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Abstract Electricity and natural gas transmission and distribution networks are
subject to regulation in price, service quality, emission limits. The interaction of
competing agents in an energy market subject to various regulatory interventions
is usually modeled through equilibrium problems that ensure profit maximization
for all the agents. These type of models can be written in different manners, for ex-
ample by means of mixed complementarity problems, variational inequalities, and
game-theoretical formulations. More generally, we consider energy markets both in
deterministic and stochastic settings and explore theoretical relations between the
various formulations found in the literature and in practice. Our analysis shows that
the profit-maximization complementarity model is equivalent to a game with agents
minimizing costs if the setting is deterministic or risk neutral. On the other hand,
when the agents exhibit risk aversion which is natural in this type of markets, the
equivalence no longer holds. This gives rise to an interesting economical interpre-
tation. As a complement to our theoretical study, and for the European natural gas
market with deterministic data, we present some numerical results showing the im-
pact of market power on equilibrium prices.
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2 Luna, Sagastizábal and Solodov

1 Introduction

In spite of an undeniable worldwide trend of liberalization, industries dealing with
energy networks (and to a lesser extent with water supply) continue to be subject to
regulation in price, entry, and service quality of the network. Regarding electricity
and natural gas transmission and distribution, the specific mechanism chosen for
regulation impacts significantly competition and affects the network prices, invest-
ment and reliability.

In general, good performance of the regulatory framework results in lower op-
eration and transmission costs, better service quality, and investment to expand the
network and face future changes in demand and supply. Regulation plays an im-
portant role also with respect to environmental concerns, for example encouraging
carbon trading to reduce CO2 emissions.

In a market of energy that is subject to various regulatory interventions it is very
important to fully understand the interaction of competing agents. Due to the pres-
ence of relatively few companies generating power in a given region, electricity
markets are naturally set in an oligopolistic competition framework. A similar situ-
ation arises in the natural gas industry.

In a centralized environment the paradigm of cost minimization defines energy
prices based on marginal costs or shadow prices obtained by optimization. In a lib-
eralized setting, by contrast, prices are computed through equilibrium models aimed
at ensuring profit maximization for all the agents. These type of models can be for-
mulated in different ways; for example, by means of mixed complementarity prob-
lems, bi-level programming, mathematical programs with equilibrium constraints.
We mention [5], [17], [18], [2], [1], [26], [19], [8], [4], [34], without the claim of
being exhaustive.

In this work we explore the relations between mixed complementarity, varia-
tional inequality, and game-theoretical formulations of energy markets both in de-
terministic and stochastic settings. Our analysis shows that the profit-maximization
complementarity formulation is equivalent to a game with agents minimizing costs
if the setting is deterministic or risk neutral. On the other hand, when the agents in
the market exhibit risk aversion, which is natural in this type of markets, the equiv-
alence no longer holds. More precisely, the risk-averse game becomes equivalent to
a complementarity model where agents maximize the expected remuneration and
hedge risk only in the cost.

In the development that follows, we consider a stylized energy market that is
general enough to cover the generation capacity expansion model [9] as well as the
European natural gas market model in [14]. For the latter market and in a determin-
istic setting, we also present some numerical results showing the impact of market
power on equilibrium prices.

Some comments about our notation and terminology are in order. For x,y in any
given space, we denote by 〈x,y〉 the usual (Euclidean) inner product, and we write
x⊥ y to say that 〈x,y〉= 0. By ND(x) we denote the normal cone to the convex set
D at x, that is ND(x) = {w : 〈w,y− x〉 ≤ 0, for all y ∈ D} if x ∈ D and ND(x) = /0
otherwise.
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The variational inequality (VI) [11] associated to a mapping F and a convex set
D consists in determining a point x̄ ∈ D such that the following inequality holds,
for every y ∈ D: 〈F(x̄),y− x̄〉 ≥ 0. In terms of the normal cone, this means that
0 ∈ F(x̄)+ND(x̄). The latter inclusion is called a generalized equation (GE). The
Mixed complementarity problem (MCP) is a VI (equivalently, GE) with the set D
defined by box constraints (where some bounds can be infinite).

2 A Simple Network of Agents

Our initial market is composed of producers, traders, and one end-consumption sec-
tor like in Figure 1. Producers generate some kind of good (electricity, natural gas)
that is sold to traders in an amount Si

Pqi
p for the i-th producer. The j-th trader buys

from the producers an amount B j
T q j

T and sells to consumers the product, after trans-
porting and possibly modifying it, in an amount S j

T q j
T .

Trader
B j

T q j
TS j

T q j
T Producer

Si
Pqi

PConsumer

Fig. 1 A Simple Market.

We shall see in Section 5.1 that the model can easily incorporate pipeline and
storage operators, marketers, and other outsourcing agents like in [14]. For simplic-
ity, and without loss of generality, in our presentation we analyze a network with
only producers and traders that captures the main properties of the market model.
Differently from [14], we consider a setup suitable for [9], in which decision vari-
ables are separated in two stages. For producers, for instance, some investment to
increase capacity has to be decided at stage 0, in order to decide how much pro-
duce at stage 1. Another example is, in the presence of uncertainty, when the second
stage variables are a recourse to correct first stage decisions, taken before knowing
the realization of uncertainty; [6].

In what follows, at equilibrium, all variables are denoted with a bar; for instance,
π̄ stands for an equilibrium price.
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2.1 Producers, Traders, and Market Clearing

There are NP producers, each one with decision variable (zi
P,q

i
P). As mentioned,

the variable zi
P could refer to decisions concerning capacity or technological invest-

ments with a smooth convex cost Ii
P(z

i
P). The variable qi

P is related to operational ac-
tivities involving a smooth convex cost cPi(q

i
P). All the producer decision variables

are taken in some set X i
P which represents technological and resource constraints.

After transformation of the raw materials, expressed by a matrix Si
P of suitable di-

mensions, the producer has the quantity Si
Pqi

P for sale. In our model, we assume that
producers are of the price taker type: there exists a market price that they can not
influence directly. So, for a given price πP (exogenous to the players) each producer
tries to maximize profit by solving the following problem:{

max
〈
Si

Pqi
P,πP

〉
− ci

P(q
i
P)− Ii

P(z
i
P)

s.t. (zi
P,q

i
P) ∈ X i

P .
(1)

The trader’s model is similar; for j = 1, . . . ,NT , the j-th trader has decision vari-
able (z j

P,q
j
T ). Given a transformation matrix B j

T of suitable size, the trader buys
B j

T q j
T from the producers at price πP. After modifying and/or transporting the prod-

uct via a matrix S j
T of suitable dimensions, the quantity S j

T q j
T is sold to consumers

at price πT . The trader may have some additional (smooth convex) operational ex-
penses c j

T (q
j
T ) along the process, and maximizes revenue by solving the following

problem: {
max

〈
S j

T q j
T ,πT

〉
−
〈

B j
T q j

T ,πP

〉
− c j

T (q
j
T )− I j

T (z
j
T )

s.t. (z j
T ,q

j
T ) ∈ X j

T .
(2)

We shall see below that, as in [14], traders have a special role in the market, and can
exert market power by withholding supply from end costumers.

When the market is at equilibrium, there is no excess of generation and the pro-
ducers’ supply meets the traders’ demand:

NP

∑
i=1

Si
Pq̄i

P−
NT

∑
j=1

B j
T q̄ j

T = 0 (mult. π̄P). (3)

The rightmost notation means that the producers are remunerated at a price that
clears the market: π̄P is the multiplier corresponding to (3) at an equilibrium.

An environmentally responsible regulator can also impose a CO2 clearing con-
dition, similar to (3), but involving different emission factors, depending on the
technology employed to generate energy, see for instance [22], [31]. The essential
feature of such constraints is that they couple the actions of different agents, and in
this sense (3) suffices for our development.
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2.2 Consumer Modeling

The representation of the end-consumption sector can be done in different ways,
depending on the manner price-taking producers operate in an imperfectly competi-
tive market. Market imperfections can originate in regulatory measures such as price
caps and emission limits, and/or in traders exerting market power. We now review
some alternatives that fit our general modeling.

2.2.1 Consumer via Inverse-Demand Function

When a price-sensitive demand curve is available, the consumers needs are repre-
sented implicitly by their inverse-demand function. Following [14], we model the
demand-curve by an affine function P ·+d0, depending on given intercept d0 and
matrix P. The dimension of d0 is the same as of the traders’ selling price (πT in (2));
the matrix P is of order |πT |× |S j

T q j
T |. At equilibrium the constraint

NT

∑
j=1

PS j
T q̄ j

T +d0− π̄T = 0 (4)

must be satisfied.
The inverse-demand function is useful to model the influence that the traders may

exert on the market, a typical phenomenon in oligopolies. Instead of selling all the
goods at price πT (exogenous, hence not controllable), the trader sells a portion δ j

at price ∑
NT
k=1 PSk

T qk
T +d0 (that depends on the amount of product the trader offers to

the market). The factor δ j ∈ [0,1] determines the strength of the influence the trader
can have on the market. Accordingly, now the trader’s problem (2) is

max
〈

S j
T q j

T ,πT

〉
−
〈

B j
T q j

T ,πP

〉
− c j

T (q
j
T )− I j

T (z
j
T )

+δ j

〈
S j

T q j
T ,

NT

∑
k=1

PSk
T qk

T +d0−πT

〉
s.t. (z j

T ,q
j
T ) ∈ X j

T .

(2)δ j

For future use, note that the initial problem (2) amounts to setting δ j = 0 for all the
traders. Like for (2), both prices πP and πT are exogenous for the traders.

2.2.2 Consumer via Explicit Demand Constraint

Sometimes instead of inverse-demand function there is a load duration curve seg-
mented into blocks defining a vector D, which represents the consumers’ demand.
Accordingly, letting q0 denote a nonnegative variable, at the equilibrium the con-
straint
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NT

∑
j=1

S j
T q̄ j

T + q̄0−D = 0 (mult. π̄T ) (5)

should be satisfied. To prevent traders from exerting market power, and following
[9], the deficit variable is related in a dual manner to a price cap imposed by the
regulating agency:

π̄T ≤ PC (mult. q̄0)

with PC being the maximal allowed price. Note that, in view of their definitions, the
variables q0 and πT have the same dimension.

In what follows, we refer to (1),(2)δ j ,(3),(4) as implicit model; while (1),(2),(3),(5)
and the price-cap condition define the explicit model.

3 Equilibrium: Mixed Complementarity Formulation

For both consumers models, the equilibrium problem consists in computing prices
π̄ and decision variables (z̄, q̄) such that:

• for the i-th producer, problem (1) written with price πP := π̄P is solved by
(z̄i

P, q̄
i
P); and

• for the j-th trader, problem (2)δ j written with prices (πP,πT ) := (π̄P, π̄T ) is
solved by (z̄i

T , q̄
i
T ), keeping in mind that if the explicit model is used then δ j = 0

for all the traders.
• The market is cleared and (3) holds.
• Regarding the price at which the traders sell the final product,

– if the implicit model is used, the relation (4) holds;
– if the explicit model is used, both (5) and the price cap conditions (cf. (8)

below) hold.

For the sake of clarity we derive first the mixed complementarity problem (MCP)
when the consumers model is explicit, i.e., the trader’s problem is (2) and both (5)
and the price cap condition hold.

3.1 MCP in the Presence of Explicit Demand Constraint

We start by writing down the Karush-Kuhn-Tucker (KKT) optimality conditions for
the profit maximization problems of the producers and traders. Typically, in (1) and
(2) the feasible sets X i

P and X j
T are polyhedra, say, of the form

Zi
Pzi

P +Qi
Pqi

P ≥ bi
P and Z j

T z j
T +Q j

T q j
T ≥ b j

T ,
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respectively. Let µ i
P and µ

j
T denote the corresponding Lagrange multipliers. The

KKT conditions for the producers’ problems (1), dropping the super-indices i to
alleviate notation, are

0 = I′P(zP)−Z>P µP
0 = c′P(qP)−Q>PµP−S>PπP
0 ≤ ZPzP +QPqP−bP ⊥ µP ≥ 0 .

(6)

Similarly for the traders, dropping the super-indices j, we write

0 = I′T (zT )−Z>T µT
0 = c′T (qT )−Q>T µT +B>T πP−S>T πT
0 ≤ ZT zT +QT qT −bT ⊥ µT ≥ 0 .

(7)

The system is completed with (3), (5), and the price cap, written in the form:

0≤ PC−πT ⊥ q0 ≥ 0 . (8)

To write the associated GE in a compact form, we use the primal and dual vari-
ables defined by

p :=
(
(zi

P)
NP
i=1,(q

i
P)

NP
i=1 ,(z

j
T )

NT
j=1,(q

j
T )

NT
i=1 ,q

0
)

and d :=
(
(µ i

P)
NP
i=1 ,(µ

j
T )

NT
j=1 ,πP,πT

)
over the sets P := R∑

NP
i=1(|z

i
P|+|q

i
P|)+∑

NT
j=1(|z

j
T |+|q

j
T |)×Rm0

≥0 (9)

and D := R
∑

NP
i=1 |µ

i
P|+∑

NT
j=1 |µ

j
T |

≥0 ×R|πP|+|πT | (10)

where |q0| = |πT |, by construction. For convenience, we introduce the operations
diag(·), col(·), and row(·) for matrices Mk ,k = 1, . . . ,K:

diag(Mk) :=

M1

. . .
MK

 , col(Mk) :=

M1

...
MK

 , row(Mk) :=
[
M1 . . . MK] .

With this notation, the matrix below has |D| rows and |P| columns:

B :=


diag(Zi

P) diag(Q
i
P) 0 0 0

0 0 diag(Z j
T ) diag(Q

j
T ) 0

0 row(Si
P) 0 −row(B j

T ) 0
0 0 0 row(S j

T ) I

 , (11)

where I is an identity matrix of order |πT | = |q0|. Finally, we define the following
operator acting on primal variables only, and the following dual vector:



8 Luna, Sagastizábal and Solodov

F(p) :=


(Ii ′

P (zi
P))

NP
i=1

(ci ′
P (qi

P))
NP
i=1

(I j ′
T (z j

T ))
NT
j=1

(c j ′
T (q j

T ))
NT
j=1

PC

 and b :=


(bi

P)
NP
i=1

(b j
T )

NT
j=1

0
D

 . (12)

The GE that results from putting together the relations in (6), (7), (3), (5), and (8) is

0 ∈
[

0 −B>

B 0

](
p
d

)
+

(
F(p)
−b

)
+NP×D(p,d). (13)

3.2 MCP in the Presence of Inverse-Demand Function

As the traders’ conditions are more involved when there is market power, we shall
keep the super-indices j (as otherwise there might be some confusion); the optimal-
ity system for the traders then reads as follows:

0 = I j ′
T (z j

T )−Z j
T
>µ

j
T

0 = c j ′
T (q j

T )−Q j
T
>µ

j
T +B j

T
>πP− (1−δ j)S j

T
>πT

−δ jS j
T
>(

NT

∑
k=1

PSk
T qk

T +d0)−δ
jS j

T
>P>S j

T q j
T

0 ≤ Z j
T z j

T +Q j
T q j

T −b j
T ⊥ µ

j
T ≥ 0 .

(14)

As before, the KKT conditions (6) and (14), together with the market clearing con-
dition (3) and the implicit representation of consumers via (4), give a GE on both
primal and dual variables. There are a few differences with (13), though:

• There is no deficit q0, so the primal variables and primal feasible set are now

p̃ :=
(
(zi

P)
NP
i=1,(q

i
P)

NP
i=1 ,(z

j
T )

NT
j=1,(q

j
T )

NT
j=1

)
and P̃ := R∑

NP
i=1(|z

i
P|+|q

i
P|)+∑

NT
j=1(|z

j
T |+|q

j
T |) .

Accordingly, instead of the matrix B from (11), we consider the sub-matrix B̃
obtained by eliminating from B the last row and column. Dual variables remain
unchanged, so the GE uses B̃ and an additional row to represent (4).

• The market power terms in the third line in (14) enter the primal operator:

F̃(p̃) :=


Ii ′
P (zi

P)
ci ′
P (qi

P)

I j ′
T (z j

T )

c j ′
T (q j

T )

−


0
0
0

δ jS j
T
>(

NT

∑
k=1

PSk
T qk

T +d0)+δ
jS j

T
>P>S j

T q j
T

 .
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To alleviate the writing we omitted the super-indices ranges: i = 1, . . . ,NP and
j = 1, . . . ,NT , which are clear from the context; see (12).

• Replacing (5) by (4) modifies the dual vector as follows: b̃ :=
(

bi
P ,b

j
T ,0 ,−d0

)>
,

where, once again, i and j run in their respective ranges, as in (12).

Finally, the GE with the implicit model is

0 ∈ Ã
(
p̃
d

)
+

(
F̃(p̃)
−b̃

)
+NP̃×D(p,d) , (15)

for a matrix Ã that, unlike the one in (13), is not skewed symmetric (and, moreover,
has a last line relating primal and dual elements):

Ã :=


0 −B̃>


0
0
0

−col((1−δ j)S j
T
>)


B̃ 0[

0 0 row(PS j
T ) 0

]
0 − I


.

We shall see in Section 4 that GEs of the form (13) can be reduced to VI in smaller
dimensions, which can in turn be interpreted in terms of a Nash game with shared
constraints. By contrast, the GE (15) cannot be reformulated the same way directly.
We next rewrite (15) in an equivalent form that does have the desired properties.

3.3 Inverse-Demand Function and an Extra Variable

Taking inspiration from the explicit model, we introduce a new primal variable p0,
gathering the portion of supply that the traders cannot influence by exerting market
power. Thus, we require the relation

NT

∑
j=1

(1−δ
j)S j

T q̄ j
T − p̄0 = 0 (16)

to be satisfied when the market is at an equilibrium point. In view of its definition,
this new variable has the same dimension as the deficit variable q0 from (5) in the
explicit model (and, hence, |p0|= |πT |).

The GE gathering (6), (14), (3), (4), and (16) now employs the primal objects

p̂ :=
(
p̃ , p0

)
and P̂ := R∑

NP
i=1(|z

i
P|+|q

i
P|)+∑

NT
j=1(|z

j
T |+|q

j
T |)+|p

0| , (17)

noting that the dual variables remain the same from the explicit model, given in (10).
The primal sets in the implicit and explicit models, from (17) and (9) respectively,
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only differ in their last component (q0 and p0, respectively). While in the explicit
model the deficit is nonnegative (as a multiplier of the price cap (8)), in the implicit
model the new primal variable is unconstrained. So the normal cone to q0 will be the
null vector and we can require satisfaction of the inverse-demand relation (4) in the
corresponding new component of the GE. This eliminates the primal-dual coupling
in the last line of matrix Ã in (15). Similarly for ensuring (16), recalling that the
πT -component of the dual set is the whole space.

The resulting GE is

0 ∈
[

0 −B̂>

B̂ 0

](
p̂
d

)
+

(
F̂(p̂)

−b̂

)
+N

P̂×D(p,d) , (18)

where we defined a matrix B̂ of order |P̂| and |D|:

B̂ :=

(
B̃ 0[

0 0 0 row((1−δ j)S j
T )
]
−Î

)
, (19)

using an identity Î of order |πT |= |p0|, and the primal operator and dual vector:

F̂(p̂) :=



Ii ′
P (zi

P)
ci ′
P (qi

P)

I j ′
T (z j

T )

c j ′
T (q j

T )−δ jS j
T
>(

NT

∑
k=1

PSk
T qk

T +d0)−δ
jS j

T
>P>S j

T q j
T

−
NT

∑
k=1

PSk
T qk

T −d0


and

b̂ :=


bi

P
b j

T
0
0

 .

(20)

Like for (12), in both vectors i = 1, . . . ,NP and j = 1, . . . ,NT .

4 Equivalent Mixed Complementarity Formulations

Both GEs (13) and (18) are defined using very simple normal cones, and have a
very specific primal-dual structure. The size of both GEs is the same: the respective
primal and dual sets only differ in their last primal component: q0 ≥ 0 in the explicit
model, and unconstrained p0 in the implicit one.

To establish the relation of the MCP models with a game-theoretical formulation,
we state a result from [27]; see also [15]. Our GEs are a particular case of the setting
covered by the reduction method in [27], as the primal sets P are cones in both
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models. Here, the relation with a game could actually be also shown directly, by
comparing the KKT conditions of the MCP model with those for a game. We prefer
to state the more general result, because it includes a nice characterization of dual
variables as solutions to a certain linear programming problem, defined a posteriori,
once the primal solution is available. As dual variables have economical meaning as
prices, this is an interesting feature; see Remark 4.

Theorem 1. The following statements are equivalent:

Primal-Dual GE: the primal-dual pair (p̄, d̄) satisfies (13).
Primal GE + Dual LP: the primal variable p̄ solves the generalized equation

0 ∈ F(p)+NP0(p) (21)

where P0 :=P∩S and S :=
{
p : b−Bp∈R∑

NP
i=1 |µ

i
P|+∑

NT
j=1 |µ

j
T |

≤0 ×{0∈R|πP|+|πT |}
}

.

As for the dual variable, d̄ solves the linear programming problemmin 〈Bp̄−b,d〉
s.t. B>d−F(p̄) ∈NP(p̄)

d ∈D .
(22)

Proof. The statement is just a rewriting of Propositions 1 and 2 in [27] in our nota-
tion. Specifically, the respective correspondence for primal elements is (p,d(p),P)=
(p,−F(p),P), for the dual ones (y,Y ) = (d,D), and for the matrix and vector
(A, f ) =−(B>,b). Our set S corresponds to Z in Proposition 2, using the fact that
in our setting the polar cone therein, Y 0 =D0, has a very simple expression. ut

Existence of solutions to the GE (21) can be guaranteed under mild assumptions,
such as continuity of F and convexity and compactness of P0, [11, Corollary 2.2.5].
These conditions are natural in our context: components of F consist of derivatives
of smooth convex functions and the feasible set P0 represents limited resources.
Furthermore, the existence of solutions of (21) implies the existence of solutions of
the (bounded) linear program (22), whose optimal value is zero.

The interest of Theorem 1 is twofold. First, the GE (21) is in primal variables
only, stated over a set that (for both of our models) is a simple polyhedron. It is
therefore a VI with linear constraints. We shall see that in some cases the multipli-
ers corresponding to the constraints provide the equilibrium prices. Once a primal
solution is at hand, the dual component of the MCP solution can be found by solving
an easy linear program. This feature is attractive to identify (undesirable) situations
in which equilibrium prices are not unique, even if the primal part of the equilib-
rium points is unique (the linear program solution will not be unique in this case;
see Remark 4 below). A second advantage of the equivalent formulation is that, in
addition to providing a mechanism for ensuring existence of solutions of the game,
the reformulation reveals the particular structure of the set P0, amenable to de-
composition. More precisely, without the coupling constraints (some components
in b−Bp, hence in S ), the feasible set is decomposable (like P from (9), (17)).
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This decomposable structure can be exploited by decomposition methods, like the
Dantzig-Wolfe algorithms developed in [20]; see also [13] and [3].

4.1 Game for the Explicit Model

For the market in Section 2, instead of viewing the agents as maximizing revenue
like in the complementarity model, we consider a Generalized Nash Equilibrium
Problem (GNEP) [10] with players minimizing costs. The coupling constraints in
the game are (3) and (5). In addition to the traders and producers, there is an addi-
tional player, indexed by number “0”, in charge of capping prices. Specifically, the
purpose of the game is to find p̃=

(
(z̃i

P)
NP
i=1,(q̃

i
P)

NP
i=1 ,(z̃

j
T )

NT
j=1,(q̃

j
T )

NT
i=1 , q̃

0
)

such that
the following minimization problems are solved by p̃:

Producers


min(zi

P,q
i
P)∈X i

P
Ii
P(z

i
P)+ ci

P(q
i
P)

s.t. Si
Pqi

P +
NP

∑
i6=k=1

Sk
Pq̃k

P−
NT

∑
j=1

B j
T q̃ j

T = 0
(23)

Traders



min
(z j

T ,q
j
T )∈X j

T
I j
T (z

j
T )+ c j

T (q
j
T )

s.t. −B j
T q̃ j

T +
NP

∑
i=1

Si
Pq̃i

P−
NT

∑
j 6=k=1

Bk
T q̃k

T = 0

S j
T q j

T +
NT

∑
j 6=k=1

Sk
T q̃k

T + q̃0−D = 0

(24)

Consumer
representative


minq0≥0

〈
PC,q0−D

〉
s.t.

NT

∑
j=1

S j
T q̃ j

T +q0−D = 0 (25)

In the GNEP (23)-(25), the market between producers and traders is cleared, and
demand is satisfied up to certain deficit, q0. The deficit is minimized by the action
of the additional player, who tries to reduce the impact of imposing a price cap. In
Corollary 2 below it is shown that (the negative of) the multiplier of the coupling
constraint (5) is precisely the traders’ remuneration in (2). We shall also see that in
the game formulation, the price cap is maintained in an indirect manner, via (25).

In the game, the solution of each individual problem depends on the decisions of
the other agents in the market: for instance (24) is an optimization problem on the
j-th trader variables (say, p j), that depends on actions of other traders (say, on p− j).
A primal point p̄ is a Nash equilibrium for the game (23)–(25) when each player’s
optimal decision (say, p̄ j) is obtained by solving the individual problem (say, (24))
after fixing the other players’ decisions to the corresponding entries on p̄ (say p̄− j).
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As this notion is so general that it includes points contradicting the natural in-
tuition of what an equilibrium must be, it is further specialized to the notion of
variational equilibrium, as follows. Note that the value function for the producers

vi
P(x) :=


min(zi

P,q
i
P)∈X i

P
Ii
P(z

i
P)+ ci

P(q
i
P)

s.t. Si
Pqi

P +
NP

∑
i 6=k=1

Sk
Pq̃k

P−
NT

∑
j=1

B j
T q̃ j

T = x ,

is convex. Furthermore, because in (23) all constraints are linear and the objective
function is differentiable, there exists a Lagrange multiplier π̌ i

P associated to the
equality constraint. This multiplier represents a marginal cost, since it satisfies the
inclusion −π̌ i

P ∈ ∂vi
P(0), [16, Theorem VII.3.3.2]. The issue with a generic Nash

equilibrium like p̄ above is that it may have multipliers associated to coupling con-
straints of the players’ problems that are different for different players. In economi-
cal terms, this means that the equilibrium is “unfair”, because it benefits some play-
ers more than others. To avoid this undesirable feature, we shall solve a VI derived
from the game and find a variational equilibrium (VE) [10] of the GNEP (23)–(25),
ensuring that the multipliers associated with the coupling constraints are the same.

By Theorem 1, the GE (13) is equivalent to solving the GE (21), written with the
data from Subsection 2.2.2. Putting together (11), (9) and (12) yields for (21) the
following:

0 ∈ F(p)+NP0(p),

where the feasible set P0 :=
NP

∏
i=1

X i
P×

NT

∏
j=1

X j
T ×Rm0

≥0∩S depends on the coupling set

S := {p= (zi
P,q

i
P,z

j
T ,q

j
P,q

0) : (3) and (5) hold}.
The equivalence between the MCP formulation and the generalized Nash game

results from Theorem 1.

Corollary 2 (Game Formulation for the Explicit Model). The MCP in Subsec-
tion 2.2.2 and the game (23)-(25) are equivalent, in the following sense. Suppose
the game has a variational equilibrium

p̄ :=
(
(ži

P)
NP
i=1,(q̌

i
P)

NP
i=1 ,(ž

j
T )

NT
j=1,(q̌

j
T )

NT
i=1 , q̌

0
)
,

with (µ̌ i
P)

NP
i=1 ,(µ̌

j
T )

NT
j=1 being the corresponding multipliers for the constraints in

(23) and (24), and let π̌P and π̌T be the multipliers associated to the coupling con-
straints (3) and (5).

Then the primal-dual pair (p̄, d̄) with d̄ := (µ̌P, µ̌T ,−π̌P,−π̌T ) solves the MCP
given by (1)-(3), (5), and (8).

Proof. By Theorem 1, for the result to hold, d̄ needs to solve the linear program
therein. For the objects in (13), and for the normal cone to the primal set P from
(9), this linear program is
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min
µP ,µT ≥ 0
any πP ,πT

NP

∑
i=1

〈
Zi

Pži
P +Qi

Pq̌i
P−bi

P,µ
i
P
〉
+

NT

∑
j=1

〈
Z j

T ž j
T +Q j

T q̌ j
T −b j

T ,µ
j

T

〉
s.t. Zi

P
>µ i

P = Ii ′
P
(ži

P) , Z j
T
>µ

j
T = I j ′

T
(ž j

T )
Qi

P
>µ i

P +Si
P
>πP = ci ′

P (q̌
i
P)

Q j
T
>µ

j
T −B j

T
>πP +S j

T
>πT = c j ′

T (q̌
j
T )

πT ≤ PC and πk
T = PCk whenever q̌0k > 0 .

(26)

The optimality conditions for problems (23) and (24) amount to µ̌P , µ̌T ,−π̌P and
−π̌T to satisfy the first four equalities in the feasible set of (26). Note also that,
by complementarity, the (nonnegative) objective function attains its minimum value
at µ̌P , µ̌T . The last line in (26), written with −π̌T , is q̌0 ⊥ PC+ π̌T ≥ 0. As these
relations result from the optimality condition of (25), the desired result follows. ut

4.2 Game for the Implicit Model

We now apply Theorem 1 to the GE (18). Writing (21) with the data from Subsec-
tion 2.2.1, that is, using (19), (17) and (20), we have:

0 ∈ F̂(p̂)+NP0(p̂) where P0 := ∏
NP
i=1 X i

P×∏
NT
j=1 X j

T ×R|p0|∩S ,

for S := {(zi
P,q

i
P,z

j
T ,q

j
P, p0) : (3) and (16) hold}.

The MCP formulation of (1), (2)δ j , (3) and (4) is now equivalent to finding a
variational equilibrium of the following GNEP:
the point p̃=

(
(z̃i

P)
NP
i=1,(q̃

i
P)

NP
i=1 ,(z̃

j
T )

NT
j=1, (q̃

j
T )

NT
i=1 , q̃

0
)

solves the problems

Producers same as (23),

Traders



min
(z j

T ,q
j
T )∈X j

T

I j
T (z

j
T )+ c j

T (q
j
T )

−δ j

〈
NT

∑
k=1

PSk
T qk

T +d0,S
j
T q j

T

〉
s.t.

NP

∑
i=1

Si
Pqi

P−
NT

∑
k=1

Bk
T qk

T = 0

NT

∑
k=1

(1−δ
k)Sk

T qk
T − p0 = 0 ,

(27)
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Consumer
representative


max

p0

〈
NT

∑
k=1

PSk
T qk

T +d0, p0

〉
s.t.

NT

∑
j=1

(1−δ
j)S j

T q j
T − p0 = 0 .

(28)

The game (23),(27)-(28) can be interpreted as follows. The additional player tries
to maximize the traders’ revenue that is market-power free (given in terms of the
inverse-demand function). The traders see their influence on the market as a way
of reducing costs, or of increasing their income (the negative δ j term in the objec-
tive function from (27)). Transactions between producers and traders are cleared, as
before. Regarding the traders remuneration πT (that is, the multiplier of constraint
(16)), we now show that the additional player controls it in a manner ensuring satis-
faction of (4).

Corollary 3 (Game Formulation for the Implicit Model). The MCPs in Subsec-
tions 2.2.1 and 3.3 and the game (23),(27)-(28) are equivalent in the following sense.
Suppose the game has a variational equilibrium

p̄ :=
(
(ži

P)
NP
i=1,(q̌

i
P)

NP
i=1 ,(ž

j
T )

NT
j=1,(q̌

j
T )

NT
i=1 , p̌0

)
,

with (µ̌ i
P)

NP
i=1 ,(µ̌

j
T )

NT
j=1 being the corresponding multipliers for the constraints in

(23) and (27), and let π̌P and π̌T be the multipliers associated to the coupling con-
straints (3) and (16).

Then the primal-dual pair (p̄, d̄) with d̄ := (µ̌P, µ̌T ,−π̌P,−π̌T ) solves the MCP
(18), which is equivalent to (15).

Proof. Like for Corollary 2, we only need to show that d̄ solves the linear program
in Theorem 1. In this case, the normal cone to the primal set P̂ from (17) is just the
null vector and, hence, the linear program is

min
µP ,µT ≥ 0
any πP ,πT

NP

∑
i=1

〈
Zi

Pži
P +Qi

Pq̌i
P−bi

P,µ
i
P
〉
+

NT

∑
j=1

〈
Z j

T ž j
T +Q j

T q̌ j
T −b j

T ,µ
j

T

〉
s.t. Zi

P
>µ i

P = Ii ′
P
(ži

P) , Z j
T
>µ

j
T = I j ′

T
(ž j

T )
Qi

P
>µ i

P +Si
P
>πP = ci ′

P (q̌
i
P)

Q j
T
>µ

j
T −B j

T
>πP +(1−δ j)S j

T
>πT = c j ′

T (q̌
j
T )

−δ jS j
T
>(

NT

∑
k=1

PSk
T q̌k

T +d0)−δ
jS j

T
>P>S j

T q̌ j
T

πT =
NT

∑
k=1

PSk
T q̌k

T +d0 .

(29)

It is easy to see that all the relations in KKT conditions of this problem are veri-
fied by d̄, except for the last equality, corresponding to (4). For the latter, observe
that since π̌T is the multiplier of the coupling constraint (16), and the variable p0
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is unconstrained in the problem of the extra player (28), the p0-component of the
optimality conditions for the game gives that 0 =−∑

NT
k=1 PSk

T q̌k
T −d0− π̌T . ut

Remark 4 (Uniqueness of Prices). With the explicit model, equilibrium prices will
be unique if the linear program (26) has the unique solution. Likewise for the im-
plicit model, which depends on the linear program (29). This problem can be further
simplified, by eliminating the variable πT , as follows:

min
µP ,µT ≥ 0

anyπP

NP

∑
i=1

〈
Zi

Pži
P +Qi

Pq̌i
P−bi

P,µ
i
P
〉
+

NT

∑
j=1

〈
Z j

T ž j
T +Q j

T q̌ j
T −b j

T ,µ
j

T

〉
s.t. Zi

P
>µ i

P = Ii ′
P
(ži

P) , Z j
T
>µ

j
T = I j ′

T
(ž j

T )
Qi

P
>µ i

P +Si
P
>πP = ci ′

P (q̌
i
P)

Q j
T
>µ

j
T −B j

T
>πP +S j

T
>(

NT

∑
k=1

PSk
T q̌k

T +d0) = c j ′
T (q̌

j
T )−δ

jS j
T
>P>S j

T q̌ j
T .

5 The European Network of Natural Gas

We now consider a network with a third kind of player, called outsourcer, in charge
of modifying or transporting the product before the traders supply it to the end
consumers.

Like before, producers only deal with traders and, therefore, solve problems (1).
By contrast, traders now deal also with the outsourcer players, who charge a uni-
tary price πO for their activity. The exchange between the trader and the oursourcer
player involves transformation of the product, represented by matrices S j

T→O, B j
T←O,

Sk
O, Bk

O as schematically represented in Figure 2, with the product flow.

Trader
B j

T q j
TS j

T q j
T

B j
T←Oq j

T S j
T→Oq j

T

Outsourcer

Sk
Oqk

O Bk
Oqk

O

Producer
Si

Pqi
PConsumer

Fig. 2 Market flow.
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The j-th trader problem (2) is modified accordingly:{
max

〈
S j

T q j
T ,πT

〉
−
〈

B j
T q j

T ,πP

〉
−
〈

S j
T→Oq j

T ,πO

〉
− c j

T (q
j
T )− I j

T (z
j
T )

s.t. (z j
T ,q

j
T ) ∈ X j

T .

As for the outsourcing players, denoting once more the investment-operational
decision variables of the k-th agent by (zk

O,q
k
O) and similarly for the costs and feasi-

ble set, the corresponding maximization problem is{
max

〈
Bk

Oqk
O,πO

〉
− ck

O(q
k
O)− Ik

O(z
k
O)

s.t. (zk
O,q

k
O) ∈ Xk

O .
(30)

To clear the market, in addition to (3) and (4), the exchange between traders and
outsourcing players should be balanced and, hence,

NT

∑
j=1

S j
T→Oq̄ j

T −
NO

∑
k=1

Bk
Oq̄k

O = 0 .

The additional balance ∑
NO
k=1 Sk

Oq̄k
O−∑

NT
j=1 B j

T←Oq̄ j
T = 0, is omitted, because it is

often automatic from the condition above.
Our previous framework, starting in Section 2, covers the new network. This

network, considered in [14] to analyze the market of natural gas in Europe (using a
MCP formulation corresponding to the model in Section 2.2.1) is now considered
as a test-case in the numerical experience that follows.

5.1 Numerical Assessment

The full European gas network described in [14] covers 54 countries and 36 markets;
the market has 7 types of players representing producers, traders, and 5 different
outsourcing activities. Specifically, there are 28 producers, 22 traders, 10 liquefiers,
15 re-gasifiers, 22 storage operators, 74 pipeline operators, and 36 marketers.

To illustrate the analysis that can be derived from the models presented above, we
coded the MCP and game implicit models in Matlab (R2012a), using PATH [7, 12]
to solve the variational problems. The runs were performed on a PC operating under
Ubuntu 12.04-64 bit with a processor Intel Atom 1.80GHz× 4 and 2GB of memory.

The data in [14] gives a game problem with 4620 variables and 488 constraints.
We solved the equilibrium problem of the implicit model, with and without market
power. In the first instance, the trader’s problem (2)δ j has δ j ≡ 0. In the second,
δ j = 0.75 for Russia, Norway, the Netherlands, and Algeria; and δ j = 0.25 for the
Caspian Sea, Denmark, and the UK.

To ensure that the implementation is error-free, we first ran both formulations,
that is the game (23),(27),(28) and the MCP (15), and checked whether the corre-
sponding output was alike. Table 1 summarizes the results.
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Table 1 Output for the implicit model

FORMULATION MARKET
POWER?

PATH RESID-
UAL

CPU
(seconds)

Game no 2E-08 36.7
MCP no 7E-08 47.3
Game yes 7E-11 77.1
MCP yes 2.5E-11 201.5

The ∞-norms of the differences of the primal solutions obtained with both ap-
proaches were very small in all the cases. We observed larger differences in the
dual components, in percentages ranging up to 6% (for the competitive case, with-
out market power). However, this is still an insignificant difference in this context,
which allows us to conclude that the output of both formulations is indeed “the
same” and the implementations are correct.

Fig. 3 Comparison of the primal and dual output

An interesting information in Table 1 is the CPU times. In general PATH was
very fast, but solving time increased significantly for the MCP formulation when
there is market power. At this point, one could ask why this increase is of impor-
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tance, given that the solution times were still within some minutes. The answer is
that this increase, still significant in percentage terms, would blow up once stochas-
ticity is introduced to the model. According to PATH final convergence report, when
there is market power, the solver needed much more inner iterations to converge. We
observed that when decreasing the solver precision from 10−8 to 10−6, both formu-
lations were again solved in about 70 seconds.

A comparison of the results obtained with and without market power can be
found in Figure 3, whose top and bottom graphs correspond to the primal and dual
output, respectively. The impact of market power is especially noticeable in the dual
variables, corresponding to prices: in the bottom graph in Figure 3 the red circles
(competitive prices) are systematically lower than the blue crosses (market power).
The graphs also show that the largest price increase is in the last components of the
dual output, corresponding to the variable π̄T , i.e., to the remuneration of the traders.

6 Equilibrium for Stochastic Models

Realistic models for the energy industry often include uncertainty: for instance in
(5), the actual electrical load may deviate from the predicted one due to random
variations of temperature, switch off/on of local consumers, or daylight. Similarly
in (1), for the generation costs ci

P(·) or the available resources defining the feasible
sets X i

P. To reflect such variations, a stochastic model of uncertainty must be built
and the risk-averse decision process must be put in a suitable setting.

In what follows we no longer distinguish between producers, traders, and out-
sourcer players. Instead, we analyze a market with agents trying to maximize
profit on a market regulated by coupling constraints or by a price cap. Accord-
ingly, we unify the notation for problems (1)-(2), and consider that the agents solve
max

〈
π,Siqi

〉
− Ii(zi)− ci(qi), which is equivalent to min Ii(zi)+ ci(qi)−

〈
π,Siqi

〉
.

6.1 Hedging Risk: The Setting

Consider the probability space defined by a measure P on a sample space Ω

equipped with a sigma-algebra F . Decision variables are now random functions
in the space Lp(Ω ,F ,P) for p ∈ [1,+∞), with dual Lp∗(Ω ,F ,P) for p∗ ∈ (1,+∞]
such that 1/p+ 1/p∗ = 1. We sometimes use the shorter notation Lp and Lp∗ for
these spaces, which are paired by the duality product

〈x∗,x〉P =
∫

ω

〈x∗(ω),x(ω)〉dP(ω) .

In the presence of uncertainty, a natural reaction of agents in the market is to
hedge against undesirable events. For the i-th agent, aversion to volatility is ex-
pressed by a coherent (convex) risk measure ρ i(·), assumed to be a proper function,
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as in [6, Chapter 6]. One possibility in the space L1(Ω ,F ,P) is to take the Average
Value-at-Risk of level 1− εi, a recent renaming of the Conditional Value-at-Risk
[28]. Namely, given a confidence level 0 < 1−ε < 1, if the random outcome X ∈ L1
represents a loss (lower values are preferred), the measure is given by the expression

AV@R ε(X) := min
u

{
u+

1
1− ε

E[X(ω)−u]+
}
,

where [·]+ := max{0, ·} is the positive-part function and E(·) denotes the expected-
value function taken with respect to dP. We consider the more general functions

ρ
i(X) := (1−κi)E(X)+κi AV@R εi(X) , (31)

depending on a given risk-aversion parameter κi ∈ [0,1].
It is shown in [6, Theorem 6.4] that any proper coherent risk measure is in fact

the support function of the domain of its conjugate; see also [24]. In particular (see
[6, Theorem 6.4, and (6.69) in Ex. 6.16]), (31) has the dual representation

ρ
i(X) = sup

x∗∈X∗
〈x∗,X〉P , where (32)

X∗ :=
{

x∗ ∈ L∞(Ω ,F ,P) :
1−κi ≤ x∗(ω)≤ 1−κi +κi/εi a.e. ω ∈Ω

E(x∗) = 1

}
.

6.2 Stochastic Mixed Complementarity Formulation

For convenience, from now on we make two simplifying assumptions:

• The concept of stochastic equilibrium and its connections with a game formula-
tion is examined for a market with agents maximizing profit as in (1), dropping
sub-indices P throughout, using an explicit model (the analysis below remains
valid for the implicit model too). Accordingly, the market clearing relation (3)
disappears; only a stochastic variant of (4) is in order. Incidentally, this is the
framework considered in [9].

• The stochastic counterparts of the agents’ problems are set in a two-stage frame-
work. For example, in (23) the “investment” variables zi

P are of the “here-and-
now” type, to be decided before the uncertainty realizes. By contrast the “gener-
ation” variables qi

P are of the type “wait-and-see”: they are decided at a second
stage, once ω becomes known, so qi

P depends on ω . So, dropping the sub-index,
the random vectors qi belong to the space Lp(Ω ,F ,P;Rmi

), that is q(ω) ∈ Rmi

for all ω ∈Ω , while the prices are in the dual space Lp∗(Ω ,F ,P).

Given a price cap PC ∈ Lp∗(Ω ,F ,P;Rm0
), the complementarity formulation of

stochastic equilibrium with risk aversion (considered also in [9]) is:
Find

(
(z̄i ∈ Rni

)N
i=1,(q̄

i ∈ Lp)
N
i=1, q̄

0 ∈ Lp, π̄ ∈ Lp∗
)

such that
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Risk-averse
agents

{
min Ii(zi)+ρ i

(
ci(qi(ω),ω)−

〈
π(ω),Siqi(ω)

〉)
s.t. (zi,qi(ω)) ∈ X i(ω) a.e. ω ∈Ω

(33)

Coupling
constraints

N

∑
i=1

Siqi(ω)+q0(ω) = D(ω) a.e. ω ∈Ω (mult.π(ω))

Price cap 0≤ q0(ω)⊥ PC(ω)−π(ω)≥ 0 a.e. ω ∈Ω . (34)

When compared to (1), the agent’s problem is now set as a minimization, because
the risk averse measure controls losses and not incomes. The objective function in
(33) is in fact equivalent to the one considered in [9], taking into account that the
investment functions Ii and the first-stage variables zi are deterministic, recalling
that risk measures are equivariant to translations.

6.3 Stochastic Variational Equilibria: Definition

Consider the following stochastic game.
Find p̃=

(
(z̃i ∈ Rni

)N
i=1,(q̃

i ∈ Lp)
N
i=1 , q̃

0 ∈ Lp∗
)

solving the problems:

Risk-averse
agents


min Ii(zi)+ρ i

(
ci(qi(ω),ω)

)
s.t. (zi,qi(ω)) ∈ X i(ω) a.e. ω ∈Ω

Siqi(ω)+
N

∑
i 6=k=1

Skq̃k(ω)+ q̃0(ω) = D(ω) a.e. ω ∈Ω .

(35)

Risk-averse player
representing consumers


min ρ0

(〈
PC(ω),q0(ω)−D(ω)

〉)
s.t. q0(ω)≥ 0 a.e. ω ∈Ω

N

∑
i=1

Siq̃i(ω)+q0(ω) = D(ω) a.e. ω ∈Ω .

(36)

We define next the concept of variational equilibrium for this stochastic game.
Recall that one is generally not interested in arbitrary Nash equilibria, but rather
in VE defined as solutions to VIs derived from the game. In the general stochastic
context like the one under consideration, instead of going via an explicit VI, we
characterize VE using the Lagrange multipliers of the game coupling constraints.

Definition 5 (Stochastic VE). For a stochastic GNEP (35)-(36), the point p̄ =(
(z̄i)N

i=1,(q̄
i)N

i=1 , q̄
0
)

is a variational equilibrium if there exists a Lagrange mul-
tiplier π̄ ∈ Lp∗ associated to the coupling constraint,
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N

∑
i=1

Siqi(ω)+q0(ω) = D(ω) a.e. ω ∈Ω , (37)

the same for all the players, such that p̄ still solves the agents’ problems after relax-
ing the coupling constraints (as in Proposition 6 below).

We now show that, under mild conditions. the concept is well defined.

Proposition 6 (Existence of Stochastic Multipliers). For the game (35)-(36), the
following holds.

1. There exists π̄0 ∈ Lp∗(Ω ,F ,P;Rm0
) such that whenever q̄0 solves (36), it also

solves the relaxed problem

min
q0(ω)≥0 a.e. ω

ρ
0
(〈

PC(ω),q0(ω)−D(ω)
〉)
−
〈
q0(ω), π̄0(ω)

〉
P .

2. Suppose for each problem (35) the functions Ii : Rni →R are smooth and convex,
while ci :Rmi×Ω→R are random finite-valued, lower-semicontinuous and con-
vex for almost every ω ∈ Ω . Assume, in addition, that the sets X i(ω) ⊂ Rni+mi

are nonempty, closed, convex, and some constraint qualification condition holds.
If the function Ci : Rni ×Lp(Ω ,F ,P;Rmi

)→ Lp(Ω ,F ,P;R) given by

[Ci(zi,qi)](ω) := ci(zi,qi(ω),ω) is continuous and well-defined, (38)

then there exists π̄ i ∈ Lp∗(Ω ,F ,P;Rm0
) such that whenever (z̄i, q̄i) solves (35),

it also solves the relaxed problem
min Ii(zi)+ρ i(C(zi,qi(ω),ω))−

〈
Siqi(ω), π̄ i(ω)

〉
P

s.t. zi ∈ Rni
,qi ∈ Lp(Ω ,F ,P;Rmi

) ,
(zi,qi(ω)) ∈ X i(ω) a.e. ω ∈Ω .

(39)

Proof. Since the objective function in (36) satisfies (38) and a constraint qualifica-
tion condition holds automatically for the feasible set, the first item is just a partic-
ular case of the second one. Accordingly, we prove the assertion for the problem

min I(z)+ρ(c(z,q(ω),ω))
s.t. z ∈ Rn ,q ∈ Lp(Ω ,F ,P;Rm),

(z,q(ω)) ∈ X(ω) a.e. ω ∈Ω ,
Sq(ω) = D̃0(ω) a.e. ω ∈Ω ,

(40)

corresponding to (35) without super-indices i (setting D̃0 := D0−∑i6=k Skq̃k). This
problem is equivalent to

min I(z)+ρ(C(z,q))+ ιC (z,q)+ ιRn×S (z,q) ,

where ιX (·) denotes the indicator function of a set X (i.e., it returns zero for
points in X and +∞ otherwise), and where we defined the closed convex sets
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C := {(z,q)∈Rn×Lp(Ω ,F ,P;Rm) : (z,q(ω))∈ X(ω)a.e. ω ∈Ω} and S = {q∈
Lp(Ω ,F ,P;Rm) : Sq(ω) = D̃0(ω)a.e. ω ∈ Ω}. By (38) the objective function is
well defined and, with our assumptions, it is convex. Therefore, (z̄, q̄) solves the GE

0 ∈ ∂ (I +ρ ◦C+ ιC + ιRn×S )(z̄, q̄) ,

and the constraint qualification assumption yields that

∂ (I +ρ ◦C+ ιC + ιRn×S )(z̄, q̄) = ∂ (I +ρ ◦C+ ιC )(z̄, q̄)+∂ ιRn×S (z̄, q̄) .

Since ∂ ιRn×S (z̄, q̄) = {0}×NS (q̄), we have that

0 ∈ ∂ (I +ρ ◦C+ ιC )(z̄, q̄)+{0}×NS (q̄). (41)

We claim that for any q̄ ∈S the normal cone is given by

NS (q̄) = {ν : ν(ω) = S>π(ω) a.e. ω ∈Ω ,π ∈ Lp∗(Ω ,F ,P;Rm0
)} .

The ⊃ inclusion is straightforward. To see the converse one, first note that for any
q ∈ S the identity S(q(ω)− q̄(ω)) = 0 holds for a.e. ω ∈ Ω (for simplicity, we
omit the symbol a.e. ω ∈ Ω below, noting that relations hold almost everywhere
when appropriate.) Thus, q̄+ θ(q− q̄) ∈ S for any θ ∈ L∞(Ω ,F ,P;R). By the
definition of normal cone,

〈ν(ω),θ(ω)(q(ω)− q̄(ω))〉P ≤ 0,

and by [29, Corollary 1.9(e)], there exists θ ∈ L∞(Ω ,F ,P;R) such that |θ(ω)|= 1
and 〈ν(ω),θ(ω)(q(ω)− q̄(ω))〉= |〈ν(ω),q(ω)− q̄(ω)〉|. Therefore,∫

Ω

| 〈ν(ω),q(ω)− q̄(ω)〉 |dP(ω)≤ 0 =⇒ 〈ν(ω),q(ω)− q̄(ω)〉= 0 .

In particular, for any u∈Ker(S) and q(ω) := q̄(ω)+u∈S , we have that 〈ν(ω),u〉=
0, which means that ν(ω) ∈ [Ker(S)]⊥ = Im(S>).

As a result, there exists a function η : Ω → Rm0
such that ν(ω) = S>η(ω),

and since ν ∈ Lp∗(Ω ,F ,P;Rm), the multiplier π : Ω → Rm0
in Lp∗(Ω ,F ,P;Rm0

)
exists and is defined by π(ω) := [S+]>ν(ω), where S+ is the Moore–Penrose pseudo
inverse. This establishes the claim, since

S>π(ω) = S>[S+]>ν(ω) = S>[S+]>S>η(ω) = S>η(ω) = ν(ω) .

In view of our claim, the inclusion (41) can be rewritten in the form

0 ∈ ∂ (I +ρ ◦C+ ιC )(z̄, q̄)− (0,S>π̄)

for some π̄ ∈ Lp∗(Ω ,F ,P;Rm0
), and the result follows. ut
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6.4 Relation between Risk-Averse Games and MCP

We now are in a position to give the equivalent mixed-complementarity counterpart
of our risk-averse game.

Theorem 7 (MCP Formulation for the Risk-Averse Game). In the setting of
Proposition 6, suppose the risk-averse GNEP (35)-(36) has a variational equilib-
rium p̄ :=

(
(z̄i)N

i=1,(q̄
i)N

i=1 , q̄
0
)

, and let (µ̄ i)N
i=1 and π̄ denote the respective Lp∗ -

multipliers for the endogenous constraints in (35) and the coupling constraints (37).
Then the primal-dual pair (p̄, d̄) with d̄ := (µ̄, π̄) solves the risk-averse MCP

derived from the following problems

Risk-averse
agents

{
min Ii(zi)+ρ i

(
ci(qi(ω),ω)

)
−
〈
π,Siqi

〉
P

s.t. (zi,qi(ω)) ∈ X i(ω) a.e. ω ∈Ω
(42)

Coupling constraints as in (37)
Risk-averse Price cap 0≤ q0(ω)⊥ x∗0(ω)PC(ω)−π(ω)≥ 0 a.e. ω ∈Ω

for x∗0 solving
min

N

∑
i=1

〈〈
x∗0(ω)PC(ω),Siq̄i(ω)

〉〉
P

s.t. E(x∗0) = 1

1−κ0 ≤ x∗0(ω)≤ 1−κ0 +
κ0

ε0
a.e. ω ∈Ω .

(43)

Proof. To derive a complementarity formulation, we first consider (35). By Propo-
sition 6, (z̄i, q̄i) solves the relaxed problem (39) with π̄ = π̄ i, by Definition 5. Since
the optimality conditions of the relaxed problem coincide with those of problem
(42), the stated result for the agents follows.

In the case of comsumers’ representative, by Proposition 6 and Definition 5, q̄0

solves problem (36) as well as the relaxed problem

min
q0≥0

ρ
0
(〈

PC(ω),q0(ω)−D(ω)
〉)
−
〈〈

q0(ω), π̄(ω)
〉〉

P
.

We now show that the optimality conditions of the relaxed problem coincide with
those of (43), together with the risk-averse price cap condition. Since PC ∈ Lp∗ and
D ∈ Lp, the affine operator A : Lp→ Lp defined by

[A(q0)](ω) :=
〈
PC(ω),q0(ω)−D(ω)

〉
is continuous and, hence, the optimality condition for the relaxed problem is

0 ∈ ∂
(
ρ

0 ◦A+ i≥0
)
(q̄0)− π̄ = ∂ (ρ0 ◦A)(q̄0)+N≥0(q̄0)− π̄.

By the normal cone definition, there exist g ∈ ∂ (ρ0 ◦A)(q̄0) and ν ∈ Lp∗ such that
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0≤ q̄0(ω)⊥−ν̄(ω)≥ 0 and 0 = g(ω)+ ν̄(ω)− π̄(ω),

almost everywhere in Ω . To get an explicit expression for g above, we apply [35,
Thm.2.83] to compute the subdifferential ∂ (ρ0 ◦A)(q̄0), recalling that the mapping
A is affine and continuous, and the risk measure is increasing and finite-valued:

g ∈ ∂ (ρ0 ◦A)(q̄0) ⇐⇒ g(ω) = PC(ω)s(ω) for s ∈ ∂ρ
0
(

A(q̄0)
)
.

The definitions of the subdifferential and of the conjugate function give the equiv-
alence s ∈ ∂ρ0(A(q̄0)) ⇐⇒ A(q̄0) ∈ ∂ρ0∗(s). By the dual representation (32),
the conjugate of ρ0 is the indicator function of the (convex and bounded) dual
set X∗, that is ρ0 = ι∗X∗ . Then, ρ0∗ = ι∗∗X∗ = iX∗ . Since the subdifferential of the
indicator function of a closed convex set is the normal cone of the set, by the
definition of the normal cone, the subgradient g ∈ ∂ (ρ0 ◦A)(q̄0) has components
g(ω) = PC(ω)s(ω) for s ∈ X∗ satisfying

〈
A(q̄0),x∗− s

〉
P ≤ 0 for all x∗ ∈ X∗. So s

maximizes
〈
A(q̄0),x∗

〉
P over X∗, and in view of (37), s = x̄∗0 from (43). The risk-

averse price cap condition follows from plugging g(ω) = PC(ω)x̄∗0(ω) in the opti-
mality condition. ut

Theorem 7 shows that, like in the deterministic framework, the stochastic game is
equivalent to a complementarity model with risk aversion. Nevertheless, the stochas-
tic MCP model is not of the form (33), where agents hedge individually their profit.
Instead, a VE for the game (35)-(37) gives a stochastic equilibrium for a market that
is cleared because (37) is satisfied, and where the risk-averse agents are remunerated
in mean at a price that is controlled by a risk-averse price cap.

In the game, aversion to risk is peculiar in the sense that agents hedge volatility
by controlling only variations in the generation costs. In the game problem (42),
the remuneration is taken in mean without hedging risk, while in the MCP (33)-(34)
each agent tries to control the risk in their individual revenue. In the game the control
of volatile prices is “delegated” to some higher instance. This is the same instance
that caps the remunerations, only that now the cap is chosen adaptively, in a manner
that is optimal for the market, in the sense of (43). By contrast, in the risk-averse
MCP, the instance limiting prices only takes into account stochasticity but does not
perceive the fact of capping prices as a risky action, perturbing the market.

Our final result shows that the three models become equivalent in a risk-neutral
market.

Corollary 8 (Equivalence for Risk-Neutral Agents). Suppose that for all the
agents ρ i = E, the expected-value function. Then finding a variational equilibrium
for the GNEP (35),(36)-(37) is equivalent to solving the MCP (33)-(34) which is in
turn equivalent to the MCP (42)-(43).

Proof. Straightforward from Theorem 7, noting that the expected-value function
is recovered by setting κi = 0 in (31), with the singleton dual set X∗ = {x∗ ≡ 1}
in (32). In particular, a risk-neutral representative of the consumers can only take
x̄∗0 ≡ 1, which yields the stochastic price cap from (34). The equivalence with the
last MCP results from the linearity of the expected-value function. ut
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Concluding Remarks

Like it has been done in the deterministic case in Section 5.1, it would be interesting
to analyze and compare the performances of the risk-averse game versus the risk-
averse MCP on a numerical example. However, due to the positive-part function
in (31), risk measures are not differentiable and for both models the GE mapping
has multi-valued components. In this context, a direct application of a solver like
PATH is no longer possible (and there is currently no other established software that
can do the job). In [9], the MCP (33)-(34) is “solved” ignoring nondifferentiability
issues and treating the mapping as if it were single-valued. This heuristic seems
to produce sound results for the considered example, but cannot be regarded as a
reliable solution method, of course. In order to handle nonsmoothness, some special
technique should be used, for example the approximation procedure in [21].

Finally, instead of handling uncertainty in two stages, a multistage setting can
also be of interest. This, keeping in mind that multistage risk averse models remain
a delicate subject, involving intricate issues such as time consistency and informa-
tion monotonicity; see [23]. Last but not least, and as discussed in [32, Section 5],
risk-averse variants of sampling approaches like [25] and [33] lack implementable
stopping criteria. Multistage risk-averse models present numerous challenges al-
ready in an optimization framework, we refer to [30] and references therein for
more details.
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31. Sagastizábal, C., Solodov, M.: Solving Generation Expansion Planning Problems with Envi-

ronmental Constraints by a Bundle Method. Computational Management Science 9, 163–182
(2012).

32. Shapiro, A.: Analysis of Stochastic Dual Dynamic Programming Method. European Journal
of Operational Research 209(1), 63–72 (2011)



28 Luna, Sagastizábal and Solodov
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