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Abstract We discuss the energy generation expansion planning with environmental
constraints, formulated as a nonsmooth convex constrained optimization problem. To
solve such problems, methods suitable for constrained nonsmooth optimization need
to be employed. We describe a recently developed approach, which applies the usual
unconstrained bundle techniques to a dynamically changing “improvement function”.
Numerical results for the generation expansion planning are reported.

Keywords Constrained optimization · Nonsmooth convex optimization ·
Bundle methods · Generation expansion planning

1 Introduction, motivation

One of the important applications of nonsmooth optimization (NSO) methods arises
from Lagrangian relaxation or Benders’ decomposition (Bonnans et al. 2006). In
general, to solve large-scale complex problems with separable structure, decomposi-
tion techniques replace the original problem by a sequence of reduced-dimensional
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(or easier) local problems, linked by a master program. Nonsmoothness comes into
play in the master program, which often has box or polyhedral constraints. However,
for some energy optimization problems, the corresponding master program is a NSO
problem with general (nonlinear) convex constraints. This is the case for the particular
application considered in this work, that of generation expansion planning (GEP). This
type of problems, modeled as two-stage stochastic programs with recourse, determine
an optimal investment plan for the construction of new power plants, while ensur-
ing economic and reliable supply to the future electricity demand (see Bienstock and
Shapiro 1988; Campodónico et al. 2003; Marcato and Sagastizábal 2007). Generally,
discounted expected costs of investment and operation are minimized subject to con-
straints depending on uncertain data, such as future growth of electricity demand,
environmental restrictions, and primary fuel costs. As explained in Sect. 4 below,
if water pollution constraints are taken into account, a Benders’-like decomposition
yields a master problem which is a constrained NSO problem.

Mathematically, this means solving the problem

min f (x) s.t. c(x) ≤ 0, (1)

where f, c : IRn → IR are convex functions, nondifferentiable at some points. We
note that there is no loss of generality in formulating (1) with only one constraint:
if necessary, c can be defined as the pointwise maximum of finitely many convex
functions, thus covering the case of multiple inequality constraints. In the setting of
nondifferentiable c, such a transformation does not interfere with any essential struc-
tural properties of the problem.

Nonsmooth optimization (NSO) problems are often relatively difficult to solve, even
when they are unconstrained. Among algorithms for NSO, we mention the subgradi-
ent, cutting-plane, analytic center cutting-plane, and bundle methods. In turn, bundle
methods are subdivided into different variants, such as the trust-region (Schramm and
Zowe 1992), level (Lemaréchal et al. 1995; Fábián 2000), and proximal (Kiwiel 1991).
In this work, we use the constrained form of proximal bundle methods, specifically
the one developed in Sagastizábal and Solodov (2005).

For unconstrained problems, iterates of a proximal bundle algorithm are generated
by solving a quadratic programming problem (QP). Each QP is defined by means of a
cutting-plane model of the objective function, stabilized by a quadratic term centered
at the best point obtained so far (which is referred to as the last descent or “serious”
iterate). An important feature of proximal bundle methods is that the size of each QP
can be controlled via the so-called aggregation techniques, see for instance Bonnans
et al. (2006, Ch. 9). This feature can be crucial for efficient implementations.

Constrained nonsmooth problems are more complex, and only a few practical meth-
ods can be found in the literature. Convex problems with “easy” constraints (such as
bound or linear constraints) can be solved either by inserting the constraints directly
into each QP, or by projecting iterates onto the feasible set. For problems with nonlin-
ear constraints, one possibility is to solve an equivalent unconstrained problem with an
exact penalty objective function, e.g., Kiwiel (1991). This approach, however, relies
on estimating a suitable value of the penalty parameter, which is sometimes a delicate
task. Other constrained bundle-type methods, that do not use penalization, are Mifflin

123



Solving generation expansion planning problems with environmental 165

(1982), Kiwiel (1985, Ch. 5). But in all of these methods serious iterates, including
the starting point, are required to be feasible. This “phase I” general (nonsmooth)
convex feasibility problem may be as difficult to solve as (1) itself. As a result, the
overall computational burden of solving the problem may increase considerably (That
said, feasible methods can be useful in applications in which problem data may not
be defined everywhere outside of the feasible region).

The method considered in this work is infeasible but, if started from a feasible point,
stays feasible and thus can operate “in feasible mode” if an appropriate starting point is
provided. Infeasible bundle methods are very rare. We could find in the literature only
the “phase I–phase II” modification of the feasible method in Kiwiel (1985, Ch. 5.7),
the constrained level bundle methods of Lemaréchal et al. (1995); see also Fábián
(2008), and the filter strategy of Fletcher and Leyffer (1999). However, techniques
for controlling the size of subproblems had not been considered in the methods cited
above; this issue had been addressed only recently, in Sagastizábal and Solodov (2005)
and Karas et al. (2009).

In this paper, we use the approach of Sagastizábal and Solodov (2005). This is
an infeasible proximal bundle method for solving (1), which does not use a filter or
penalty function. With respect to Mifflin (1982); Kiwiel (1985), the advantage is that
computing a feasible point is not needed to start the algorithm. Also, since (descent)
iterates can be infeasible, monotonicity in f is not enforced (outside of the feasible
set). Rather, there is a balance between the search for feasibility and for the reduction
of the objective function. Furthermore, unlike the constrained level bundle method
(Lemaréchal et al. 1995; Fábián 2008), we can manage the size of QP subproblems by
a suitable modification of the standard bundle aggregation techniques. The approach
can be viewed as an unconstrained proximal bundle method applied to the improve-
ment function associated with problem (1). For a given x ∈ IRn , this function is given
by

hx (y) := max{ f (y)− f (x), c(y)}, y ∈ IRn . (2)

If the Slater regularity condition (∃ z such that c(z) < 0) holds then, among other
things, x̄ is a solution to (1) if, and only if, x̄ solves the unconstrained problem of
minimizing hx̄ Kiwiel (1985, Lemma 2.16, p. 17). The important detail is that x in
(2) is the last descent step, and thus, the function being minimized varies along the
iterations. We emphasize that iterates need neither be monotone in f nor feasible. Of
course, the fact that the improvement function changes along the iterations requires
modifications to the method. Nevertheless, our approach is quite close to standard
unconstrained bundle methods.

The rest of the paper is organized as follows. Section 2 describes the basic features
of standard unconstrained bundle methods, to facilitate understanding of constrained
methods, which are more complex. The section that follows describes the specific
infeasible bundle algorithm for the constrained case. Section 4 presents an application
to generation expansion planning, along with computational results. Finally, some
concluding remarks are given.

A few words about our notation. By 〈x, y〉 we denote the inner product
∑n

i=1 xi yi

of the vectors x, y ∈ IRn . Given some ε ≥ 0, we denote the ε-subdifferential of a
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convex function h at the point x ∈ IRn by ∂εh(x) = {g ∈ IRn | h(y) ≥ h(x) +
〈g, y − x〉 − ε ∀ y ∈ IRn}, with ∂0h(x) = ∂h(x) being the usual subdifferential.

2 An overview of bundle methods

Since bundle methods are relatively complex, we start by introducing the main ideas
for the case of the standard unconstrained problem

min
x∈IRn

h(x),

where h(·) is some fixed convex function. For the sake of simplicity, we also do not
discuss for now the ways to control the size of subproblems (i.e., no bundle compres-
sion/aggregation).

Let � be the current iteration index. Bundle methods keep memory of the past in a
bundle of information

B� :=
⋃

i<�

{(
yi , hi = h(yi ), gi

h ∈ ∂h(yi )
)}

and (xk, h(xk)), k = k(�),

where k(�) denotes the index of the last descent step (also called serious step) preced-
ing the iteration �. Serious iterates form a subsequence {xk} ⊂ {yi } such that {h(xk)}
is strictly decreasing.

The bundle of past information is used to define at each iteration a cutting-plane
model of the objective function

ψ�(y) := max
i∈B�

{
hi + 〈gi

h, y − yi 〉
}
. (3)

An equivalent expression, better suited for implementations, centers the cutting-plane
model at xk :

ψ�(y) = h(xk)+ max
i∈B�

{
−ek

i + 〈gi
h, y − xk〉

}
, (4)

where the terms ek
i are the (nonnegative) linearization errors

ek
i := h(xk)− hi − 〈gi

h, xk − yi 〉.

In particular,

gi
h ∈ ∂ek

i
h(xk).

Since the linearization errors depend on xk , they need to be updated every time xk

changes. For further reference, note that the linearization errors obviously “depend”
also on h (h is fixed in this section, but not in the rest of the paper). Thus in the
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update of the linearization errors in our algorithm, we shall also have to account for
an eventual change of the objective function h.

The advantage of expressing the cutting-plane model (3) in the form of (4) is that
the later requires less memory for storing the relevant information than the former:
the bundle becomes

B� =
⋃

i<�

{(
ek

i ∈ IR+, gi
h ∈ ∂ek

i
h(xk)

)}

and (xk, h(xk)).

Given proximal (stabilization) parameter μ� > 0, the next iterate y� is generated by
solving the QP reformulation of the problem

min
y∈IRn

ψ�(y)+ 1

2
μ�‖y − xk‖2. (5)

Clearly, y� is unique (by strong convexity of the objective function). Furthermore, it
is characterized by the following conditions [see Bonnans et al. (2006, Lemma 9.8)]:

y� = xk − 1

μ�
ĝ�, where ĝ� ∈ ∂ψ�(y�),

ĝ� ∈ ∂ε̂k
�
h(xk), where ε̂k

� = h(xk)− ψ�(y
�)− 1

μ�
‖ĝ�‖2 ≥ 0.

An iterate y� is considered good enough to become the next serious step when
h(y�) provides a significant decrease relative the decrease predicted by the model.
Specifically, let m ∈ (0, 1) be a given parameter. The decrease predicted by the model
is given by

δ� := h(xk)− ψ�(y
�)− 1

2
μ�‖y� − xk‖2 = ε̂k

� + 1

2μ�
‖ĝ�‖2 ≥ 0.

When y� satisfies the descent test

h(y�) ≤ h(xk)− mδ�, (6)

a serious step is declared: xk+1 = y�. Otherwise, y� is declared a null step and xk

remains unchanged.

2.1 Aggregation technique

The number of constraints in the QP reformulation of the problem (5) used to gen-
erate y� is precisely the number of elements in the bundle B�. Obviously, one has to
keep this number computationally manageable. Thus, the bundle has to be compressed
when the number of elements reaches some software-imposed bound. This has to be
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done without impairing convergence of the algorithm. For this purpose, the so-called
aggregate function is fundamental:

lk,�(y) := h(xk)− ε̂k
� + 〈ĝ�, y − xk〉, k = k(�).

Before looping from � to � + 1, the next bundle B�+1 is defined. If the bundle has
reached its maximal allowed size, it must be “compressed”. Compressing the bundle
amounts to replacing (at iteration �+ 1) the cutting-plane model (4) by another func-
tion, defined with a smaller number of cutting planes, which we shall still denote by
ψ�+1. As pointed out in Correa and Lemaréchal (1993, Sect. 4, Eqs. (4.7)–(4.9)), one
can use any collection of functions satisfying (for all y ∈ IRn) the following three
conditions:

ψ�(y) ≤ h(y) for all � ≥ 1, (7a)

lk(�),�(y) ≤ ψ�+1(y) for those � for which y� is a null step, (7b)

h� + 〈g�h, y − y�〉 ≤ ψ�+1(y) for those � for which y� is a null step. (7c)

We note that (7a) will not be automatic in our setting. Indeed, as already commented,
the function h will be changing after every serious step. As a consequence, satisfaction
of (7a) is not straightforward, and appropriate care needs to be taken.

Suppose, however, that (7a) holds. In terms of bundle information, the remaining
conditions mean that it is enough for the new bundle to contain both the aggregate
information (to ensure (7b)) and the last generated information (to ensure (7c)). These
values are, respectively, (ε̂k

� , ĝ�) and (y�, h�, g�h ∈ ∂h(y�)). In particular, at any itera-
tion, the bundle can contain as few elements as we wish (as long as the two elements
specified above are included).

Accordingly, we shall write the next bundle in the form

B�+1 := Boracle
�+1

⋃
Bagg
�+1 and (xk, h(xk)), k = k(�+ 1), the last serious iterate,

where the “oracle” bundle is any set such that

{(
ek
�, g�h

)}

⊆ Boracle
�+1 ⊆

⋃

i≤�

{(
ek

i ∈ IR+, gi
h ∈ ∂ek

i
h(xk)

)}

,

while the “aggregate” bundle satisfies

{(
ε̂k
� , ĝ�

)}

⊆ Bagg
�+1 ⊆

⋃

i≤�

{(
ε̂k

i ∈ IR+, ĝi ∈ ∂ε̂k
i
h(xk)

)}

.

The left-most inclusions in the last two relations above need to be specified explicitly
only when there is bundle compression at the �-th iteration (if there is no compression,
they hold automatically, because of the right-most inclusions). We note that similarly

123



Solving generation expansion planning problems with environmental 169

to updating the linearization errors ek
i , the quantities ε̂k

i also need to be updated every
time when k changes, see (8) and (14) below.

The next cutting-plane model is then defined by

ψ�+1(y)

= h(xk)+ max

{

max
i∈Boracle

�+1

{
−ek

i + 〈gi
h, y − xk〉

}
, max

i∈Bagg
�+1

{
−ε̂k

i + 〈ĝi , y − xk〉
}}

,

k = k(�+ 1).

As already mentioned, every time a new serious step has been declared, both lineari-
zation and aggregate errors need to be modified. The update aims at satisfying the key
relations

gi
h ∈ ∂ek

i
h(xk+1) and ĝi ∈ ∂ε̂k

i
h(xk+1),

which should hold for all elements in the new bundle. The following simple updating
formulæ guarantee the required properties (when h is fixed):

{
ek+1

i := ek
i + h(xk+1)− h(xk)+ 〈gi

h, xk − xk+1〉 if i ∈ Boracle
�+1 ,

ε̂k+1
i := ε̂k

i + h(xk+1)− h(xk)+ 〈ĝi , xk − xk+1〉 if i ∈ Bagg
�+1.

(8)

3 A constrained bundle algorithm

Given the last serious iterate xk , we apply an unconstrained proximal bundle method to
the function h(·) := hk(·) = hxk (·), defined by (2), until the next serious iterate xk+1

is generated. At this time, we change h(·) to hk+1(·) = hxk+1(·), make the necessary
modifications to the bundle, and repeat the process. We point out that the development
is not straightforward. For one thing, it is possible that f (xk+1) > f (xk). As is easy
to observe, in that case we have hk+1(·) ≤ hk(·). As a consequence, the accumulated
cutting-plane model for hk(·) may not be a valid (lower) approximation for hk+1(·).
Thus, the model has to be revised and adjusted to ensure that conditions (7a)–(7c) (in
particular (7a)) are satisfied for the new h(·) := hk+1(·). Note that this adjustment is
independent of compressing the bundle, which will require additional care.

3.1 Bundle information

Since h(·) varies with k, past information relevant for constructing the model is no
longer just (ei , gi

h). In particular, separate information about the objective and con-
straint functions needs to be kept. This information is ( fi = f (yi ), ci = c(yi ))

and (gi
f ∈ ∂ f (yi ), gi

c ∈ ∂c(yi )). Or, equivalently, (ef
k
i , ec

k
i , gi

f ∈ ∂efk
i

f (xk), gi
c ∈

∂eck
i
c(xk)), where the linearization errors for f and c, respectively, are

ef
k
i := f (xk)− fi − 〈gi

f , xk − yi 〉, ec
k
i := c(xk)− ci − 〈gi

c, xk − yi 〉. (9)
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The purpose of keeping the bundle information separated is twofold:

– First, knowing ( fi , ci )makes it possible to compute the function and subgradient
values for different functions h.

– Second, separate linearization errors can be updated by a simple formula, even
when h changes.

Therefore, we define

B� := Boracle
�

⋃ Bagg
� and (xk, f (xk), c(xk)), k = k(�), the last serious iterate,

Boracle
� ⊆

⋃

i<�

{(
fi , ci , ef

k
i , ec

k
i , gi

f ∈ ∂efk
i

f (xk), gi
c ∈ ∂eck

i
c(xk)

)}

,

Bagg
� ⊆

⋃

i<�

{(
ε̂k

i , ĝi ∈ ∂ε̂k
i
hk(x

k)
)}

.

(10)

Let c+(x) = max{c(x), 0}. In the notation of (9) and (10), for each i ∈ Boracle
� ,

define
{

ek
i := ef

k
i + c+(xk) and gi

hk
:= gi

f , if fi − f (xk) ≥ ci ,

ek
i := ec

k
i + c+(xk)− c(xk) and gi

hk
:= gi

c, if fi − f (xk) < ci .
(11)

Then ek
i ≥ 0 and gi

hk
∈ ∂ek

i
hk(xk); see Sagastizábal and Solodov (2005) for the proof.

The cutting-plane model associated with (10), (11) is given by

ψ�(y) = c+(xk)+ max

{

max
i∈Boracle

�

{
−ek

i + 〈gi
hk
, y − xk〉

}
,

max
i∈Bagg

�

{
−ε̂k

i + 〈ĝi , y − xk〉
}}

, k = k(�). (12)

For this model to satisfy (7a)–(7c) when passing to the iteration � + 1, we consider
separately the two cases of the �-th iteration being a null step or a serious step.

Suppose first that the QP subproblem defined with ψ� given by (12) generates y�

as a null step. By construction, the new bundle satisfies (10) and (11) written with �
replaced by � + 1 (k remains the same). Thus, gi

hk
∈ ∂ek

i
hk(xk) for all i ∈ Boracle

�+1 .

Likewise, aggregate subgradients satisfy the inclusion ĝi ∈ ∂ε̂k
i
hk(xk) for all i ∈ Bagg

�+1.
Therefore, (7a) (written with � replaced by � + 1) is automatically satisfied. Finally,
for conditions (7b) and (7c) to hold, it is enough to make sure that

{(
ek
�, g�hk

∈ ∂ek
�
hk(x

k)
)}

⊆ Boracle
�+1 and

{(
ε̂k
� , ĝ� ∈ ∂ε̂k

�
hk(x

k)
)}

⊆ Bagg
�+1, if there is compression.

Those inclusions are also automatically satisfied, if the bundle is managed as in any
standard method; see Step 4 in Algorithm 3.1 below.
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Therefore, when there is a null step, the update of the bundle (and of the model)
does not present any problem. This is as expected, since the function h(·) =
hk(·) is fixed between consecutive serious steps. The situation changes when y� is
declared a serious step. Specifically, the aggregate bundle elements need a special
update.

3.2 Adjusting the model

Suppose that for some iteration � the descent test is satisfied (i.e., condition (6) written
with h replaced by hk), so that a new stability center xk+1 = y� is generated. This
means, in particular, that at the next iterate we start working with the new function
hk+1(·) = hxk+1(·).

As mentioned in Correa and Lemaréchal (1993), conditions (7a)–(7c) guarantee
that the bundle technique applied to the new function h(·) = hk+1(·) either produces
a descent step after a finite number of null steps, or the point xk+1 is a minimum of
hk+1(·). However, condition (7a) (written with � = � + 1) is not automatic in our
setting, and the model may need to be properly adjusted. Indeed, even though

ψ�(y) ≤ hk(y) and c+(xk)+ 〈ĝi , y − xk〉 − ε̂k
i ≤ hk(y), i ∈ Bagg

� ,

the same inequalities may not hold with hk replaced by hk+1. Specifically, if f (xk) <

f (xk+1), which is possible, then we have that hk(y) ≥ hk+1(y). Thus, the key relations
(7a)–(7c) are not guaranteed and in general do not hold.

There are various ways to ensure (7a)–(7c) after a serious step is taken. We next
present one approach.

Let ψ� be defined by (12), using (10) and (11). Suppose that the associated y� is
declared a serious step, i.e., xk+1 = y�. Then the following holds:

(i) For each i ∈ Boracle
� , the linearization errors

ef
k+1
i = ef

k
i + f (xk+1)− f (xk)+ 〈gi

f , xk − xk+1〉,
ec

k+1
i = ec

k
i + c(xk+1)− c(xk)+ 〈gi

c, xk − xk+1〉 (13)

satisfy (9) written with k = k + 1. As a result, gi
hk+1

∈ ∂ek+1
i

hk+1(xk+1), where

ek+1
i ≥ 0 and gi

hk+1
are defined in (11), written with k replaced by k + 1.

(ii) For each i ∈ Bagg
� , define

ε̂k+1
i := ε̂k

i + c+(xk+1)− c+(xk)+
(

f (xk+1)− f (xk)
)++〈ĝi , xk −xk+1〉.

(14)

Then ε̂k+1
i ≥ 0 and ĝi ∈ ∂

ε̂k+1
i

hk+1(xk+1); see Sagastizábal and Solodov (2005) for a

proof.
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As a consequence, regardless of whether the �-th iteration produced a null step or
a serious step, if

Boracle
�+1 ⊆

⋃

i≤�

{(
fi , ci , ef

k+1
i , ec

k+1
i , gi

f , gi
c

)}

and Bagg
�+1 ⊆

⋃

i≤�

{(
ε̂k+1

i , ĝi
)}

,

then the model

ψ�+1(y) = c+(xk)+ max

{

max
i∈Boracle

�+1

{
−ek

i + 〈gi
hk
, y− xk〉

}
,

max
i∈Bagg

�+1

{
−ε̂k

i + 〈ĝi , y− xk〉
}}

,

k = k(� + 1), satisfies (7a) written with � replaced by � + 1, with h(·) =
hk(·), k = k(� + 1). Furthermore, if

(
ε̂k
� , ĝ�

) ⊆ Bagg
�+1, then ψ�+1 satisfies (7b),

and if
(

f�, c�, ef�, ec�, g�f , g�c
)

⊆ Boracle
�+1 , then ψ�+1 satisfies (7c).

3.3 An infeasible constrained bundle method

We are now in a position to give the algorithm in full detail.

Algorithm 3.1 (Infeasible Constrained Proximal Bundle Method (icpbm))

Step 0. Initialization.
Choose parameters m ∈ (0, 1), tol ≥ 0, and an integer |B|max ≥ 2.
Choose x0 ∈ IRn. Set y0 := x0, and compute ( f0, c0, g0

f , g0
c ). Set k =

0, � = 1, ef0 := 0, ec0 := 0 and define the starting bundles Boracle
1 :=

{(ef
0
0, ec

0
0, f0, c0, g0

f , g0
c )} and Bagg

1 := ∅.
Step 1. Quadratic Programming Subproblem.

Choose μ� > 0 and compute y� as the solution to

min
y∈IRn

ψ�(y)+ 1

2
μ�‖y − xk‖2, (15)

where ψ� is defined by (12) and (11). Compute

ĝ� = μ�(x
k − y�), ε̂k

� = c+(xk)− ψ�(y
�)− 1

μ�
‖ĝ�‖2,

δ� = ε̂k
� + 1

2μ�
‖ĝ�‖2.

Compute ( f�, c�, g�f , g�c) and (ef
k
�
, ec

k
�), using (9) written with i = �.

Step 2. Stopping test. If δ� ≤ tol, stop.
Step 3. Descent test. Compute h� := hk(y�) = max{ f� − f (xk), c�}.

If h� ≤ c+(xk)−mδ�, then declare a serious step. Otherwise, declare a null
step.
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Step 4. Bundle Management.
Set Boracle

�+1 := Boracle
� and Bagg

�+1 := Bagg
� .

If the bundle has reached the maximum bundle size, i.e., if |Boracle
�+1 ∪Bagg

�+1| =
|B|max, then:
Delete at least two elements from Boracle

�+1 ∪Bagg
�+1, insert the aggregate couple

(ε̂k
� , ĝ�) in Bagg

�+1, append (ef
k
�
, ec

k
�, f�, c�, g�f , g�c) to Boracle

�+1 .
Step 5. Model adjustment (serious step).

If y� is a serious step, then: Define the next stability center
(
xk+1, f (xk+1),

c(xk+1)
) := (

y�, f�, c�
)
, update the linearization errors for i ∈ Boracle

�+1
using (13), update the aggregate errors for i ∈ Bagg

�+1 using (14). Set k = k+1.
Loop. Set � = �+ 1 and go to Step 1.

Some remarks are in order. Recalling the definition of hk(·), we conclude that if
the descent test is satisfied and a serious step is declared, then it must hold that

f (xk+1)− f (xk) ≤ c+(xk)− mδ� and c(xk+1) ≤ c+(xk)− mδ�.

In particular, if xk is infeasible, then f (xk+1) > f (xk) is possible (since c+(xk) > 0).
Therefore, the method is not monotone with respect to f when outside of the feasible
region. However, outside of the feasible region it is monotone with respect to c, because
c(xk+1) < c+(xk) = c(xk) for xk infeasible. This seems intuitively reasonable: while
it is natural to accept the increase in the objective function value in order to decrease
infeasibility, it is not so clear why one would want to decrease the objective function
at the expense of moving away from the feasible region. The situation reverses when
xk is feasible. In that case, c+(xk) = 0, so that f (xk+1) < f (xk). But although the
descent test above implies that xk+1 is feasible too, it is possible that c(xk+1) > c(xk)

(except when c(xk) is exactly zero). This also appears completely reasonable: while
preserving feasibility, we allow c to increase (so that the boundary of the feasible set
can be approached), at the same time obtaining a decrease in the objective function.

3.4 Convergence properties

We summarize convergence properties without going into details, which can be found
in Sagastizábal and Solodov (2005). Suppose (1) satisfies the Slater constraint quali-
fication, and its solution set is nonempty.

If Algorithm 3.1 generates an infinite sequence of serious steps which is bounded
(this holds, for example, if any iterate is feasible), then the sequence {xk} converges
to a solution to (1).

If Algorithm 3.1 makes a finite number of serious steps (i.e., from some point on
all the iterations are null steps), then the last serious iterate is a solution to (1).

4 Generation expansion problems

We next describe a variant of the generation expansion planning problem (GEP) in
Marcato and Sagastizábal (2007), and its solution by the infeasible constrained bundle
algorithm.
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4.1 Test problem

We consider GEP along the lines of Marcato and Sagastizábal (2007), with one impor-
tant difference. Namely, besides air pollution, we take into account the fact that some
thermal power plants also pollute rivers and lakes when the remains of burned fuel are
removed from the burner using water. The additional consideration of water pollution
introduces a convex constraint in GEP, cf. (16) below, requiring eventually to solve a
constrained nonsmooth problem.

The model considers different scenarios for air pollution limits and for the future
demand. We do not place the problem in a competitive economic environment, but
rather in a vertically integrated system. We consider a portfolio of investments com-
posed by candidate projects of two types: projects adding capacity to existing plants
(with a concave piecewise linear cost curve for thermal plants) and projects for con-
structing new plants, which can be compulsory, mutually exclusive, or complementary.
New coal plants can be standard, or using the so-called flue-gas desulfurization (fgd)
technique to reduce air pollution. Coal of both types (high and low sulfur), can be
bought in limited quantities on the spot market in each period. In addition, long term
contracts are available for ensuring the supply of low sulfur coal in large quantities
along the planning horizon time of N periods. However, these (take-or-pay) contracts
involve the commitment of a minimum purchase in each period. Generation costs
include operating and fuel costs. Load constraints are given by blocks (base, inter-
mediate, peak), with a reserve margin in the peak block. We refer to Marcato and
Sagastizábal (2007) for full details of the model. We recall here its main features.

Uncertainties. For a planning horizon of N periods, uncertainties regarding future
demand and air pollution limits are modeled in a scenario tree as in Fig. 1, which
shows that all uncertainties are revealed at the end of the N th

1 -period. From this period
on, the optimization process selects optimal decisions for each one of the Q scenarios
in the last N − N1 periods of the planning horizon.

Each branch q in the scenario tree has a probability denoted by pq , corresponding
to the joint probability of the scenario uncertainties. For example, if scenario q = 1
corresponds to the case of low economic growth and stringent pollution control, each
one with probability 0.3, then p1 = 0.09.

...
...

...

...

...... ...

t=1 2 n1 n2 n

q=1

q=2

q=Q

...

Fig. 1 Scenario tree representing uncertainties
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Variables. Physical variables of the problem are: added capacity, low sulfur coal
bought with a given contract, coal bought in the spot market (low or high sulfur coal),
and generation genν t

i of a given project i at a given time period t , and for ν = base,
peak, and intermediate demand block. There are also modeling binary variables, for
the different contracts and also for the different investment projects, denoted by ut

i .
Depending on the specific time period they correspond to, variables will be separated
in first and second stage. For notational convenience, all variables in periods 1 to N1
are gathered in the first stage vector x . Second stage variables correspond to periods
N1 +1 to N , and are denoted by x̃ , with a subindex q to distinguish different scenarios,
if needed for clarity.

Coal plants. Thermal power plants consume coal or natural gas and pollute the air,
and, in some cases, nearby water resources. Combustion of coal or natural gas increases
the level of CO2 and SO2 in the atmosphere. For coal-fired plants the demand con-
straint incorporating the percentage of SO2 by weight through a coefficient reflects a
nature of the sulfur content of each ton of coal.

Constraints. As mentioned, load constraints are given by blocks (base, intermediate,
peak), with a reserve margin in the peak block.

Air pollution constraints are expressed in the form of maximum limits of the total
sulfur emission allowed for the coal mix for each environmental scenario. Clearly, the
emission produced when burning low sulfur coal is less than when burning high sulfur
coal. Moreover, for fgd thermal plants both levels of emission are lower. These envi-
ronmental constraints are affine and can be expressed in an abstract form as x ∈ Xaff ,
or x̃ ∈ X̃aff , depending on the stage.

Water pollution constraints result from cleansing procedures for thermal plants,
which can be done at fixed time steps, whenever the remaining fuel falls below a lower
limit known a priori, say cleani for the i th thermal plant. Following Avetisyan et al.
(2006), this type of pollution can be modeled by limiting the concentration of pol-
lutants in water resources. In turn, such concentration is represented as a decreasing
convex function of how much fuel remains: the less combustible remains, the more
pollutant residuals lie in the bottom of the tank. The amount of remaining fuel varies
in an inverse manner with the amount of fuel burnt so far, which in turn depends on
the generation until time period t :

∑t
τ=1

∑3
ν=1 genτνi

. We use a scaling parameter θi

to convert energy generation into burnt fuel and let fuel0
i be the initial amount of

combustible at plant i . Accordingly, the fuel available until the cleansing process is
triggered is

remt
i = max

(

0,fuel0i − θi

t∑

τ=1

3∑

ν=1
genτνi − cleani

)

,

and the water pollution constraint takes the form:

e−αirem
t
i ≤ 1+conmax , a convex constraint with respect to remt

i ;
hence also to x . (16)
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In the expression above, conmax stands for the maximum allowed concentration of
pollutant, while α is the associated reaction rate coefficient.

Thermal pollution, i.e., increases in water temperature caused when using water as
a coolant, can be modeled in a similar manner.

Air pollution constraints do not couple different time periods. By contrast, some
investment constraints couple first and second stage variables. Suppose some project
ic is compulsory, i.e., it has to be built during the planning horizon. For each scenario
q ≤ Q, the modeling binary variables ut

ic
for t = 1, . . . , 4, and uq

t
ic

for t = 5, . . . , 10,
must satisfy the relation coupling first and second stage variables:

N1∑

t=1

u1
t
ic

+
N∑

t=N1+1

uq
t
ic

= 1, an affine constraint with respect to x and x̃ . (17)

Non-compulsory projects introduce similar coupling, but for inequality constraints.
The resulting model is a two-stage stochastic programming problem with recourse

of the form:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min 〈 fo, x〉 + 〈 f̃o, x̃〉
x ∈ X := lin(Xbox) ∩ Xaff

x̃ ∈ X̃ := lin(X̃box) ∩ X̃aff

Ax + Ãx̃ ≤ b
c(x) ≤ 0.

(18)

The objective function (operating, fuel, cleansing, and investment costs) is linear and
separable by stages and scenarios. In the feasible set of (18) the notation lin(Xbox)

(lin(X̃box)) is used to emphasize that each 0-1 variable was replaced by a continuous
variable ranging in the interval [0, 1]. Water pollution constraints, denoted abstractly
by c(x) in (18), are considered in the nonlinear form (16) only for first stage time
periods. For second stage periods, a linearized formulation is used, and, hence, it
enters the set X̃aff . As suggested by a reviewer, instead of linearizing the water pollu-
tion limits for the second stage, a worst-case approach convex risk-measure (over the
random variable of generation) could be used. This is an interesting subject for future
research.

Finally, the coupling constraint Ax + Ãx̃ ≤ b represents in a compact form cou-
pling constraints such as (17), which couple first and second order stages, but not
scenarios. We make the approximations above of the original mixed-integer nonlinear
programming problem in order to ensure convergence of the decomposition method
applied for solving (18) with probability one.

4.2 Decomposition method

Problem (18) has a structure suitable for the application of a Benders’-like decompo-
sition method. Specifically, consider the following problem, equivalent to (18):
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⎧
⎨

⎩

min 〈 fo, x〉 + vopt (x)
x ∈ X
c(x) ≤ 0,

(19)

where we defined the optimality function

vopt (x) =
⎧
⎨

⎩

min 〈 f̃o, x̃〉
x̃ ∈ X̃
Ãx̃ ≤ b − Ax .

(20)

For our relaxed problem (18), where all the data is convex and the cost function has
additive form, vopt is a convex nondifferentiable function with separable structure, by
scenarios. For a given first stage vector x , the vector A�π∗(x), with π∗(x) being an
optimal multiplier corresponding to the inequality constraint in (20), is a subgradient
for vopt at x .

The reformulation of (18) using two levels yields a decomposition method, com-
posed by a master program (19) and a slave problem (20), decomposable in Q linear
programs, one per scenario. The master program is a constrained nonsmooth optimi-
zation problem of the form (1).

For simplicity, we assume that problem (18) has relatively complete recourse, i.e.,
for all x ∈ X the feasible set in (20) is nonempty for all scenarios, with probability one.
For GEP this property is ensured by introducing a fictitious plant with large enough
capacity and operating cost equal to the deficit cost resulting from load shedding.

4.3 Results

For illustration, we apply algorithm icpbm to a prototype system composed by nuclear,
gas, oil, and coal plants. We consider a mix from Bienstock and Shapiro (1988), com-
posed by 11 existing plants using coal (3 plants), coal with fgd (2), oil (2), peakers
(3), and nuclear (1). A peaking power plant, or “peaker”, generally runs only when
there is a high demand, known as peak demand, for electricity.

There are 5 capacity expansion options (for coal, coal with fgd, oil, gas, 1 and
peaker plants). The full set of data can be found in Bienstock and Shapiro (1988).

We present results for different demand scenarios (low, medium and high economic
growth) and environmental cases (non-stringent and stringent), according to the data
in Table 1.

Table 1 Scenarios for the test case

Scenarios Demand growth

1% (prob. 0.3) 2% (prob. 0.4) 4% (prob. 0.3)

Maximum air pollution allowed
0.4% (prob. 0.3) 1 3 5

0.7% (prob. 0.7) 2 4 6
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Note that scenario 5 is the one with strongest constraints (highest demand growth
and lowest pollution limit), while scenario 2 is the less stringent one. Scenarios 2, 4,
and 6 have less stringent control on sulfur emissions. Scenarios 1 and 2 (respectively,
5 and 6) have the lowest (respectively, the highest) demand.

The values taken for the water pollution constraint (16) were the following. For
all plants and first stage periods, rate α = 0.15, and conmax = 0.05. For each coal
plant, the value of cleani triggering the cleansing procedure was set to 0.5% of the
capacity of the plant, and the cleansing cost was 10% of the generation cost.

The initial mix configuration was taken as starting point, and the stopping tolerance
was set to 5 ∗ 10−5. We made runs on two variants of the test case. The first variant,
referred to as “without WP control”, does not consider the water pollution (WP) con-
straint (16). The second variant considers (16) and is referred accordingly as “with
WP control”. For the variant without WP the method converged to the optimal value in
12 iterations. For the variant with WP control the method converged in 14 iterations.
The final constraint violation was less than 10−4 in all cases.

Our main results are reported in Figs. 2, 3, 4, 5, 6 below. Each figure contains two
graphs, the left one corresponding to the values obtained without WP control, while
the right one corresponds to the variant with WP control. The reported results compare
the consumption of low sulfur (LS) and high sulfur (HS) coal for the planning period,
the expansion plan, and the sources of generation (no coal, fgd-coal, polluting coal
plants) for the first stage period, as well as for the two extreme scenarios, namely #2
and #5.

In Fig. 2 we see that, with or without WP control, LS coal levels are kept constant
for all periods and scenarios. However, as a result of constraint (16), we observe a drop
in such levels, which fall from 1.4 millions of BTU without WP control to 1.2 millions
of BTU if there is WP control (BTU stands for British Thermal Unit, a traditional unit
of energy most often used in the power industry).

As for the sources of LS coal, with WP control there is practically no LS coal
bought in the spot market, as opposed to the variant without WP control. The amount
of contracted coal is similar in both variants.
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Fig. 2 LS coal consumption, without WP control (left) and with WP control (right)
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Fig. 3 HS coal consumption, without WP control (left) and with WP control (right)
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Fig. 5 Second stage generation, scenario 2, without WP control (left) and with WP control (right)

123



180 C. Sagastizábal, M. Solodov

No Coal Coal−fgd Polluting Coal
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Generation from 5th to 10th year, without WP control, scenario.5
10

−
3

G
W

h

3rd period

4th period

5th period

No Coal Coal−fgd Polluting Coal
0

0.5

1

1.5

2

2.5

Generation from 5th to 10th year, with WP control, scenario.5

10
−

3
G

W
h

3rd period

4th period

5th period

Fig. 6 Second stage generation, scenario 5, without WP control (left) and with WP control (right)

When comparing the two graphs of Fig. 3, we see that the right-hand side figure,
corresponding to imposing WP control, shows a significant decrease in HS coal con-
sumption: the corresponding values dropped from ranging between 0.14 and 0.34 to
ranging between 0.0 and 0.06 millions of BTU (years 1–2 and 9–10, respectively, for
both graphs).

As for the optimal expansion, during the first stage with WP control the model
decides to build a peaker of 0.1 GW capacity, but without WP control it does not.
During the second stage periods, there is no addition of capacity in either variant for
scenario 2, the easiest one. For the hardest scenario 5, with WP control there is a signif-
icant addition of capacity in a gas and a peaker plants (0.3 and 0.1 GW, respectively).
Without WP control, the peaker increases its capacity, but the gas plant capacity is
increased by half of the amount decided by the variant with WP control. This explains
the extra coal consumption of the WP control left-hand side graphs, when compared
to the right-hand side ones in Figs. 2 and 3.

Figure 4 shows for each variant the optimal generation during the first stage years,
discriminating the different types of plants: fgd-coal plants, polluting coal plants with-
out fgd process, and other plants. We observe that without WP control, specially in the
second period, there is an increase in the generation of fgd-coal plants. By contrast,
with WP control, the WP constraint (16) reduces the fgd-coal generation in favor of
other sources of energy (note the increase of other sources for the second period in the
right-hand side of Fig. 4, when compared to the same column in the left-hand side).

Figures 5 and 6 show generation results for years 5–10 for scenario 2 and scenario
5, respectively. For scenario 2, generation from sources other than coal increases in
about 20% with WP control, while polluting coal generation remains constant for both
variants. As for fgd-coal generation, it drops in about 15% when there is WP control.

For scenario 5, there is an increase in about 20% on the generation of the no-coal
plants with WP control (compare the first group of columns in the left- and right-
hand graphs in Fig. 6). Generation of coal plants drops accordingly when there is WP
control. As for the first stage, in both scenarios we see the effectiveness of the water
pollution constraint (16) in reducing coal plants generations. Since scenario 2 is less
stringent from the emissions point of view, the reduction is distributed by keeping
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constant the generation of (the less expensive) polluting plants and substituting fgd-
coal generation by other sources. By contrast, for the more stringent scenario 5, coal
generation is clearly avoided, and the preference is given to other sources of energy.

Concluding remarks

We have described the structure and properties of a recently developed constrained
bundle-type method suitable for solving some problems arising in energy applications,
in particular those obtained through Lagrangian relaxation or Bender’s decomposition.
One example is the generation expansion planning problem with environmental con-
straints, for which numerical experiments have been reported. We note that already in
our toy example, imposing environmental constraints, such as limits in the maximum
allowed for sulfur emission of the coal mix and water pollution constraints, showed
a perceptible impact on the expansion decisions and can be used as an effective tool
to reduce pollution. For more sophisticated power systems, it can be interesting to
analyze the impact of bundle compression and aggregation in the performance of the
algorithm. For unconstrained problems, Hiriart-Urruty and Lemaréchal (1993, Ch.
XIV, vol. II) contains a numerical comparison of the effect of compression and aggre-
gation in bundle methods.
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