
Digital Object Identifier (DOI) 10.1007/s101079900113

Math. Program., Ser. A 87: 189–202 (2000)  Springer-Verlag 2000

M.V. Solodov· B.F. Svaiter

Forcing strong convergence of proximal point iterations
in a Hilbert space

Received January 6, 1998 / Revised version received August 9, 1999
Published online November 30, 1999

Abstract. This paper concerns with convergence properties of the classical proximal point algorithm for
finding zeroes of maximal monotone operators in an infinite-dimensional Hilbert space. It is well known that
the proximal point algorithm converges weakly to a solution under very mild assumptions. However, it was
shown by Güler [11] that the iterates may fail to converge strongly in the infinite-dimensional case. We propose
a new proximal-type algorithm which does converge strongly, provided the problem has a solution. Moreover,
our algorithm solves proximal point subproblems inexactly, with a constructive stopping criterion introduced
in [31]. Strong convergence is forced by combining proximal point iterations with simple projection steps
onto intersection of two halfspaces containing the solution set. Additional cost of this extra projection step is
essentially negligible since it amounts, at most, to solving a linear system of two equations in two unknowns.
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1. Introduction

Consider the problem

find x ∈ H such that 0∈ T(x) , (1)

whereH is a real Hilbert space, andT(·) is a maximal monotone operator (or a multi-
function) onH. We shall denote the solution set of this problem by

S := {x ∈ H | 0 ∈ T(x)} .
One of the classical algorithms for solving (1) is the proximal point method, introduced
by Martinet [18] and further developed by Rockafellar [24]. Some other relevant papers
on the proximal point method and its applications and modifications are [20,23,5,21,
17,10,12,9,4,6,31,29,27]. This list is by no means exhaustive, we refer the reader to
[16] for a survey. Specifically, havingxk ∈ H, a current approximation to the solution of
(1), the proximal point method generates the next iteratexk+1 by solving the proximal
subproblem

0 ∈ T(x)+ µk(x− xk) , (2)

whereµk > 0 is a regularization parameter. If the sequence{µk} is chosen bounded from
above, then the resulting sequence{xk} of proximal point iterates convergesweaklyto
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an element ofS, provided this set is nonempty, see [24]. In [24], Rockafellar also posed
an open question whether (or not) the proximal point method always convergesstrongly.
This question was resolved in the negative by Güler [11], who exhibited a proper closed
convex functionf in an infinite-dimensional Hilbert spacel2, for which the proximal
point algorithm (in our framework, procedure (2) withT = ∂ f ) converges weakly but
not strongly. Naturally, the question arises whether the proximal point method can be
modified, preferably in a simple way, so that strong convergence is guaranteed.

In this paper, we develop a strongly convergent algorithm by combining proximal
point iterations with certain (computationallysimple) projection steps (see Algorithm 1).
Moreover, we allow the proximal point subproblems to be solved inexactly, and our
tolerance requirements are less restrictive and more constructive than in the classical
setting of [24] (this is discussed in detail in Sect. 2). Our approach is closely related
to the hybrid projection-proximal point method presented in [31]. The principal idea
of [31] is to use (approximate) solutions of proximal point subproblems to construct
certain hyperplanes which separate the iterates from the solution setS, if it is nonempty.
Convergence is forced by adding simple projection steps onto associated halfspaces.

Of course, weak and strong convergence are only distinguishable in the infinite-
dimensional setting. On the other hand, even when we have to solve infinite-dimensional
problems, numerical implementations of algorithms are certainly applied to finite-
dimensional approximations of the problems. Nevertheless, it is important to have
convergence theory for the infinite-dimensional case, because it guarantees robust-
ness and stability with respect to discretization schemes employed for obtaining finite-
dimensional approximations of infinite-dimensional problems. This issue is closely
related to the so-calledMesh Independence Principle[2,1,15]. This principle relies on
infinite-dimensional convergence to predict the convergence properties of a discretized
finite-dimensional method. Furthermore, the mesh independence provides theoretical
justification for the design of refinement strategies. Note that fine discretization is cru-
cial for the obtained discrete solution to be an appropriate approximation to the true
solution of the infinite-dimensional problem being solved. We note that many real-world
problems in economics and engineering are modeled in the infinite-dimensional spaces.
These include the optimal control and structural design problems, and the problem of
minimal area surface with obstacles, among others. We refer the reader to [13,14], where
a variety of applications are described.

The rest of the paper is organized as follows. In Sect. 2, the concept of inexact
solutions of proximal subproblems with associated error tolerance is formally defined,
and relevant properties of such inexact solutions are established. In Sect. 3, the algorithm
is formally stated, and its components are discussed. Convergence results are presented
in Sect. 4. Section 5 contains some concluding remarks.

We briefly describe our notation. The inner product inH is denoted by
〈·, ·〉. The

norm determined by the the inner product is denoted by‖ · ‖. For a nonempty closed
convex setA ⊆ H and an elementx ∈ H, the orthogonal projection ofx onto A, i.e.,
arg min{‖y− x‖ | y ∈ A}, is denoted byPA(x). By ri(A)we denote the relative interior
of A.

Finally, we state the following well known properties of the projection operator to
be used in the sequel.
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Lemma 1. [32] Let A be any nonempty closed convex set inH. For anyx, y ∈ H and
anyz ∈ A, the following properties hold :

〈x− PA(x), z− PA(x)〉 ≤ 0 ;
‖PA(x)− PA(y)‖2 ≤ ‖x− y‖2− ‖PA(x)− x+ y− PA(y)‖2 .

2. Inexact proximal point iterations

Because solving the proximal subproblem (2) exactly can be computationally as difficult
(or almost as difficult) as solving the original problem (1) itself, of particular importance
is the case when the subproblems are solved only approximately, that is we find a pair
yk ∈ H andvk ∈ T(yk) such that

εk = vk + µk(y
k − xk) , (3)

whereεk is the error associated with inexact solution of subproblem (2). In the pure
inexact proximal point method, one then sets

xk+1 := yk

to obtain the next iterate.
The subject of appropriate approximation criteria for the inexact solution of proximal

point subproblems is very important, and it has been addressed, for example, in [24,
6,8]. Typically, the following (or conceptually similar) conditions are used to ensure
convergence of the iterates:

‖εk‖ ≤ σkµk ,

∞∑
k=0

σk <∞ ,

or

‖εk‖ ≤ σkµk‖yk − xk‖ ,
∞∑

k=0

σk <∞ .

The first condition above is used to ensure global convergence, while the second condi-
tion (together with certain additional assumptions) implies local linear rate of conver-
gence. Note that asummablesequence{σk} essentially has to be chosen a priori, which
makes a constructive choice difficult in most situations. Also note that under the second
condition, therelativeerror in (3) satisfies

‖εk‖
µk‖yk − xk‖ ≤ σk ,

∞∑
k=0

σk <∞ .

So the relative error must be summable, and hence, tend to zero. A simple example in
[31] shows that if the tolerance parametersσk are fixed at a nonzero value, convergence of
the inexact proximal point iterations cannot be guaranteed even in the finite-dimensional
case.
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A proximal-point-type method with a more realistic and constructive error tolerance
has recently been proposed in [31]. In particular, for the method of [31], the relative error
in (3) can be fixed. In other words, we acceptyk ∈ H andvk ∈ T(yk) as a satisfactory
approximate solution in (3) wheneverany oneof the following two conditions is met:

‖εk‖
µk‖yk − xk‖ ≤ σ or

‖εk‖
‖vk‖ ≤ σ ,

whereσ ∈ [0,1). Note that hereσ does not depend on the iteration indexk (although,
in principle, it certainly need not be fixed; the important issue is that it can be kept
bounded away from zero). The key fact is that under this condition, the hyperplane

Hk :=
{
x ∈ H | 〈vk, x− yk〉 = 0

}
strictly separates the current iteratexk from the solution setS (we assume here that it
is nonempty). Convergence (in the weak topology) can then be guaranteed if we obtain
the next iteratexk+1 as the orthogonal projection ofxk onto Hk:

xk+1 = PHk(x
k).

This hybrid method retains all the attractive convergenceproperties of the proximal point
algorithm while allowing a fixed relative error tolerance. We refer the reader to [31] for
complete analysis. An important point to note is that projection onto a hyperplane can
be carried out explicitly, so it does not entail any significant additional computational
cost. We also note that this projection step is indispensable in the sense that if one
sets insteadxk+1 := yk, where yk is computed with fixed relative error tolerance
σ ∈ (0,1), then the iterates of the resultingpure inexact proximal method mail fail
to converge even in<2 (see an example in [31]). For an extension of the described
notion of approximate solution to the setting of generalized proximal algorithms based
on the Bregman functions, we refer the reader to [29]. Another extension using certain
enlargements (outer approximations) of the operator defining the problem can be found
in [28]. Using also the linesearch technique of [26], the framework of [31,28] led to
the development oftruly globally convergent inexact Newton methods for monotone
equations [30] and complementarity problems [25].

However, by itself, the method of [31] does not attain the goal of the present
paper. Like the classical proximal method, it may converge weakly but not strongly
in an infinite-dimensional space. This is easy to see because withεk = 0, the hybrid
projection-proximalpoint method reduces to the standard proximal point method (again,
see [31]). Hence, the counter example of Güler [11] applies. Still, the separation and
projection methodology of [31] will appear very useful for devising a strongly convergent
algorithm.

As already mentioned, the method proposed here will use inexact proximal iterates
to set up appropriate projection steps. We proceed to study the properties of inexact
solutions of proximal subproblems, which will be used in the sequel.

Definition 1. Let x ∈ H, µ > 0 andσ ∈ [0,1). We say that a pair(y, v) ∈ H×H is
an inexact solution with toleranceσ of 0 ∈ T(·)+ µ(· − x), if

v ∈ T(y) ,
v+ µ(y− x) = ε ,
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and

‖ε‖ ≤ σ max{‖v‖, µ‖y− x‖} .
Next we establish some nice properties of inexact solutions defined above.

Proposition 1. Let x ∈ H, µ > 0 andσ ∈ [0,1), and suppose that(y, v) is an inexact
solution of 0 ∈ T(·)+ µ(· − x) with toleranceσ . Then it holds that〈

x− y, v
〉 ≥ (1− σ)max{µ‖x− y‖2, ‖v‖2/µ} ≥ (1− σ)‖v‖‖x − y‖ . (4)

Define

H := {z ∈ H | 〈z− y, v
〉 ≤ 0

}
.

Then the following four statements are equivalent:

x ∈ H ;
y = x ;
v = 0 ;
x is a solution of (1).

Furthermore,

‖PH(x)− x‖ ≥ (1− σ)max{‖x− y‖, ‖v‖/µ} . (5)

Proof. To prove (4), we consider the two possible cases:

µ‖x− y‖ ≤ ‖v‖ and µ‖x− y‖ ≥ ‖v‖ .
In the first case, we have that

‖ε‖ ≤ σ‖v‖ .
It follows that in this case 〈

x− y, v
〉 = 1

µ
〈v− ε, v〉

≥ 1− σ
µ
‖v‖2 . (6)

Furthermore, 〈
x− y, v

〉 ≥ 1− σ
µ
‖v‖2

≥ (1− σ)‖v‖‖y− x‖
≥ µ(1− σ)‖y− x‖2 . (7)

Combining (6) and (7), we conclude that (4) holds in the first case.
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Consider now the second case. We have that

‖ε‖ ≤ σµ‖y− x‖ .
Hence, 〈

x− y, v
〉 = 〈x− y, µ(x− y)+ ε〉
≥ µ(1− σ)‖x− y‖2 . (8)

Furthermore, in this case,〈
x− y, v

〉 ≥ µ(1− σ)‖x − y‖2
≥ (1− σ)‖v‖‖y− x‖
≥ 1− σ

µ
‖v‖2 . (9)

Again, combining (8) and (9), we obtain that (4) is satisfied in the second case also.
Next, we establish the equivalence of the four conditions. Suppose thatx ∈ H . Then

〈x− y, v〉 ≤ 0 and, by (4),x = y. If x = y, then〈x− y, v〉 = 0 and, again by (4),v = 0.
By the same reasoning, ifv = 0 thenx = y andx is a solution of (1). Finally, ifx is
a solution (i.e., 0∈ T(x)) then, by the monotonicity ofT,

0≤ 〈y− x, v− 0〉 = 〈y− x, v〉 ,
and sox ∈ H .

Finally, to prove (5), note that ifx ∈ H , thenx = y, v = 0 and (5) holds trivially.
The other case isx /∈ H (and sov 6= 0). Then

PH(x) = x− 〈v, x − y〉
‖v‖2 v .

Hence,

‖PH(x)− x‖ = 〈v, x − y〉
‖v‖ .

If ‖v‖/µ ≥ ‖x− y‖ then‖v‖2/µ ≥ µ‖x− y‖2, and (5) follows from the first inequality
in (4). If ‖v‖/µ ≤ ‖x − y‖ then (5) follows from the second inequality in (4). This
completes the proof.

ut

3. The algorithm

We are now ready to formally state our algorithm.

Algorithm 1. Choose anyx0 ∈ H andσ ∈ [0,1). At iteration k, havingxk, choose
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µk > 0 and find(yk, vk), an inexact solution of

0 ∈ T(x)+ µk(x− xk)

with toleranceσ . Define

Hk =
{
z ∈ H | 〈z− yk, vk〉 ≤ 0

}
,

and

Wk =
{
z ∈ H | 〈z− xk, x0 − xk〉 ≤ 0

}
.

Take

xk+1 = PHk∩Wk(x
0) .

ut
Note that at each iteration, there are two subproblems to be solved: find an inexact
solution of the proximal point subproblem and find the projection ofx0 ontoHk∩Wk, the
intersection of two halfspaces. The proximal subproblem always has an exact solution,
which is unique (this is a classical result of Minty [19]). Computing an approximate
solution only makes things easier. So this part of the method is well-defined (but it
is worth to note that since some error is allowed, in general the pair(yk, vk) is not
uniquely defined). Regarding the projection step, we shall prove that the setHk ∩Wk is
never empty, even when the solution setS is empty. Therefore the whole algorithm is
well-defined in the sense that it generates an infinite sequence{xk} (and an associated
sequence of pairs{(yk, vk)}). Also note that starting with the samex0, many different
sequences satisfying the conditions of Algorithm 1 can be generated. Finally, note that
from Proposition 1 it follows that at some iterationk′, xk′ ∈ S if and only if vk′ = 0. So,
in that case, for allk ≥ k′ we will havexk = xk′ andvk = 0.

Some remarks are in order regarding complexity of the projection step in Algo-
rithm 1. Even though we are working in an infinite-dimensional space, projection onto
an intersection of two halfspaces amounts to solving, at most, a linear system of two
equations with two unknowns. Suppose that at iterationk, Wk∩Hk is nonempty (this fact
will be formally established in Sect. 4). Thenxk+1 is well defined and is characterized
as the solution of

minz ‖z− x0‖2
s.t. 〈 z− yk , vk 〉 ≤ 0 ,

〈 z− xk , x0− xk 〉 ≤ 0 .

Let us expressz− x0 as a linear combination ofvk andx0− xk plus a vector orthogonal
to vk andx0− xk:

z− x0 = λ1v
k + λ2(x0 − xk)+ h ,

〈h, v〉 = 0 , 〈h, x0 − xk〉 = 0 .

So, the problem above becomes

minλ1,λ2,h ‖h‖2 + ‖λ1v
k + λ2(x0− xk)‖2

s.t. 〈 λ1v
k + λ2(x0− xk)+ x0− yk , vk 〉 ≤ 0 ,

〈 λ1v
k + λ2(x0− xk)+ x0− xk , x0− xk 〉 ≤ 0 .
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Due to the special structure of this problem, at the solution we obviously haveh = 0.
Thereforeλ1 andλ2 are obtained solving a two-dimensional quadratic minimization
problem with two linear inequality constraints.

Furthermore, it is easy to see that if the projection ofx0 onto Hk

PHk(x
0) = x0− 〈v

k, x0− yk〉
‖vk‖2 vk

belongs toWk then

PHk(x
0) = PHk∩Wk(x

0) .

So in this case, to obtainxk+1 there is no need for any further computation. Otherwise,
we have

PHk∩Wk(x
0) = x0+ λ1v

k + λ2(x
0 − xk) ,

whereλ1, λ2 is the solution of the linear system of two equations with two unknowns:

λ1 ‖vk‖2 + λ2 〈vk, x0 − xk〉 = −〈x0 − yk, vk〉
λ1 〈vk, x0− xk〉 + λ2 ‖x0 − xk‖2 = −‖x0− xk‖2.

Therefore, we could actually write an explicit formulae for obtainingxk+1, which means
that the cost of the projection step in Algorithm 1 is essentially negligible.

The preceding analysis shows that the cost of each iteration of Algorithm 1 is about
the same as that of an iteration of the inexact proximal point method (actually, of the
modified projection-proximal method of [31], since we adopt the relaxed approximation
criterion introduced in that reference). Thus we obtain a strongly rather than weakly
convergent proximal-type algorithm at essentially no additional cost per iteration. We
proceed to establish strong convergence of the method.

4. Convergence analysis

We start with establishing some properties of the algorithm which hold regardless of
whether the problem has solutions or not. Letxk, yk, vk , k = 0,1, . . . be variables
generated by Algorithm 1. For now, they may be defined either for all iteration indices
k or only up to some indexk0.

Proposition 2. Suppose that Algorithm 1 reaches an iterationk+ 1. Then it holds that

‖xk+1 − x0‖2 ≥ ‖xk − x0‖2 + ‖xk+1 − xk‖2 , (10)

and

‖xk+1 − xk‖ ≥ (1− σ)max{‖yk − xk‖, ‖vk‖/µk} . (11)
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Proof. By the definition ofWk, it is clear thatxk is the projection ofx0 onto Wk.
Applying Lemma 1 withA = Wk, x = xk+1 andy = x0, we obtain∥∥PWk(x

k+1)− PWk(x
0)
∥∥2 ≤ ‖xk+1 − x0‖2− ∥∥PWk(x

k+1)− xk+1 + x0− PWk(x
0)
∥∥2
.

Becausexk+1 ∈ Wk, we have thatPWk(x
k+1) = xk+1. Furthermore,PWk(x

0) = xk.
Hence,

‖xk+1 − x0‖2 ≥ ‖xk − x0‖2 + ‖xk+1 − xk‖2 .
Sincexk+1 ∈ Hk, it holds that

‖xk+1 − xk‖ ≥ ‖xk − PHk(x
k)‖ .

Now (11) follows from Proposition 1.
ut

As a consequence of Proposition 2, we immediately obtain the following result.

Corollary 1. Suppose the sequence of regularization parameters{µk} is bounded
from above, and Algorithm 1 generates an infinite sequence{xk}. Then either{xk}
is bounded and each of its weak accumulation points belongs toS 6= ∅, or S= ∅ and
limk→∞ ‖xk‖ = ∞.

Proof. Applying (10) consecutively, we obtain

‖xk − x0‖2 ≥
k−1∑
j=0

‖x j+1− x j ‖2 .

If {xk} is bounded, lettingk→∞ yields that
∞∑
j=0

‖x j+1− x j‖2 <∞ ,

and hence,

0= lim
k→∞‖x

k+1 − xk‖ .
By (11) and boundedness of{µk} from above, we further obtain that

lim
k→∞‖y

k − xk‖ = 0 , (12)

lim
k→∞‖v

k‖ = 0 . (13)

Since the sequence{xk} is bounded, it must have weak accumulation points. Letx̄ beany
weak accumulation point of{xk}, and take any subsequence{xkj } weakly convergent to
it. By (12), {ykj } has the same weak limit̄x. Sincevk ∈ T(yk) with vk → 0 strongly,
the maximal monotonicity ofT implies that 0∈ T(x̄) (the argument to show this is
standard). That is,̄x ∈ S.

Suppose now thatS= ∅. By the preceding assertion, the sequence{xk} is unbounded
in this case. Since, by (10), the sequence{‖xk − x0‖} is nondecreasing, it follows that
‖xk − x0‖ →∞ ask→∞, and so‖xk‖ →∞.

ut
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Next, we shall prove well-definedness and strong convergence of{xk} to a solution
in the caseS 6= ∅. After that, we shall establish well-definedness of{xk} in the case
S= ∅. In the latter case, we obtain that‖xk‖ → ∞, which is somewhat stronger than
simple unboundedness of{xk}.

4.1. The caseS 6= ∅

In this subsection we assume that (1) has a solution, soS 6= ∅. Having chosen the initial
iteratex0, let us define the following set which will be important for the subsequent
analysis:

U(x0) = {x ∈ H | ∀z ∈ S,
〈
z− x, x0− x

〉 ≤ 0
}
. (14)

We next show that the setHk ∩ Wk always contains the solution setS. Hence, it is
nonempty and the projection step in Algorithm 1 is well-defined. Furthermore, we show
that the generated sequence of iterates{xk} is contained in the setU(x0).

Proposition 3. Suppose that Algorithm 1 reaches an iterationk andxk ∈ U(x0). Then
it holds that

1. S⊆ Hk ∩Wk.
2. xk+1 is well-defined andxk+1 ∈ U(x0).

Proof. First note that by the monotonicity ofT,

〈vk, yk − x∗〉 ≥ 0

for anyx∗ ∈ S. Hence,S⊆ Hk. Sincexk ∈ U(x0), we also have that〈
x∗ − xk, x0− xk〉 ≤ 0 ∀x∗ ∈ S.

By the definition ofWk, we obtain thatS⊆ Wk. We conclude thatS⊆ Hk ∩Wk.
In particular, it follows thatHk ∩Wk 6= ∅, and the next iteratexk+1 is well-defined.

Becausexk+1 is the projection ofx0 onto Hk ∩Wk, by Lemma 1 we obtain that

〈z− xk+1, x0− xk+1〉 ≤ 0 ∀z ∈ Hk ∩Wk.

SinceS⊆ Hk ∩Wk, the above relation certainly holds for allz ∈ S, which implies that
xk+1 ∈ U(x0), by the definition given in (14).

ut
It can be now easily verified that the whole algorithm is well-defined.

Corollary 2. Algorithm 1 is well-defined and generates infinite sequences{xk} and
{yk},{vk} such thatxk ∈ U(x0) and S ⊆ Hk ∩ Wk for all k. Furthermore, if{µk} is
bounded from above, then{xk} is bounded and each of its weak accumulation points
belongs toS.
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Proof. It is enough to observe thatx0 ∈ U(x0) and apply Proposition 3 and induction
on k. Corollary 1 further implies that{xk} is bounded with weak accumulation points
being inS.

ut
We are now ready to prove strong convergence of any sequence{xk} generated by

Algorithm 1 starting fromx0, to the solution of (1) which is closest tox0.

Theorem 1. Let {xk} be a sequence generated by Algorithm 1, and suppose that the
sequence of regularization parameters{µk} is bounded from above. Then{xk} converges
stronglyto x∗ = PS(x0).

Proof. Note thatx∗, the projection ofx0 onto S, exists because the solution setS is
closed, convex, and we assumed it to be nonempty. By the definition ofxk+1, we have
that

‖xk+1 − x0‖ ≤ ‖z− x0‖ ∀z ∈ Hk ∩Wk .

Sincex∗ ∈ S⊆ Hk ∩Wk, it follows that for allk

‖xk − x0‖ ≤ ‖x∗ − x0‖ . (15)

By Corollary 2, we already know that{xk} is bounded with all of its weak accumulation
points belonging toS. Let {xkj } beanyweakly convergent subsequence of{xk}, and let
x̄ ∈ Sbe its weak limit. Observe that

‖xkj − x∗‖2 = ‖xkj − x0− (x∗ − x0)‖2
= ‖xkj − x0‖2+ ‖x∗ − x0‖2
− 2〈xkj − x0, x∗ − x0〉

≤ 2‖x∗ − x0‖2 − 2〈xkj − x0, x∗ − x0〉 ,
were the inequality follows from (15). By the weak convergence of{xkj } to x̄, we then
obtain

lim sup
j→∞

‖xkj − x∗‖2 ≤ 2(‖x∗ − x0‖2− 〈x̄− x0, x∗ − x0〉) . (16)

Applying Lemma 1 withA = S, x = x0 andz= x̄ ∈ S, and taking into account thatx∗
is the projection ofx0 ontoS, we have that

〈x0 − x∗, x̄− x∗〉 ≤ 0 .

Now from the latter relation it follows that

‖x∗ − x0‖2 ≤ 〈x̄− x0, x∗ − x0〉 .
Combining the last inequality with (16), we conclude that{xkj } convergesstronglyto x∗.
Clearly x̄ = x∗ becausēx is a weak limit of{xkj }.

Sincex̄ was taken as anarbitrary weak accumulation point of{xk}, it follows that
x∗ is the uniqueweak accumulation point of this sequence. Since{xk} is bounded,
the whole sequence{xk} weakly converges tox∗. On the other hand, we have shown
that every weakly convergent subsequence of{xk} converges strongly tox∗. Hence, the
whole sequence{xk} converges strongly tox∗ ∈ S.

ut
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4.2. The caseS= ∅

In this subsection we assume that no solution exists. We shall prove that the sequence
{xk} is still defined for everyk, and that it diverges.

Theorem 2. If S = ∅ then Algorithm 1 generates an infinite sequence{xk}. If, in
addition, the sequence of regularization parameters{µk} is bounded from above, then
limk→∞ ‖xk‖ = ∞.

Proof. In view of Corollary 1, we only have to establish well-definedness of the al-
gorithm. We argue by induction. We first check that the initial iterationk = 0 is well
defined. The problem 0∈ T(x)+ µ0(x− x0) always has the exact solution, and hence
some inexact solution(y0, v0). Now note thatW0 = H. SinceH0 cannot be empty, the
next iteratex1 is generated, which is the projection ofx0 onto H0 = W0 ∩ H0.

Note that wheneverxk is generated,yk andvk can further be obtained because the
proximal subproblems always have (in)exact solutions. Suppose thatxk, (yk, vk) are

defined fork = 0, . . . , k̂. It is enough to prove thatxk̂+1 is well-defined. Take any

z0 ∈ ri(D(T)) ,

whereD(T) is the domain ofT, and define

ρ = max{‖yk − z0‖|k = 0, . . . k̂}
and

h(x) =
{

0 if ‖x− z0‖ ≤ ρ + 1 ,
+∞ otherwise.

Then h : H → R ∪ {+∞} is a lower semicontinuous proper convex function, its
subgradient∂h is maximal monotone, and

T′ = T + ∂h
is also maximal monotone [22]. Furthermore,

T′(z) = T(z) if ‖z− z0‖ < ρ + 1 .

Therefore,vk ∈ T′(yk) for k = 0, . . . , k̂. We conclude thatxk, (yk, vk) also satisfy the
conditions of Algorithm 1 applied to the problem

0 ∈ T′(x) .

Since T′ has a bounded domain, the above problem has solutions. Using the two

preceding observations and Corollary 2, it follows thatxk̂+1 is well-defined, and hence,
so is the whole algorithm.

The conclusion now follows using Corollary 1.
ut
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5. Concluding remarks

We presented a proximal-type algorithm for finding zeroes of maximal monotone oper-
ators, which converges strongly in an infinite-dimensional Hilbert space to a solution,
provided it exists. In this sense, this is a significant theoretical improvement over the
classical proximal point method which converges weakly but not strongly. Strong con-
vergence of our method is forced by adding a simple projection step which amounts to
solving, at most, a linear system of two equations with two unknowns. Furthermore,
a constructive error tolerance is used in the approximate solution of proximal subprob-
lems. Finally, we mention the recent work [7,3], which has some interesting connections
to the algorithm described in this paper.
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