Lemma 4.2, the following hold.474

(i) As β → 0, the sequence {(π(β), λπ(β))} converges to a point (π̄, λπ̄).475

(ii) The limit point (π̄, λπ̄) solves problem (3.1)0, that is, the original dual ISO problem (2.7).476

(iii) For any other solution to (2.7), say (π0, λ0), it holds that477

π̄ ≤ π0 and λπ̄ ≤ λ0.478

(iv) The limit price π̄ coincides with the marginal price pjmg in Proposition 2.2.479

Proof. For item (i), we start by proving that the sequence is bounded, and then show that all480

its accumulation points are the same.481

Applying Theorem 3.3 to (2.6), with µ(β) = (π(β), λπ(β)) and Pµ(β) = λπ(β), we have that482

{h(Pµ(β))} = {h(λπ(β))} is bounded. By Assumption 4.1, it follows that {λπ(β)} is also bounded.483

Then, combining (4.1), the constraints in (3.1)β , and the fact that π(β) ≥ 0, we have that the484

sequence {π(β)}, is bounded as well.485

Consider any accumulation point (πacc, λacc) of {(π(β), λπ(β))}. From Theorem 3.3 we have486

that (πacc, λacc) is also a solution to (3.1)0 and h(λacc) ≤ h(λπ0).487

Suppose, for contradiction purposes, that πacc > π0. Lemma 4.2 ensures that λacc ≥ λπ0 ≥ 0,488

which implies h(λπ0) ≤ h(λacc). Therefore, h(λπ0

) = h(λacc).489

If λacc = 0 then λacc = λπ0

= 0. By Lemma 4.2, we have that πacc = π0, which contradicts490

our assumption. On the other hand, assuming λacc ̸= 0, implies, using Lemma 4.2(ii), that491

h(λπ0

) < h(λacc), which also contradicts the assumption πacc > π0. Thus, πacc ≤ π0, which also492

yields λacc ≤ λπ0 ≤ λ0.493

Considering any other accumulation point (π̂acc, λ̂acc) of
{
(π(β), λπ(β))

}
, since (π̂acc, λ̂acc) solves494

(2.7), we have495

πacc ≤ π̂acc and λacc ≤ λ̂acc.496

By a similar argument we can show that497

π̂acc ≤ πacc and λ̂acc ≤ λacc .498

Hence, (πacc, λacc) = (π̂acc, λ̂acc). We have therefore established that all accumulation points of the499

bounded sequence
{
(π(β), λπ(β))

}
coincide, i.e., the sequence converges. And since λacc = λπacc

,500
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we have that the limit point can be written as (π̄, λπ̄). This concludes item (i). Then, items (ii)501

and (iii) follow in a straightforward way.502

To see the final item (iv), recall from Proposition 2.2 that pjmg ≤ π̄ and since (pjmg , λpjmg
) solves503

(2.7), from item (iii), this means that π̄ ≤ pjmg . This concludes the proof.504

Recall from Proposition 2.2(iii) that when the marginal agent is dispatched up to the bid,505

that is when l∗jmg = gjmg , the equilibrium price lies in the interval Π∗ =
[
pjmg ,mink>mg,gjk>0 pjk

]
.506

A remarkable feature of Theorem 4.3(iv) is that the property π̄ = pjmg holds independently of the507

dispatch. This ensures that, as announced, in the limit the multipliersπ(β) provide the smallest508

possible value for the price, among all the (infinite) choices in the multiplier set Π∗.509

4.2. Back to the primal ISO problem. As mentioned, when considering successive EPECs510

with diminishing regularization parameters, in the numerical experiments we take a small value511

for β and use the corresponding ISO problem (3.1)β as an approximation for (2.7). In order512

to guide the choice of the bound for the regularization parameter, and determine its impact (or513

interference) in the bidding process, it is useful to consider the following regularized primal ISO514

problem, that results from (3.6), using the identifications given for the energy EPEC after (3.4):515

(4.2)β


min
l,w

l⊤p+ βh∗
( l + w − g

β

)
s.t. 1⊤l = d

l , w ≥ 0 .

516

In the original ISO problem, the marginal rent is the multiplier associated to the capacity517

constraint l ≤ g, that is no longer explicit in (4.2)β . The meaning of the variable λ in the518

regularized problem depends on the penalizing function. The choice h(·) = 1
2∥ · ∥2, which by519

definition of the conjugate implies that h∗ = h, gives in (4.2)β the objective function520

l⊤p+ βh∗
( l + w − g

β

)
= l⊤p+

1

2β
∥l + w − g∥2 .521

This Tikhonov regularization scheme amounts to a quadratic penalization of the capacity con-522

straint.523

If the penalizing function is the ℓ∞-norm, then (3.10) yields524

(4.3)



min
l ,s

l⊤p

s.t. 1⊤l = d
l ≤ g + βs
1⊤s ≤ 1
l, s ≥ 0 .

525

Since now the capacity constraint appears explicitly, the corresponding optimal multiplier λβ526

plays the role of a genuine marginal rent. This primal format reveals the regularized primal ISO527

as disposing of a generation reserve equal to βs. Indeed, the capacity constraint lj − βsj ≤ gj528

results in values lj > gj that can be optimal, seemingly allowing the ISO dispatch the jth agent529

beyond the bid. Of course, this is not possible. Rather, this situation, that leads to positive values530

for an optimal s∗j (β), is to be understood as the ISO having access to an additional source of energy,531

out of the market – a battery perhaps. With such reserve, the ISO can complete the dispatch532

and keep controlled both the price and the rent. Corollary 4.8, given at the end of this section,533

summarizes all the results for the ℓ∞-regularization and provides the theoretical background for534

our numerical assessment. By (3.10), a similar interpretation holds for any penalty in the family535

of norms, as in Example 3.2.536

Solutions to the original problem (2.5), given in Proposition 2.2, can be related to solutions537

to the regularized primal ISO problem (4.2)β if the penalty verifies the following relation.538

This manuscript is for review purposes only.



Equilibrium Problems with Equilibrium Constraints 15

Assumption 4.4 (Additional condition on the penalty). For any x ∈ RN , it holds that539

h(x) = h(abs(x)) where abs(x) := (|x1|, |x2|, . . . , |xN |) . □540

Once again, Assumption 4.4 is satisfied by any ℓr-norm with 1 ≤ r ≤ ∞. We state several541

technical properties related with the new assumption.542

Lemma 4.5 (Consequences of Assumption 4.4). The following holds for a function h satisfy-543

ing Assumption 4.4.544

(i) The conjugate h∗ satisfies Assumption 4.4.545

(ii) For any λ ∈ RN and a subgradient s ∈ ∂h(λ),546

λ ≥ 0 with λ ̸= 0 =⇒ sj ≥ 0 for any component j for which λj > 0.547

(iii) Suppose, in addition, that h is a norm whose dual norm hD has the property that, for any548

0 ≤ x ≤ y,549

∃j ∈ {1, . . . , N} such that xj < yj =⇒ hD(x) < hD(y) .550

Then s ∈ ∂h(λ) in item (ii) is such that sj = 0 whenever λj = 0.551

Proof. To show (i), denote sign(x) := (sign(x1), sign(x2), . . . , sign(xN )). Let ◦ represent the
Hadamard product between vectors, that is

sign(x) ◦ y := (sign(x1)y1, sign(x2)y2, . . . , sign(xN )yN ) .

Then the identity below holds for any x, y ∈ RN , showing the assertion:552

x⊤y − h(y) = abs(x)
⊤
(sign(x) ◦ y)− h(y)553

= abs(x)
⊤
(sign(x) ◦ y)− h(sign(x) ◦ y) .554555

By definition of conjugate function, the subgradient s ∈ ∂h(λ) solves the problem556

h∗∗(λ) = sup
z

{λ⊤z − h∗(z)} .557

Since h = h∗∗ by convexity of h, this means that558

(4.4) h(λ) = λ⊤s− h∗(s) ≥ λ⊤z − h∗(z) for all z ∈ RN .559

To show item (ii), we proceed by contradiction and suppose there exists j such that λj > 0 and560

sj < 0. Then we have that λ⊤abs(s) > λ⊤s and since h∗(s) = h∗(abs(s)) by item (i),561

λ⊤abs(s)− h∗(abs(s)) > λ⊤s− h∗(s),562

which contradicts (4.4). Thus sj ≥ 0 whenever λj > 0, as stated.563

Continuing with item (iii), when h is a norm, as explained in Example 3.2, having λ ̸= 0564

implies that hD(s) = 1. This gives in (4.4) the following:565

(4.5) h(λ) = λ⊤s ≥ λ⊤z for all z with hD(z) = 1 .566

Suppose again by contradiction that for some component j0 it holds that sj0 ̸= 0 and λj0 = 0.567

Defining ŝ by568

ŝj =

{
0 if j = j0

|sj | otherwise,
569

we have that ŝ ̸= 0, 0 ≤ ŝ ≤ abs(s) and ŝj0 < abs(s)j0 . Then570

0 < hD(ŝ) < hD(abs(s)) = hD(s) = 1.571

This contradicts (4.5), because
λ⊤ŝ

hD(ŝ)
> λ⊤ŝ = λ⊤abs(s) ≥ λ⊤s . This completes the proof.572
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Thanks to Lemma 4.5, we now characterize the dispatch of the regularized ISO.573

Proposition 4.6 (Solution to regularized ISO problem (4.2)β). Suppose h in (3.1)β satis-574

fies Assumptions 4.1 and 4.4. Let (π(β), λπ(β)) be the marginal pair from Lemma 4.2(i), solving575

the regularized dual ISO problem (3.1)β. The following holds for (l(β), w(β)), a solution to the576

regularized primal problem (4.2)β.577

(i) s =
l(β) + w(β)− g

β
∈ ∂h(λπ

(β)) .578

(ii) For j = 1, 2, . . . , N ,579

if pj < π(β), then sj ≥ 0 , lj(β) = gj + βsj , wj = 0
if pj > π(β), then lj(β) = 0 wj = gj + βsj .

580

(iii) If, in addition h is a norm and λπ(β) ̸= 0, then s has length 1 in the dual norm. Further-581

more, if the dual norm hD satisfies the conditions in Lemma 4.5(iii), then the statement582

in (ii) also includes that sj = 0 whenever pj ≥ π(β).583

Proof. The first item is straightforward from the optimality conditions of (4.2)β and584

lπ(β) = g − wπ
(β) + βs .585

Consider j = 1, 2, . . . , N . If pj < π(β), then λπ
j (β) = π(β)−pj > 0. The complementarity condition586

between λ and w implies that wπ
j = 0 and, hence, lj(β) = gj + βsj .587

For the case pj > π(β), we have that π(β) − pj < 0 ≤ λπ
j (β). Again, the complementarity588

condition between this constraint and the Lagrange multiplier l implies that lj(β) = 0 and wj(β) =589

gj + βsj , showing item (ii).590

Finally, item (iii) follows from Lemma 4.5, that yields hD(s) = 1.591

It is worth noting that the property required for the norm in Lemma 4.5(iii) is satisfied by the592

ℓ∞-norm, but not by the ℓ1-norm. This is the reason why in our numerical results the regularized593

EPECs are defined using the former option.594

Like in Theorem 4.3, we consider convergence of a sequence of approximations as the parameter595

β tends to zero, now from the primal point of view.596

Theorem 4.7 (Behavior of regularized primal ISO problems). Given the marginal price pjmg597

from Proposition 2.2, consider the index-sets598

J− =
{
j : pj < pjmg

}
and J+ =

{
j : pj > pjmg

}
.599

Let {(l(β), w(β), s(β))} be any sequence parameterized by β > 0, where (l(β), w(β)) solves (4.2)β and600

s(β) =
l(β)+w(β)−g

β . Under the assumptions in Proposition 4.6, the following holds.601

(i) The sequence {(l(β), w(β), s(β))} is bounded.602

(ii) Any accumulation point lacc of {l(β)} solves the primal ISO problem (2.5).603

(iii) There exists M > 0 such that for β > 0 sufficiently small,604

j ∈ J− =⇒ lj(β) = gj + βsj(β) , wj(β) = 0 , |lj(β)− gj | ≤ Mβ
j ∈ J+ =⇒ lj(β) = 0 , wj(β) = gj + βsj(β) , |wj(β)− gj | ≤ Mβ .

605

(iv) If, in addition h is a norm satisfying the conditions in Lemma 4.5(iii), then the statement606

above can be refined by taking M = 1, which implies that wj(β) = gj for j ∈ J+.607

Furthermore, the sequences {lj(β)} and {wj(β)} converge for any j ∈ J− ∪ J+.608

Proof. Consider a sequence of dual solutions
{
(π(β), λπ(β))

}
, shown to be convergent in Propo-609

sition 4.6. Then pjmg = limβ→0 π(β), with s(β) ∈ ∂h(λπ(β)). Since the sequence {λπ(β)} is bounded610

and h is convex, we have that the family of subdifferentials {∂h(λπ(β))} is uniformly bounded,611

and so, the sequence {s(β)} is bounded: there exists M > 0 such that612

∥s(β)∥ ≤ M.613
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On the other hand, it is clear that l(β) is feasible for problem (2.5) and since the feasible set of this614

problem is bounded, we have that the sequence {l(β)} is bounded. Then, from w(β) = g−l(β)+βs(β),615

we have that the sequence {w(β)} is also bounded. Item (i) is established.616

In order to prove item (ii), note that h∗(s(β)) = s(β)⊤λπ(β)−h(λπ(β)) implies that the sequence617

{h∗(s(β))} is bounded, and hence, βh∗(s(β)) → 0, as β → 0. Now, considering the strong duality618

condition for (4.2)β – (3.1)β619

π(β)d− λπ
(β)

⊤g − βh(λπ
(β)) = p⊤l(β) + βh∗(s(β))620

and passing to the limit as β → 0, taking a convergent subsequence if necessary, we have that621

pjmgd− λ⊤
pjmg

g = p⊤lacc.622

This shows that the strong duality condition also holds for (2.5) – (2.7), and since lacc is feasible623

for (2.5), item (ii) follows.624

Finally, note that, letting p− = maxj∈J− pj and p+ = minj∈J+ pj , we have that625

p− < pjmg < p+ .626

Therefore, for β > 0 small enough,627

p− < π(β) < p+ .628

The final statement is straightforward from Proposition 4.6, Lemma 4.5, and the fact that 0 ≤629

sj(β) ≤ hD(sj(β) = 1, for j ∈ J−.630

Most of the items in the theorem above are of asymptotic nature. A remarkable exception631

is item (iii), that characterizes the optimal dispatch for all small β. The characterization does632

not involve the marginal agents because, similarly to the situation pointed out in Remark 2.3 for633

the original primal problem (β = 0), there is an ambiguity created by the ISO’s indifference that634

arises when more than one agent bids the same marginal price.635

We conclude our theoretical analysis for the energy EPEC by gathering the results specific636

for the ℓ∞-norm, which is polyhedral and satisfies not only Assumptions 4.1 and 4.4, but also the637

condition given in Lemma 4.5(iii). The results stated below are useful in the numerical section,638

to assess when the output computed by PATH is a true equilibrium.639

Corollary 4.8 (Summary of theory for the energy EPEC with ℓ∞-regularization). With640

the notation and assumptions in Proposition 2.2, Theorems 4.3 and 4.7, consider the regularized641

dual ISO problem obtained with h = ∥ · ∥∞. The sequence {(π(β), λπ(β))} of solutions to the dual642

version (3.1)β satisfies the following:643

lim
β→0

π(β) = pjmg

lim
β→0

∥λπ
(β)∥∞ = max(pjmg − pj1 , 0)

 provide minimal-norm solutions to (2.7).644

In addition, for any β > 0 sufficiently small, the pair (l(β), w(β)) solving the primal version (4.3)645

is such that646

lj(β) =

{
gj if pj > pmin, j ∈ J−

0 if j ∈ J+,
647

where pmin = minj pj. Finally, the marginal dispatch completes the demand, following an arbi-648

trary distribution among the marginal agents, if there is more than one bidding pjmg , as noted in649

Remark 2.3. □650

Proof. The statements follow from our previous results. The only exception concerns the value651

of lj(β) for indices j such that pj > pmin and j ∈ J−. For such j-indices, Theorem 4.7(iii) states652

that lj(β) = gj + βsj . Then, from (4.3), optimality arguments imply that sj = 0 for any j such653

that pj > pmin.654
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Remark 4.9. In the proofs above, it is easy to see that
∑

sj = 1. Then, in case that there655

exists only one index j such that pj > pmin, this would force sj = 1, which in turn implies that656

lj(β) = gj + β. When the index is not unique, there is no unique solution to (4.3), yet we can657

always choose one j that assigns a dispatch gj + β to one of the least expensive units. □658

5. Putting the method in perspective. Our formulation of problem (3.11), allows the659

ISO to include network constraints when defining the dispatch. Such would be the case in the US,660

where day-ahead markets rely on the ISO solving very detailed security-constrained models. It661

is explained in [13] that such feature originated in a pre-existent integrated structure of Regional662

Transmission Operators. Europe focused instead on a single market implementation supported by663

power exchanges (for such a market, (3.11) may not include transmission constraints). Clearly,664

the level of detail introduced in the lower-level problem depends on the market configuration. The665

abstract setting (3.11) encompasses various market formats, including future ones, with market666

bids and clearing systems adapted to new agents dealing with storage and renewable intermittent667

sources of energy. We refer to [13] for a thorough discussion on the topic.668

We extend our approach to a more complex configuration, with agents placing bids in several669

markets, handled by separate ISOs, but connected by some transmission line. Many numerical tests670

to assess the interest of the proposal in the single and multi-market setting are given afterwards.671

5.1. Bidding to more than one market. Suppose that, instead of (3.11), in the lower level672

there are different ISO optimization problems and a constraint coupling all the markets through673

a transmission line. The resulting EPEC, which has in the lower level a variational inequality and674

no longer one optimization problem, can still be tackled following our approach developed above.675

Suppose there are K markets, handled by separate ISOs. Then, for k ∈ K, ISOk determines676

the market price µk, to be paid for the k-th market demand dk, as well as the dispatch, yk. If the677

transmission line has capacity κ, then678

K∑
k=1

Tkyk ≤ κ (η)679

is the constraint coupling the markets. The value of the dual variable η represents the unit fee to680

be paid for transporting energy through the transmission line.681

In this setting, instead of (3.4), we have the following multi-market EPEC682

(5.1)



min
xi

f i(xi, y, µ, η)

s.t. Gi(xi) ≤ 0

for k = 1, . . . ,K yk solves


min
yk

ck(x)
⊤yk

s.t. yk ≥ 0
Bkyk = bk(x) (µk)

and

K∑
k=1

Tkyk ≤ κ (η) .

683

The corresponding family of regularized EPECs is obtained by replacing the K ISO problems by684

their regularized formulations, as in (3.6).685

The upper-level variables and functions in (5.1) are defined to represent the multi-market686

setting. As an illustration, consider the situation depicted by the diagram in Figure 2. There687

are two markets, with respective demands d1 and d2, so K = 2. The N generating companies688

are distributed into two sets, I1 and I2, gathering agents in each market. Bids can be placed in689

both markets, noting that if, for instance, agent i ∈ I1 bids to market 2, the exported energy goes690

through the transmission line, and incurs an additional expense, depending on η. The generation691

gi is distributed into two parts, a fraction θi ∈ [0, 1] of gi will be sold locally, in the market where692

the agent is located. The remaining generation (1 − θi)gi is offered to the other market, to be693

exported through the transmission line, of capacity κ.694

Agent i’s decision variables are xi := (gi, θi, pi, qi), given that quantities and prices are:695
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i ∈ I2

gi

i ∈ I1

gi

ISO2

d2

ISO1

d1

θigi

κ

(1− θi)gi(1− θi)gi

θigi

Fig. 2: Two markets with one transmission line. For θi ∈ [0, 1], agent i in market
1 bids locally the generation θigi at price pi, and offers to export to market 2
the fraction (1 − θi)gi at price qi. Exchanges between markets are limited by the
capacity κ of the transmission line.

– in its local market, bids θigi at price pi696

– to the other market, offers to export (1− θi)gi at price qi through the transmission line.697

Accordingly, when for example i ∈ I1, the objective function in the upper level is698

f i(xi, y, µ) = (π1 − φ1)l1 + (π2 − φ1 − η)l2 .699

With respect to the formulation with only one market, the only difference is that in the lower700

level now there is a variational inequality, representing the separate operation of the two markets701

and including the capacity constraint of the transmission line,702 ∑
k∈{1,2}

Tkyk ≤ κ .703

In the multi-market problem, the lower level has decision variables
(
(yk, µk)

2
k=1, η

)
, where the704

multiplier η of the capacity constraint defines the charge that agents have to pay for each unit of705

energy transmitted through the line.706

5.2. Numerical assessment. In the single-market EPEC model (3.4), the leaders disutili-707

ties approximate the price function P (g, p, l) with the demand multiplier. In the lower level, the708

regularized ISO solves problem (4.3), corresponding to taking the ℓ∞-norm in the dual.709

There are a number of ways to tackle the non-convexity that appears in EPECs. With710

our proposal, the EPEC can be handled computationally, for example by the PATH solver [6].711

A direct solution of (3.4) leads to a computationally challenging problem with severely non-712

convex/disjunctive complementarity constraints, [25], [18, Chapter 7.3]. It is important to keep in713

mind that, while being a stationary point for the complementarity system residual, the solution714

provided by PATH may not be an equilibrium (having a bilinear upper objective and bilevel715

formulation makes the resulting mixed complementarity problem non-monotone). One of our716

conclusions is that the output is very sensitive to the initial input. That said, experimentation and717

the resulting appropriate tuning of the regularization parameter, implementing the mechanism of718

warm starts for decreasing values of β, leads to useful, optimal/equilibrium solutions. The results719

below are meant to illustrate these conclusions for the given problem.720
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5.2.1. Benchmark information and values at equilibrium. The family of regularized721

EPECs considers decreasing values of the parameter,722

(5.2) β = (0.2− 0.02j)d , for j = 0, 1, . . . , 10 , and a given demand d ,723

which amounts to the ISO having access to a “battery” that covers 20%, 18%,. . . , 2%, and 0% of724

the market’s demand. The results provided by PATH for β = 0 (after the sequence of regularized725

EPECs and warm starts with β > 0) are then compared to the output obtained by PATH for the726

original EPEC (3.4), without regularization. Both approaches (without and with regularization)727

use the same starting point, randomly taken in the generators’ bid feasible sets.728

Thanks to the results shown for the stylized model in Proposition 2.2 and Corollary 4.8, we729

can make a thorough assessment of the output and gauge its quality. In particular we show730

empirically, over thousands of starting points in several experiments, that the output of PATH731

for the regularized EPECs succeeds in finding genuine equilibria much more often than the direct732

approach.733

Given as input the number of players N , the marginal cost as well as the maximum bidding734

price and generation increase with the index of the player:735

for j = 1, . . . , N we set , φj =
j

2
, pmax

j = 2φj = j , gmax
j = j .736

The index of the marginal agent jmg ≤ N is also an input, and we consider the following two values737

for the demand:738

D :=

jmg−1∑
j=1

gmax
j + 0.5gmax

jmg and D̃ :=

jmg−1∑
j=1

gmax
j + 1.0gmax

jmg .739

To understand the consequences of this setting, recall from Proposition 2.2 that generators bidding740

a price cheaper than the marginal one are dispatched by the ISO at their maximal capacity. The741

value chosen for the demand D absorbs all the generation capacity of inframarginal agents, but742

not that of the marginal agent. With D̃, by contrast, the marginal agent is dispatched up to its743

bid. Since by Proposition 2.2, in the latter case the price is not unique, we expect the runs with744

demand D̃ to be more challenging.745

At least for sufficiently small β, by Corollary 4.8 and Proposition 2.2. the ISO values at746

equilibrium are747

(5.3)
dispatch ljk (β) =


gmax
jk

for k = 1, . . . , mg− 1

0.5(or 1)gmax
jmg

for k = mg (if the demand is D or D̃)

0 for k = mg+ 1, . . . , N , and
price π(β) ∈ [jmg/2, jmg+1/2] , the interval of bidding prices of agent jmg.

748

The result is also valid for the original EPEC (3.4). Accordingly, both without and with regular-749

ization, runs providing a nonzero dispatch for an agent with index larger than the marginal one,750

or with a price too large cannot correspond to an equilibrium.751

We coded the model in GAMS and PATH to directly solve the EPEC (3.4). Thanks to the752

Extended Mathematical Programming (EMP) extension available in GAMS, instead of manually753

writing down the complementarity system, replicating variables to make the system square, it754

suffices to write the model at a high level, indicating which variables are owned by the agents and755

which ones by the ISO.756

The EMP framework vastly facilitates a direct formulation of multiple optimization problems757

with equilibrium constraints such as (3.4). For full details on the different features of the extension,758

we refer to [19]. Here we just give an overview for (3.4). We consider generating companies act as759

optimization agents in the upper level, with objective function OBJ(i) representing f i, and variable760

X(pn, i) representing xi, where pn refers to name of the component (price pi or generation gi in761

the vector xi). Similarly, in the lower level, the so-called “equilibrium agent” solves a variational762
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inequality derived from the optimality conditions of (3.11), defined in GAMS as defVI, on variables763

ZZ(dualv, i), representing the dispatch DIS(i) of each agent (li), their marginal rent (λi) and the764

market price (π). After defining the corresponding functions and variables in GAMS, the EMP765

code section is simply766

equilibrium767

implicit DISPATCH(i),PRICE,defDISPATCH(i),defPRICE768

min OBJ(i) s.t. X(pn,i),defOBJ(i)769

vi defVI(dualv,i),ZZ(dualv,i)770

where the implicit line contains lower-level variables that appear in the upper level problem.771

All the experiments were performed on a notebook running under Ubuntu 18.04.4 LTS, with772

i7 CPU 1.90GHzx8 cores and 31.3GiB of memory. The parameter settings for PATH is the default773

provided by GAMS.774

5.2.2. Single-market results. We start considering a setting where N = 3 agents bid to775

one market and set the marginal agent to be jmg = 2. Even for this very simple market instance, to776

obtain a genuine equilibrium when solving a complementarity system with PATH is very delicate.777

The proposed regularization scheme is beneficial, even though it also fails sometimes.778

As the output is very dependent on the initial point, the experiment repeats the runs with779

2500 different starting bids
(
p0j , g

0
j

)
, randomly generated in [φj , p

max
j ]× [0, gmax

j ]. Each run takes a780

starting point and first calls PATH to solve the original EPEC (3.4). Then, from the same starting781

point, PATH is called eleven times, for decreasing values of β, as in (5.2), with d ∈ {D, D̃}.782

Barring the first run (β = 0.2d), the regularization procedure warm-starts each run using as783

initial point the output of the run with the previous value of β. Altogether, without and with784

regularization, obtaining the output for the 2500 starting points involves running PATH 30000785

times (30000 = 2500× 12 values of β). In general, PATH runs were very fast, taking less than 15786

minutes to complete the full experiment.787

As already mentioned, not all solutions obtained by PATH are an equilibrium. As shown788

in (5.3), the largest value acceptable for the equilibrium price is jmg+1/2. Accordingly, a run is789

declared a failure if an agent j with j > mg is dispatched, or if the computed price is larger790

than 1.05jmg+1/2. A run can also be declared a failure by PATH itself, if a local solution was791

not found. Over 5000 runs, the decisions over the non-dispatched agents was always correct792

with both approaches. By contrast, the original (3.4) miscalculated the equilibrium price more793

than half of the runs, while with regularization the output was incorrect about 25% of the runs.794

Failures occurred mostly with the demand set to D̃ (80% and 25% of the runs without and with795

regularization, respectively).796

Figure 3 shows the dispatch and generation bids computed in mean for each value of β,797

including the output without regularization. The graph confirms (5.3): the ISO dispatches agent798

1 at maximum capacity, and completes the demand with generation from agent 2.799

In Figure 3 notice that, as β decreases, the regularized dispatch of agent 2 progressively800

increases to the optimal value (l∗2 = d− 1). The “battery” provided by the regularization scheme801

accounts for the difference. The impact of the regularization in the decision making process is802

perceptible in Figure 4, with the mean composition of the dispatch, for each value of β.803

Other than failing less often, there is not a noticeable difference in the dispatch computed804

with and without regularization. The beneficial effect of the proposed approach is perceptible805

on the dual variables, where it acts as a stabilizing mechanism. A graphical illustration of this806

phenomenon is given by Figure 5, with the values of the prices output by PATH with both807

approaches. The points correspond to 10000 runs, repeating the experiment 4 times, considering808

the maximum bidding price of the marginal agent is 1.25 or 1.5, and varying the demand in {D, D̃}.809

Recall from (5.3) that the marginal agent, jmg = 2, could bid any price between 1 and its maximum810

price. The green points in the plots indicate that PATH yielded prices in the allowed range. Such811

was the case most of the times with the regularization, but not with the direct solution approach.812

813

To illustrate the role of the marginal agent in the price determination, we consider the setting814

in Figure 5 having pmax
2 = 1.25 and demand D = 2. Since agent 1 is dispatched at value 1, agent 2815
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Fig. 3: Mean dispatch per agent, computed by PATH for different values of β when d = D̃ = 3.
Shaded background areas illustrate the generation bids of the agents and the left-most column
corresponds to the runs without regularization. The behavior with d = D = 2 was similar.

Fig. 4: Mean dispatch composition when d = D̃ = 3. Agent 1 in dark blue is dispatched to the
maximum and agent 2 in light blue completes the demand (the “battery” is displayed in red). The
left-most column corresponds to the runs without regularization, followed for increasing values of
β (the behavior with d = D = 2 was similar).

covers the residual demand, equal to 1 and the equilibrium price should be in the interval [1, 1.25].816

We repeated 2500 runs, varying the maximum capacity of the marginal agent817

gmax
2 = 2− 0.1j for j ∈ {0, 1, . . . , 10} .818

The statistic for the equilibrium price is reported in Figure 6. There is a sharp increase in the819

price computed without regularization when the capacity coincides with the residual demand.820

We made a final set of experiments for one market, varying the number of agents between821

3 and 30, selecting randomly the marginal agent, and with the two demand values, D and D̃.822

Table 1 informs the corresponding failures, noting that each market configuration was run with823

both approaches using 2500 starting points.824

The conclusion is similar to the case with N = 3 agents. More precisely, PATH appears to825

be very sensitive to the starting point, and the regularization increases the number of runs that826

can provide an equilibrium (because at the very least the computed price is within the bidding827

interval of the marginal agent, see (5.3)).828
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Fig. 5: Prices found with both approaches (only runs with π∗ ≤ 3 are displayed, for better
visibility). Each graph reports the results of four experiments, running for 2500 different starting
points a problem with (pmax

2 , d) ∈ {(1.25, D̃), (1.50, D̃), (1.25, D), (1.50, D)}. Points in red cannot
correspond to an equilibrium. We notice much more green points on the right graph, indicating
the benefits of the regularization approach.

Fig. 6: Prices found with both approaches, as the marginal agent maximum generation drops down
to the value of the residual demand. Without regularization, equilibrium prices are always larger
than without regularization. Notice the significant increase when gmax

2 = 1: without regularization,
the computed price is on average larger than 4, and can reach values equal to 8, while with
regularization the equilibrium price stays at its correct value, 1.25.

5.2.3. Two markets. In order to assess the multi-market EPEC (5.1) we consider the same829

three agents, but now distributed in two markets, as follows830

in Figure 2,
I1 = {1}
I2 = {2, 3}, so agent 1 is in market 1, while agents 2 and 3 are in market 2 .831

Both markets face a demand dk = 2. In market 1, as agent 1 generating capacity is 1, agents 2832

and 3 must export to market 1 the missing energy. Also, since the total demand is 4 and agents833

1 and 2 can generate 3 in total, agent 3 is always dispatched. We expect the equilibrium price834

not to exceed the pmax
3 = 3. The transmission line has a capacity varying in κ = {1.5, 3, 6}. In835

particular, κ = 6 is sufficiently large to render free the energy transmission between markets.836

We repeated the same procedure, comparing for 2500 starting points the output of a direct837

solution of (5.1) with the regularization approach, solving the regularized EPEC for decreasing838

values of β. The total number of PATH solves was 90000 (= 3× 2500× 12), out of which PATH839
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Table 1: Type of output obtained with PATH when N ∈ [3, 30] (over 40000 runs)

PATH fails Too small price Too large price

original regularized original regularized original regularized

224 175 3 2 15372 10202

failed in 7780 runs, most of them when solving directly (5.1), without regularization (6672 times).840

The regularization technique proves again beneficial, as illustrated by Figures 7 and 8, with the841

prices π and η computed in the experiment.842

Fig. 7: Prices with both approaches (top and bottom) for markets 1 and 2 (left and right). Each
graph reports the results of three experiments, running for 2500 different starting points a problem
with κ ∈ {1.5, 3, 6}. Points in red cannot correspond to an equilibrium. The different length
between the top and bottom graphs measures the larger number of failures in the top, without
regularization, most of them occur when the line is congested (κ = 1.5). With regularization, there
are much more green points, confirming once more the benefits of the regularization approach.

Fig. 8: Statistics for the transmission charge η, when the capacity line is κ ∈ {1.5, 3, 6}. Without
regularization, the fee is larger and exhibits more variability (the length of the vertical black line
in each bar), particularly when κ is small. As expected, for the larger value of κ, the transmission
constraint is inactive and the value of η is zero with both approaches.

Concluding Remarks. We presented theoretical analysis pointing out some downsides of843

multi-leader single follower models, including potential overpricing. In situations in which the844

multiplier is not unique, the proposed regularization drives the computed multipliers to a clearing845

price with minimal norm.846

An interesting topic of future research, raised by a reviewer, refers to a market with agents847

also bidding on the demand. It is not clear to which extent demand elasticity impacts on the848
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leaders’ decisions and price formation.849

The regularized problem, which remains a linear programming problem if a polyhedral norm850

is employed, has interesting economic interpretations derived from analyzing both its dual and851

primal versions. Namely, the regularization process can be seen as endowing the ISO with a small852

reserve that allows to control the marginal rent of the dispatched agents. The reserve can be853

thought of as being available out of the market, or simply being incorporated in the corrections854

that modify the generation when operating the system in real time.855

Our theoretical analysis is complemented with a thorough numerical assessment. The experi-856

ments, designed to shed a light on the numerical difficulty inherent to solving EPECs, show that857

the regularization scheme behaves as a stabilizing device that helps guiding the process towards858

an output that is usually an equilibrium, even if the mixed complementarity formulation resulting859

from EPEC is not monotone.860
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