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Abstract. We propose a modification of the classical extragradient and proximal point algorithms for
finding a zero of a maximal monotone operator in a Hilbert space. At each iteration of the method, an
approximate extragradient-type step is performed using information obtained from an approximate
solution of a proximal point subproblem. The algorithm is of a hybrid type, as it combines steps of the
extragradient and proximal methods. Furthermore, the algorithm uses elements in the enlargement
(proposed by Burachik, Iusem and Svaiter) of the operator defining the problem. One of the important
features of our approach is that it allows significant relaxation of tolerance requirements imposed
on the solution of proximal point subproblems. This yields a more practical proximal-algorithm-
based framework. Weak global convergence and local linear rate of convergence are established
under suitable assumptions. It is further demonstrated that the modified forward-backward splitting
algorithm of Tseng falls within the presented general framework.
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1. Introduction

We consider the classical problem

find x ∈ H such that 0∈ T (x), (1.1)

whereH is a real Hilbert space, andT (·) is a maximal monotone operator (or a
multifunction) onH , i.e., T : H → P (H), whereP (H) stands for the family
of subsets ofH . A wide variety of problems, such as optimization and min-max
problems, complementarity problems and variational inequalities, fall within this
general framework.

? Research of the first author is supported by CNPq Grant 300734/95-6 and by PRONEX-
Optimization, research of the second author is supported by CNPq Grant 301200/93-9(RN) and by
PRONEX-Optimization.
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Havingxk ∈ H , a current approximation to the solution of (1.1), Rockafellar’s
proximal point algorithm generates the next iterate by the approximate rule [25,
expression (1.7)]:

xk+1 ≈ (I + ckT )−1xk, (1.2)

where{ck} is some sequence of positive real numbers. Note that(I + ckT )−1xk is
theexactsolution of the ‘proximal subproblem’

0 ∈ ckT (x)+ (x − xk). (1.3)

Since the exact computation of(I+ckT )−1xk (or equivalently, the exact solution of
(1.3)) can be quite difficult or even impossible in practice, the use of approximate
solutions is essential for devising implementable algorithms. In [25], the following
approximation criteria were introduced to manage iterations given by (1.2):

‖xk+1 − (I + ckT )−1xk‖ 6 ek,
∞∑
k=0

ek <∞, (1.4)

and

‖xk+1 − (I + ckT )−1xk‖ 6 dk‖xk+1 − xk‖,
∞∑
k=0

dk <∞. (1.5)

Since(I + ckT )−1xk is the point to be approximated, in general it is not available.
Therefore, the above two criteria usually cannot be directly used in practical imple-
mentations. In [25, Proposition 6] it was established that (1.4), (1.5) are implied,
respectively, by the following two conditions:

dist(0, ckT (x
k+1)+ xk+1 − xk) 6 ek,

∞∑
k=0

ek <∞, (1.6)

and

dist(0, ckT (x
k+1)+ xk+1 − xk) 6 dk‖xk+1 − xk‖,

∞∑
k=0

dk <∞. (1.7)

The latter two conditions have the advantage that they are usually easier to verify
in practice, because they only require evaluation ofT atxk+1.

A sequence generated by the proximal point algorithm under criterion (1.4) (or
(1.6)), with

ck > c̄ > 0, (1.8)

converges weakly to a solution of (1.1), provided this problem has solutions [25,
Theorem 1]. IfT −1 is Lipschitz continuous around 0, then{xk} generated using
criterion (1.5) (or (1.7)) converges linearly to the solution, provided{xk} is bounded
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and regularization parameters satisfy (1.8) [25, Theorem 2]. Observe that crite-
rion (1.5) (or (1.7)) plus Lipschitz continuity ofT −1 and (1.8) do not guarantee
boundedness of{xk} (see also an example in Section 3).

We emphasize that criteria (1.6), (1.7) are more suitable for applications than
(1.4), (1.5). We next discuss them in more detail. Observe that sinceT (x) is closed,
for anyλ > 0

dist(0, ckT (x
k+1)+ xk+1 − xk) 6 λ

is equivalent to

∃ vk+1 ∈ T (xk+1) such that ‖ckvk+1+ xk+1 − xk‖ 6 λ.
Hence, the inexact proximal point algorithm managed by criteria (1.6) or (1.7) can
be restated as follows. Having a current iteratexk ,

find xk+1 ∈ H andvk+1 ∈ T (xk+1) such that
0= ckvk+1+ (xk+1 − xk)− rk, (1.9)

whererk ∈ H is an error associated with the approximation. With this notation,
criterion (1.6) becomes

‖rk‖ 6 ek,
∞∑
k=0

ek <∞, (1.10)

and criterion (1.7) becomes

‖rk‖ 6 dk‖xk+1 − xk‖,
∞∑
k=0

dk <∞. (1.11)

Error tolerance criteria of this kind (i.e., similar to (1.10), (1.11)) are standard in
the study of proximal point and related methods (e.g., see also [1, 32, 4, 8, 7]).
The conditionck > c̄ > 0 is also a common requirement (in the finite-dimensional
setting, it can be relaxed to the condition that

∑
c2
k = ∞, e.g., see [30]). Proximal

point methods have been studied extensively. The literature on this subject is vast
and includes, but is not limited to, [24, 25, 21, 18, 17, 10, 13, 9] (see [15] for a
survey).

In [2], Burachik, Iusem and Svaiter introduced an enlargementT ε of a maximal
monotone operatorT . Givenε > 0 defineT ε: H → P (H) as

T ε(x) = {v ∈ H | 〈w − v, z− x〉 > −ε for all z ∈ H, w ∈ T (z)}. (1.12)

Some of the properties ofT ε will be discussed in Section 2. Specifically, our em-
phasis will be on the relations betweenT ε and approximate solutions of proximal
subproblems. In [2], the enlargementT ε was further used to devise an approximate
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generalized proximal point method. The exact version of this method can be stated
as follows: havingxk , the next iteratexk+1 is the solution of

0 ∈ ckT (·)+∇f (·)−∇f (xk), (1.13)

wheref is a suitable regularization function. Note that forf (·) = (1/2)‖ · ‖2,
the above method becomes the classical proximal point algorithm (1.3). Approxi-
mate solutions of (1.13) are treated in [2] viaT ε, an (outer) approximation toT .
Specifically, an approximate solution of (1.13) is regarded as anexactsolution of

0 ∈ ckT εk (·)+∇f (·)−∇f (xk)
for an appropriate value ofεk. Note that forf (·) = (1/2)‖ · ‖2, the latter relation
is equivalent to

find xk+1 ∈ H, εk > 0 andvk+1 ∈ T εk (xk+1) such that
0= ckvk+1+ (xk+1 − xk). (1.14)

To ensure convergence (assuming additional conditions usual in the context of gen-
eralized proximal point methods), the following requirement was imposed in [2]:

∞∑
k=0

εk <∞. (1.15)

We note that the latter requirement is of the same nature as (1.10). One drawback
of conditions of this kind is that quite often there is noconstructiveway to en-
force them. Indeed, there exist infinitely many summable sequences, and it is not
specified how to choose the value ofek in (1.10) or the value ofεk in (1.15) at a
specific iterationk and for the given problem, so as to ensure convergence. From
the algorithmic standpoint, one would prefer to have acomputableerror tolerance
condition which is related to the progress of the algorithm at every given step when
applied to the given problem. This is one of the main motivations of [30], as well
as the present paper.

It has long been realized that in many applications, proximal point methods in
the classical forms are not very efficient. Developments aimed at speeding up con-
vergence of proximal point methods for solving operator equations can be found
in [6, 22, 4] (the situation for the special case of optimization, i.e., whenT is
a subdifferential mapping, is somewhat easier, so more strategies are available;
however, the area of optimization is not our main focus). Most of the work just
cited is focused on the variable metric approach and other ways of incorporating
second order information to achieve faster convergence. As it has been remarked in
[25] and [4], for a proximal point method to be practical, it is also important that it
should work with approximate solutions of subproblems. It is therefore worthwhile
to develop new algorithms which admit less stringent and/or more constructive
requirements on solving the proximal subproblems. In [30], Solodov and Svaiter
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proposed a new criterion for the approximate solution of proximal subproblems.
Specifically, a pairyk , vk is admissible if

vk ∈ T (yk), 0= ckvk + (yk − xk)− rk,
and the errorrk satisfies

‖rk‖ 6 σ max{ck‖vk‖, ‖yk − xk‖}, (1.16)

whereσ is afixedscalar in[0,1). The next iteratexk+1 is obtained by projecting
xk onto the hyperplane

{z ∈ H | 〈vk, z− yk〉 = 0},
which can be shown to strictly separatexk from any zero ofT . This hybrid method
preserves all the desirable convergence properties of the exact algorithm (1.3) (or
its approximate version given by (1.9) with error criteria (1.10), (1.11)), see [30].
It is important to note that projection onto a hyperplane is explicit, and thus com-
putationally negligible. The advantage of the new error criterion (1.16) is that it
is constructive, and the relaxation parameterσ need not tend to zero to ensure
convergence (it is fixed). Let us give an interpretation of (1.16) as arelative error
tolerance. Anexactsolution of 0∈ ckT (x)+ x− xk may be regarded as a pairy, v
satisfying

v ∈ T (y), ckv + y − xk = 0.

For an approximate solution,

ckv + (y − xk) = r ≈ 0.

To estimate the relative error in the above relation one has to look at the ratios
between‖r‖ and‖ckv‖, ‖r‖ and‖y − xk‖, i.e., the quantities

‖r‖
‖ckv‖ ,

‖r‖
‖y − xk‖ .

In this sense, (1.16) is equivalent to saying that the bound for therelative error in
solving the proximal subproblem can be fixed (atσ ), and need not tend to zero.
We emphasize that computationally, the requirement of bounded relative error is
realistic. Some further applications of the hybrid strategy described above can be
found in [27 – 29].

In this paper, we combine the ideas of [30, 2], and propose an even simpler
method, in which no projection is performed. We obtain a rather broad framework
in which the approximate solutions are handled both throughT εk , a current ap-
proximation ofT , and the error termrk appearing in the subproblem equation. An
approximate solution is regarded as a pairyk, vk such that

vk ∈ T εk (yk), 0= ckvk + (yk − xk)− rk, (1.17)



328 M. V. SOLODOV AND B. F. SVAITER

whereεk, rk are ‘relatively small’ in comparison with‖yk − xk‖ (this will be made
precise later). Our new method uses this information to get the next iterate by the
rule

xk+1 = xk − ckvk.
Becausevk, the direction of change, is obtained by an (approximate) evaluation of
the operatorT at an intermediate pointyk , the algorithm shares some features with
the extragradient method [14]. This is reflected in the name we give to our algo-
rithm. It is worth to point out that the notion of approximate solutions introduced
in (1.17) is conceptually broader than that of [2] given in (1.14). This is because in
general, the relationv ∈ T (y), cv + y − x = r (r 6= 0) does not imply that there
exists someε > 0 for which 0∈ cT ε(y)+ y − x (see the example in Section 3).

This paper is organized as follows. In Section 2, the Burachik–Iusem–Svaiter
(BIS, for short) enlargement of a maximal monotone operator is reviewed and the
error tolerance in solving proximal subproblems is formally defined. Some proper-
ties of such approximate solutions are derived. In Section 3, the hybrid approximate
extragradient–proximal method is introduced and the convergence theorems are
stated. Section 4 contains convergence analysis. In Section 5 we give some useful
applications of the general approach. Specifically, we show that the recently pro-
posed modified forward-backward splitting method of Tseng [35] can be viewed as
a realization of our framework. We further describe how our approximate proximal
scheme can be used for constructing a globally convergent Newton-type algorithm.

2. BIS Enlargement of a Maximal Monotone Operator and the Proximal
Subproblem Error Tolerance

For convenience, we shall restate the definition ofT ε: for ε > 0 andx ∈ H ,

T ε(x) = {v ∈ H | 〈w − v, z− x〉 > −ε for all z ∈ H, w ∈ T (z)}. (2.1)

It follows directly from the definition that

06 ε1 6 ε2⇒ T ε1(x) ⊆ T ε2(x) ∀x ∈ H .

Also, from the maximal monotonicity ofT , it follows that

T 0 = T .
Hence, for anyε > 0 and allx ∈ H ,

T (x) ⊆ T ε(x).
Therefore, it is reasonable to callT ε an ‘enlargement’ ofT . The term ‘submono-
tone enlargement’ seems to be most suitable for the enlargement defined above.
Unfortunately, ‘submonotone’ has been already used in [31, 12], so we call the
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above enlargement BIS, after its authors, Burachik, Iusem and Svaiter. Some theo-
retical properties of the BIS enlargement, together with applications, are presented
in [2, 3].

DEFINITION 2.1. Letx ∈ H, c > 0 andσ ∈ [0,1). We say that a pair(y, v) is
an approximate solution with error toleranceσ of 0 ∈ cT (·) + (· − x) if for some
ε > 0 it holds that

v ∈ T ε(y),
cv + (y − x) = r

and

‖r‖2 + 2cε 6 σ 2‖y − x‖2.

Note that since we are working with a maximal monotone operatorT , the
proximal problem 0∈ cT (·) + (· − x) has always a unique solution (this is
a classical result by Minty [19]). This exact solution is always an approximate
solution, for anyσ ∈ [0,1). Therefore, the proximal subproblem has, a fortiori,
approximate solutions, possibly many. For the caseσ = 0 (no error tolerance),
only the exact solution of the proximal subproblem satisfies Definition 2.1. So this
view of approximate solutions is quite natural.

Observe also that imposingε = 0, the above error condition gives

v ∈ T (y), cv + (y − x) = r
and

‖r‖ 6 σ‖y − x‖,
which implies the error tolerance (1.16) used in [30]. Even though (for the case
ε = 0!) the new error condition is stronger, it should not be much harder to satisfy
in practice, and it allows to omit the extra projection used in [30]. From now on,
approximate solutions of proximal subproblems are understood in the sense of
Definition 2.1. An important question is: How close is an approximate solution
of a proximal subproblem to the exact solution? An answer is furnished by the
following lemma.

LEMMA 2.2. Take anyx ∈ H andc > 0. Suppose that(y, v) is an approximate
solution, with error toleranceσ ∈ [0,1), of

0 ∈ cT (·)+ (· − x).
Let z be the exact solution of the above problem. Then it holds that

‖z− y‖ 6 σ‖y − x‖.
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Proof.There exists someε > 0 such that

v ∈ T ε(y),
‖r‖2 + 2cε 6 σ 2‖y − x‖2, (2.2)

where

r = cv + (y − x).
Since 0∈ cT (z)+ (z− x), it follows that

u := −(1/c)(z− x) ∈ T (z).
Using (2.1), we obtain

〈u− v, z− y〉 > −ε.
Observe that

u− v = −(1/c)(z− x)− (1/c)(r − (y − x))
= −(1/c)r − (1/c)(z− y).

Combining the last two relations, we have that

(1/c)‖z− y‖2 + (1/c)〈r, z − y〉 − ε 6 0.

Multiplying by c and using the Cauchy–Schwarz inequality, we obtain

‖z− y‖2 − ‖r‖ ‖z − y‖ − cε 6 0.

Resolving the latter quadratic inequality in‖z− y‖, it follows that

‖z− y‖ 6 ‖r‖ +
√‖r‖2 + 4cε

2
6
√
‖r‖2 + 2cε,

where the concavity of the square root was used in the second inequality. Now the
desired result follows from (2.2). 2

Next we prove the key property of approximate solutions of proximal subprob-
lems, which reveals their usefulness and is the basis for devising our convergent
algorithm.

LEMMA 2.3. Take anyx ∈ H andc > 0. Suppose that(y, v) is an approximate
solution, with error toleranceσ ∈ [0,1), of

0 ∈ cT (·)+ (· − x).
Define

x+ = x − cv.
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Then, for any solutionx∗ of (1.1), it holds that

‖x∗ − x‖2 − ‖x∗ − x+‖2 > (1− σ 2)‖y − x‖2.
Proof.By direct algebraic manipulations, we obtain

‖x∗ − x‖2 − ‖x∗ − x+‖2
= ‖x∗ − y‖2 + 2〈x∗ − y, y − x〉 + ‖y − x‖2−
− [‖x∗ − y‖2 + 2〈x∗ − y, y − x+〉 + ‖y − x+‖2]
= 2〈x∗ − y, x+ − x〉 + ‖y − x‖2 − ‖y − x+‖2.

(2.3)

By assumption, for someε > 0 it holds that

v ∈ T ε(y),
‖r‖2 + 2cε 6 σ 2‖y − x‖2,

where

r = cv + (y − x).
Since 0∈ T (x∗) andv ∈ T ε(y), by (2.1) we have

〈x∗ − y, x+ − x〉 = 〈x∗ − y,−cv〉
= c〈x∗ − y,0− v〉 > −cε.

Furthermore, sincer = cv + (y − x),
y − x+ = r.

Therefore, combining the above relations with (2.3), we obtain

‖x∗ − x‖2 − ‖x∗ − x+‖2 > −2cε + ‖y − x‖2 − ‖r‖2
= ‖y − x‖2 − (‖r‖2 + 2cε

)
> (1− σ 2)||y − x||2. 2

3. The Hybrid Approximate Extragradient–Proximal Point Method

We are now ready to formally state our algorithm.

ALGORITHM 3.1 (Hybrid Approximate Extragradient–Proximal Point Algorithm).

Initialization: Choose anyx0 ∈ H andσ ∈ [0,1)
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Iteration: Fork = 0,1, . . .

(1) Choose someck > 0, and find(yk, vk) as an approximate solution with
error toleranceσ of

0 ∈ ckT (·)+ (· − xk),
i.e., for someεk > 0,

vk ∈ T εk (yk) and

‖ckvk + (yk − xk)‖2+ 2ckεk 6 σ 2‖yk − xk‖2.
(2) Define

xk+1 = xk − ckvk.
To guarantee convergence of the algorithm, two standard assumptions will be

needed: problem (1.1) has a solution, and regularization parametersck are bounded
away from zero.

We have already discussed the possibility of solving approximately the prox-
imal subproblems. Observe that if thekth proximal point subproblem is solved
exactly, then thekth iteration of the above algorithm coincides with the classical
proximal point iteration (this is becauseckvk + (yk − xk) = 0 andεk = 0 imply
that xk+1 = yk andvk ∈ T (yk)). Therefore, in the special caseσ = 0 we re-
trieve the classical (exact) proximal point method. Of course, the case of interest is
σ > 0, i.e., the use of approximate proximal iterations. In that case, Algorithm 3.1
is different from other approximate/inexact proximal schemes in the literature.

We next give an example which highlights two important issues. The first one
is that the approximation framework of Algorithm 3 is significantly more general
than the framework of [2]. The second one is that the ‘extragradient’ step of Algo-
rithm 3.1 is essential for the convergence of the method. Consider the case where
H = <2 andT is theπ/2 rotation operator, i.e.,

T (x) := Mx,
where

M :=
[

0 −1
1 0

]
.

It is easy to check that suchT is (maximal) monotone, and that the origin is the
unique solution ofT (x) = 0.

It can be further checked thatT ε ≡ T , i.e., for everyx it holds thatT ε(x) =
T (x) for all ε > 0 (see [2]). Hence, the relation

v ∈ T (y),
cv + y − x = r (r 6= 0)

does not imply that there exists someε > 0 for which

0 ∈ cT ε(y)+ y − x.
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This means that actually onlyexactsolutions can be handled by the method of [2]
in this, albeit very special, case.

We next show that the ‘extragradient’ step of Algorithm 3.1 is essential, i.e., the
approximate proximal method with the same error tolerance criterion may fail to
converge. Note that the latter method can be viewed as Algorithm 3.1 where we
replace the last step withxk+1 = yk . Recalling that in our exampleεk > 0 does
not give anything more than havingεk = 0, we consider a sequence defined by the
following relations:

wk+1 ∈ T (xk+1),

‖ckwk+1+ xk+1 − xk‖ 6 σ‖xk+1 − xk‖. (3.1)

We shall prove that in this simple case the sequence satisfying (3.1) may diverge.
Take

x0 6= (0,0), σ ∈ (1/√2,1), ck = 1/2 for all k.

Define

Q :=
[

1 1
−1 1

]
,

and letQ(k) be thekth power ofQ. Define further the two sequences{xk} and{wk}
by

xk := Q(k)x0, wk := Mxk ∈ T (xk).
It is easy to see that‖xk‖ → +∞. However, we shall show that these sequences
satisfy (3.1). Sincexk+1 = Qxk , we obtain

xk+1 − xk = (Q− I )xk,
ckw

k+1+ xk+1 − xk = ((1/2)MQ+Q− I )xk,
whereI stands for the identity matrix. Observe that

(1/2)MQ+Q− I =
[

1/2 1/2
−1/2 1/2

]
.

It is now easy to check that

‖ckwk+1+ xk+1 − xk‖ = (1/√2)‖xk‖,
and

‖xk+1 − xk‖ = ‖xk‖.
So, we have

‖ckwk+1+ xk+1 − xk‖ < σ‖xk+1− xk‖,
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which means that the sequences{xk} and {wk} satisfy relations (3.1). However,
{xk} not only does not converge to the origin (the unique solution ofT (x) = 0), it
is in fact unbounded! This illustrates that the ‘extragradient’ step in Algorithm 3.1
is indispensable, if we are to use our relaxed requirements on the error tolerance in
solving the proximal subproblems.

For the rest of this paper, let{ck} be a particular sequence of regularization
parameters and{xk}, {(yk, vk)}, {εk} be sequences generated by Algorithm 3.1.
Observe that forrk := ckvk + yk − xk we have

xk+1 = yk − rk,
and so the sequences{yk} and {vk} can be treated implicitly in Algorithm 3.1.
Specifically, one can rewrite the algorithm in terms of the sequences{xk}, {rk} (in
H) and{εk} ( εk > 0), which satisfy the conditions:

xk − xk+1

ck
∈ T εk (xk+1+ rk),

and

‖rk‖2+ 2ckεk 6 σ 2‖xk+1 + rk − xk‖2.
However, from the implementation point of view, the setting of Algorithm 3.1 is
more direct. Indeed, what is typically available at every inner iteration of some
method applied to solving thekth proximal subproblem 0∈ ckT (·)+ (· − xk), are
some values ofy andv (which are current approximations to the solution of the
subproblem). So it is natural to state the stopping (error tolerance) criterion for the
subproblem in terms ofy andv, as it is done in Algorithm 3.1. Furthermore, this
formulation is more suitable for applications, as can be seen from Section 5.

Our main convergence results are the following.

THEOREM 3.1. Supposeck > c̄ > 0 for all k. If problem(1.1)has solutions then
{xk} converges weakly to a solution. If problem(1.1)has no solution, the sequence
{xk} is unbounded.

THEOREM 3.2. If in addition to the assumption of Theorem3.1 it holds thatT −1

is Lipschitz continuous around zero, then{xk} converges linearly to the solution.

4. Convergence Analysis

To prove Theorems 3.1 and 3.2 we shall need some intermediate results on the
properties of sequences{xk}, {(yk, vk)}, {εk} generated by Algorithm 3.1.

LEMMA 4.1. If x∗ is some solution of problem(1.1) then

‖x∗ − xk‖2− ‖x∗ − xk+1‖2 > (1− σ 2)‖yk − xk‖2
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for every iteration indexk.
Proof.The assertion follows directly from Lemma 2.3. 2

COROLLARY 4.2. If problem(1.1)has a solution then

(1) {xk} is bounded,
(2)

∑∞
k=0 ||yk − xk||2 <∞,

(3) {yk} is bounded.

If, in addition,ck > c̄ > 0 then

(4)
∑∞

k=0 ‖vk‖2 6 (1+ σ)2
∑∞

k=0 c
−2
k ‖yk − xk‖2 <∞,

(5)
∑∞

k=0 εk <∞.

Proof.Let x∗ be any solution of (1.1). By Lemma 4.1, the sequence{‖xk−x∗‖}
is nonincreasing. Hence, the sequence{xk} is bounded.

Applying again Lemma 4.1 fork = 0,1, . . . , q, we conclude that

(1− σ 2)

q∑
k=0

‖yk − xk‖2 6 ‖x∗ − x0‖2− ‖x∗ − xq+1‖2 6 ‖x∗ − x0‖2.

Taking into account that 1> σ , and passing to the limit asq → ∞, we obtain
item (2).

Item (3) is a direct consequence of items (1) and (2).
To prove item (4), note that for eachk,

‖ckvk + (yk − xk)‖ 6 σ‖yk − xk‖.
By the triangle inequality we further obtain

ck||vk|| 6 ‖ckvk + (yk − xk)‖ + ‖yk − xk‖
6 (1+ σ)‖yk − xk‖.

Using the conditionck > c̄ > 0 and item (2), item (4) follows.
The proof of item (5) is similar: for eachk it holds that

2ckεk 6 σ 2‖yk − xk‖2,
so the conditionck > c̄ > 0 and item (2) imply item (5). 2
COROLLARY 4.3. If problem(1.1)has a solution andck > c̄ > 0 for all k, then
all weak accumulation points of{xk} are solutions of problem(1.1).

Proof.By Corollary 4.2, the sequence{xk} is bounded. Hence, it has at least one
weak accumulation point. Let̄x be any weak accumulation point of{xk} and{xkj }
be some subsequence weakly converging tox̄:

xkj
w→ x̄.
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By item (2) of Corollary 4.2 it follows that‖yk − xk‖ converges to zero, hence

ykj
w→ x̄.

By item (4) of Corollary 4.2 it follows also that{‖vk‖} converges to zero, so we
have that{vkj } converges strongly to zero:

vkj → 0.

Note that by the construction of the algorithm,

vk ∈ T εk (yk).
Furthermore, by item (5) of Corollary 4.2 we also have that{εk} converges to zero,
so

εkj → 0.

Take anyx ∈ H andu ∈ T (x). Then for any indexj it holds that

〈u− vkj , x − ykj 〉 > −εkj .
Therefore

〈u− 0, x − ykj 〉 > 〈vkj , x − ykj 〉 − εkj .
Since{ykj } converges weakly tōx, {vkj } convergesstrongly to zero and{ykj } is
bounded, and{εkj } converges to zero, taking the limit asj → ∞ in the above
inequality we obtain that

〈u− 0, x − x̄〉 > 0.

Note that(x, u) was taken as an arbitrary element in the graph ofT . SinceT is
maximal monotone, it follows that 0∈ T (x̄), i.e., x̄ is a solution of (1.1). 2

We are now in position to prove Theorem 3.1.

Proof of Theorem 3.1.First suppose that problem (1.1) has a solution. By Corol-
lary 4.2, the sequence{xk} is bounded. Therefore it has some weak accumulation
point, sayx̄. Corollary 4.3 ensures thatx̄ is a solution of (1.1). Furthermore, from
Lemma 4.1 it follows that{‖xk − x̄‖} is nonincreasing. The proof of uniqueness
of weak accumulation point in this setting is standard. For example, uniqueness
follows easily by applying Opial’s lemma [20], or by using the analysis in [25]. So,
if problem (1.1) has a solution, the sequence{xk} converges weakly to a solution.

Now suppose that problem (1.1)does nothave solutions. For contradictory
purposes, suppose that{xk} is bounded. Since

vk = (1/ck)(xk − xk+1)
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andck > c̄ > 0, it follows that{ckvk} and{vk} are bounded. Note that

‖ckvk‖ > (‖yk − xk‖ − ‖ckvk + (yk − xk)‖)
> (1− σ)‖yk − xk‖,

so {yk} is also bounded. Take somez̄ ∈ Dom(T ) (sinceT is maximal monotone,
Dom(T ) 6= ∅), and someR such that

R > max
{
‖z̄‖, sup

k

‖xk‖, sup
k

‖yk‖
}
.

Furthermore, define

B := {z ∈ H | ‖z‖ 6 2R},
and letNB be the normal cone operator for the setB:

NB = ∂IB,
whereIB : H →<∪{+∞} is the indicator function forB: it is zero onB and+∞
elsewhere. ThenNB is maximal monotone and̄z ∈ Dom(T )∩ int(Dom(NB)) 6= ∅.
Therefore, the operator

T ′ = T + NB
is maximal monotone [23]. Moreover,T ′ has a bounded domain and, hence, it has
a zero ([25, Proposition 2]). So the problem

find x ∈ H such that 0∈ T ′(x), (4.1)

has a solution.
Now we claim that for every indexk,

vk ∈ (T ′)εk (yk). (4.2)

Take anyz ∈ H andw′ ∈ T ′(z). Then there existw, ν ∈ H such that

w′ = w + ν,
w ∈ T (z), ν ∈ NB(z).

Note thatyk ∈ B for all k. Therefore, by the definition of the normal operator, it
holds that

〈ν, z− yk〉 > 0.

Taking into account thatvk ∈ T εk (yk), we further obtain

〈w′ − vk, z− yk〉 = 〈w − vk, z− yk〉 + 〈ν, z− yk〉
> −εk,
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which proves (4.2). Therefore{xk}, {(yk, vk)}, {εk} can be considered as sequences
generated by Algorithm 3.1 applied to problem (4.1) which has solutions. Then,
according to the first part of Theorem 3.1,{xk} converges weakly to somex′, a
solution of (4.1). We have that

0 ∈ T ′(x′) = T (x′)+ NB(x′),
and‖x′‖ 6 R, so thatx′ is in the interior of the setB. ThereforeNB(x′) = {0} and
0 ∈ T (x′), in contradiction with the hypothesis that problem (1.1) has no solution.
It follows that in the latter case,{xk} must be unbounded. 2

It is interesting to note that we could also use in our Algorithm 3.1 the more
standard tolerance criterion of summability of error terms. Specifically, we could
require that√

‖rk‖2+ 2ckεk 6 σk,
∞∑
k=0

σ 2
k <∞. (4.3)

After making an obvious appropriate change in the assertion of Lemma 2.3,
Lemma 4.1 becomes

‖xk+1 − x∗‖2 6 ‖xk − x∗‖2+ σ 2
k − ‖yk − xk‖2.

Using the condition that
∑
σ 2
k < ∞ and standard arguments, one concludes that

the sequence{xk} is bounded,‖yk − xk‖ → 0, etc. We note that even if we use
this requirement of summability ofsquaresof error terms (4.3), it is still weaker
than summability of error terms (

∑
σk < ∞) needed in the classical method. In

any case, we emphasize once again that such conditions ofa priori summability
are not constructive.

To prove Theorem 3.2, recall that its hypotheses imply that problem (1.1) has a
unique solution, sayx∗, and that there exist some constantsL > 0 andδ > 0 such
that

‖v‖ 6 δ, v ∈ T (y)⇒ ‖y − x∗‖ 6 L||v||.

Proof of Theorem 3.2.By Corollary 4.2 (items (1) and (4)), we already know
that

lim
k→∞
||vk|| = 0, lim

k→∞
||yk − xk|| = 0.

For eachk, let zk be theexactsolution of the proximal subproblem 0∈ ckT (·) +
(· − xk). Then

uk := −(1/ck)(zk − xk) ∈ T (zk).
Applying Lemma 2.2, we have that

‖zk − yk‖ 6 σ‖yk − xk‖.
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Using the triangle inequality, we obtain

‖zk − xk‖ 6 ‖zk − yk‖ + ‖yk − xk‖ 6 (1+ σ)‖yk − xk‖. (4.4)

Therefore,

‖uk‖ 6 (1/ck)(1+ σ)‖yk − xk‖ 6 (1/c̄)(1+ σ)‖yk − xk‖.
Since{‖yk − xk‖} tends to zero, so does{‖uk‖}. Becauseuk ∈ T (zk), by the
Lipschitz continuity ofT −1 around zero, we conclude that fork large enough

‖zk − x∗‖ 6 L‖uk‖ = L(1/ck)‖zk − xk‖.
Using further the triangle inequality, we obtain

‖x∗ − xk‖ 6 ‖x∗ − zk‖ + ‖zk − xk‖
6 L(1/ck)‖zk − xk‖ + ‖zk − xk‖
= (1+ L/ck)‖zk − xk‖.

Now using (4.4), we have

‖x∗ − xk‖ 6 (1+ L/ck)(1+ σ)‖yk − xk‖
6 (1+ L/c̄)(1+ σ)‖yk − xk‖.

By Lemma 4.1 and the above inequality, we conclude that fork large enough it
holds that

‖x∗ − xk+1‖2 6 ‖x∗ − xk‖2− (1− σ 2)‖yk − xk‖2

6
[
1− 1− σ 2

((1+ L/c̄)(1+ σ))2
]
‖x∗ − xk‖2

=
[
1− 1− σ

(1+ L/c̄)2(1+ σ)
]
‖x∗ − xk‖2,

which means that{xk} converges tox∗ at a linear rate. 2
Observe that the last relation also implies that if we allow the error toleranceσk

tend to zero, and the regularization parametersck tend to infinity, then the rate of
convergence is superlinear.

5. Some Applications

Finally, we give two specific applications, where our general framework appears to
be helpful. The first one was developed independently by Tseng [35].
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5.1. MODIFIED FORWARD-BACKWARD SPLITTING

Suppose that the operatorT has the structure

T = A+ B,
whereA is point-to-point, continuous and monotone (with Dom(A) = H), whileB
is only maximal monotone. When the operator(cB+I ), c > 0, is easily invertible,
the forward-backward splitting method [16, 5, 33, 34] for finding a zero ofA + B
is of special relevance:

xk+1 := J (xk, ck),
where

J (x, c) := (I + cB)−1(I − cA)(x), c > 0.

This method is known to converge when the inverse of the forward mapping, i.e.,
the mappingA−1, is strongly monotone [11] (note that this implies Lipschitz con-
tinuity of A). The forward-backward splitting is very useful for decomposition,
but the requirement of strong monotonicity ofA−1 is somewhat limiting. In [35]
a useful modification is proposed which removes this requirement. The method of
[35] has the following structure:

yk := J (xk, ck),

xk+1 := PX[yk − ck(A(yk)−A(xk))], (5.1)

whereX is any closed convex set such thatX∩T −1(0) 6= ∅,PX[·] is the orthogonal
projection operator onto the setX, andck is chosen to satisfy

ck‖A(J (xk, ck))−A(xk))‖ 6 θ‖J (xk, ck)− xk‖, (5.2)

whereθ ∈ (0,1). An Armijo-type linesearch procedure can be used to determine
a suitable value ofck (the continuity ofA guarantees that this procedure is well
defined, see [35]). We note that the choice of the setX, and the resulting projection
in (5.1), are not conceptually important here. To simplify the demonstration, let us
assume Dom(A) = Dom(B) = H = X.

We next show that the modified forward-backward splitting method (5.1)–(5.2)
falls within the framework of Algorithm 3.1. The definition ofyk in (5.1) is equiv-
alent to

0 ∈ ck(B(yk)+A(xk))+ (yk − xk).
Hence,

bk := (1/ck)(xk − yk)−A(xk) ∈ B(yk). (5.3)

Define

vk := A(yk)+ bk, rk := ckvk + yk − xk.
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Note thatvk ∈ T (yk), so that in the terminology of the present paper,rk is the error
in the solution of the proximal subproblem

0 ∈ ckT (·)+ (· − xk).
Let us evaluate this error:

rk = ck(A(y
k)+ bk)+ (yk − xk)

= ck(A(x
k)+ bk)+ (yk − xk)+ ck(A(yk)−A(xk))

= ck(A(y
k)−A(xk)),

where the last equality follows from (5.3). Using again the definition ofyk , we
obtain

rk = ck
(
A(J (xk, ck))−A(xk)

)
. (5.4)

If in the setting of our Algorithm 3.1 we take the operator enlargement parameter
εk = 0 (the exact operatorT is used) and the error tolerance parameterσ = θ , then
yk, vk is an acceptable approximate solution if

‖rk‖ 6 θ‖yk − xk‖.
In view of (5.4) and of the definition ofyk , the above condition is exactly the
Armijo-type condition (5.2) used in [35]. Furthermore, the last step in Algorithm 3.1
is

xk+1 = xk − ckvk
= yk − rk
= yk − ck(A(yk)−A(xk)),

which is again the same as (5.1) (recall that we assumedX = H).
It is now clear that the modified forward-backward splitting of [35] can be

regarded as a specific implementation of our general Algorithm 3.1 (the two algo-
rithms have been developed independently). Note that according to Corollary 4.2,
the sequences{xk} and {yk} are bounded independently of the choice of{ck}.
WhenA is Lipschitz continuous on the bounded set containing those sequences
(with modulusL > 0, say), it is easy to see that anyck ∈ [0, θ/L] satisfies
condition (5.2). In particular, if an Armijo-type search is used to computeck, then
the conditionck > c̄ will be satisfied. In that case, convergence properties of the
modified forward-backward splitting method follow immediately from Theorems
3.1 and 3.2. We note that convergence of Tseng’s method can also be studied if
lim inf k ck = 0, but in that case additional assumptions would be required [35,
Theorem 3.1].

In the case whenX is a proper subset ofH , each iteration of Tseng’s algorithm
may be regarded as a step of Algorithm 3.1, followed by a projection ontoX. Con-
vergence properties will be preserved because projection ontoX and the “hybrid”
steps decrease the distance from the iterates to the setX ∩ T −1(0).
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5.2. REGULARIZED NEWTON-TYPE METHOD

Suppose now thatH = <n, andT = F , whereF : <n → <n is monotone and
continuously differentiable, with its Jacobian∇F being Lipschitz continuous, i.e.,
there exists someγ > 0 such that

‖∇F(x)− ∇F(y)‖ 6 γ ‖x − y‖, ∀x, y ∈ <n.
So the problem under consideration is that of solving a system of smooth equations

F(x) = 0.

The fundamental algorithm in this setting is the Newton method. It is well known
that while possessing fast superlinear/quadratic convergence close toregular so-
lutions, there are serious difficulties with ensuring global convergence of Newton
methods, even if merit functions and linesearch techniques are used for global-
ization. In [28], a truly globally convergent (on the class of monotone equations)
regularized Newton method was developed based on the approximate proximal
point scheme of [30]. For globalization, a linesearch technique which ensures a
certain separation property (motivated by [26]) was used.

We next outline a different Newton-type method based on Algorithm 3.1. The
following fact is the key to the construction: ifxk is not a solution, then asingle
step of the Newton method applied to the proximal subproblem

0= ckF (x)+ (x − xk)
is enough to ensure the error tolerance requirements at thek-th step of Algo-
rithm 3.1, provided we choose

ck ∈
[
0.1
(
γ ‖F(xk)‖)−1/2

,
(
γ ‖F(xk)‖)−1/2]

and σ ∈ [1/2,1)
(other choices of parameters are also possible). In other words, if

yk := xk + sk,
where

sk := −(ck∇F(xk)+ I )−1ckF (x
k),

then it holds that

‖ckF (yk)+ yk − xk‖ 6 σ‖yk − xk‖. (5.5)

We next demonstrate this fact. By the Lipschitz continuity of∇F , it holds that

‖F(yk)− F(xk)− ∇F(xk)(yk − xk)‖ 6 γ

2
‖yk − xk‖2. (5.6)

Since

yk − xk = sk = −ckF (xk)− ck∇F(xk)sk,
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combining the latter equations with (5.6), we further obtain

1

ck
‖ckF (yk)+ yk − xk‖ 6 γ

2
‖sk‖‖yk − xk‖.

Since∇F(x) is positive semidefinite, it can be easily verified that

‖sk‖ 6 ck‖F(xk)‖.
Therefore,

‖ckF (yk)+ yk − xk‖ 6 c2
kγ ‖F(xk)‖

2
‖yk − xk‖.

Now (5.5) follows from the choice ofσ andck.
We conclude that in this setting, Algorithm 3.1 reduces to a Newton-type meth-

od, where each iteration consists of one regularized Newton step, followed by an
extragradient step. Observe that{xk} is bounded independently of the choice of
{ck} (due to Corollary 4.2.1), and so{‖F(xk)‖} is also bounded. Our choice ofck
implies now thatck > c̄ > 0. Applying Theorem 3.1, we immediately deduce that
thewholesequence generated by this Newton-type method convergesglobally to
a solution of the system of equations, provided one exists, without any regularity
assumptions. This compares favorably with globalized Newton methods based on
merit functions, where even to prove convergence ofsubsequencesto stationary
points of these functions, one needs to assume the boundedness of their level sets
(note that this implies the boundedness of the solution set). Furthermore, in general
these stationary points need not be solutions ofF(x) = 0. And to guarantee even
local convergence of the whole sequence, uniqueness of the solution has to be
imposed. We refer the reader to [28] for a more detailed discussion.

We note that if the value (or a bound for it) ofγ is not available, a suitableck
can be obtained by an Armijo-type linesearch procedure. Finally, assuming non-
singularity of∇F at the solution, the local superlinear rate of convergence can be
established. Furthermore, under this condition, fork large enough one can take

ck = 1√‖F(xk)‖ ,
and no linesearch is necessary. In this paper, we will not pursue technical details.
We refer the reader to [28], where the required analysis is similar.

6. Concluding Remarks

A new method for solving the inclusion problem (or generalized equation) for a
maximal monotone operator was presented. One of the key parts of the presented
framework is a new concept of approximate solutions of proximal subproblems,
where the errors are handled both through the equation residual, and through an
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enlargement of the operator. This new method gives a very general framework in
which algorithms can be designed. To illustrate this, two applications are described.
One is the modified forward-backward splitting algorithm proposed by Tseng [35],
and the other is the regularized Newton method.

An interesting subject for future research is the use of algorithmically gen-
erated elements inT ε, similar to the bundle methodology in nonsmooth convex
optimization.
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