
ContentEx: A Framework for Automatic Content
Extraction Programs

Linhai Song1,2, Xueqi Cheng1, Yan Guo1, Yue Liu1, Guodong Ding1

1. Institute of Computing Technology, Chinese Academy of Sciences, Beijing
2. Graduate School of the Chinese Academy of Sciences, Beijing
songlinhai@software.ict.ac.cn, cxq@ict.ac.cn, guoy@ict.ac.cn,

liuyue@ict.ac.cn, dingguodong@software.ict.ac.cn

Abstract—Web pages are often decorated with extraneous
information (such as navigation bars, branding banners,
JavaScript and advertisements). This kind of information may
distract users from actual content they are really interested in
and may reduce effects of many advanced web applications.
Automatic content extraction has many applications ranging
from providing data for web mining to realizing better accessing
the web over mobile devices. In this paper, we propose
ContentEx, a framework for automatic content extraction
programs, which we use to organize codes of automatic content
extraction programs and to facilitate the development of related
solutions. We also introduce how we extract content from forum
pages in this framework to fulfill the requirement from our
actual application.

Keywords- automatic content extraction; ContentEx

I. INTRODUCTION

Web pages are often decorated with extraneous information
which includes navigation bars, branding banners, JavaScript
and advertisements. This kind of information distracts users
from actual content they are interested in. Automatic content
extraction from web pages has many applications such as
providing data for web mining, enabling the visually impaired
to access the web more easily, and helping access the web over
mobile devices like PADs and cellular phones.

Since web pages have become an important source of
information, there is a growing concern over content extraction
among researchers in Informatics. For example, we need to
find hot topics from forum pages in our work. Formerly, html
tags are removed and remainders are used as input of a TDT
(Topic Detection and Tracking) algorithm. Apparently, there
are so many noises in the input, and these noises mislead the
TDT algorithm. So, we turn to content extraction to help solve
this problem.

Figures 1 shows an example of the problem we encounter.
The parts marked Extracted Text are targets which we want to
extract in our work.

Many previous methods to realize information extraction
are based on wrappers, and these methods introduce a lot of
work to produce and manage wrappers. To avoid such
troublesome work from methods based on wrappers, we choose
automatic content extraction algorithms as our solution. The
input of this kind of algorithms is only one page, and the output

is got based on heuristic rules designed in these algorithms.
Web pages are so different that distinct methods may be
needed to get ideal results. So how to organize and reuse
related codes is a new problem we encounter. In this paper, we
propose ContentEx, a framework for automatic content
extraction programs, which we use to solve the new problem.
And we expect that the framework and pre-defined modules
implemented in this framework can facilitate the development
of other related solutions. The method we use to extract content
from forum pages is also discussed in this paper. Experimental
results show that the method can fulfill our requirement.

Figure 1. The shaded areas are the parts we want to extract from forum

pages

II. ARCHITECTRUE OF CONTENTEX

ContentEx is a framework for automatic content extraction
programs. Content extraction algorithms implemented in this
framework share two common characteristics:

 The input is only one page. No structure specific
wrappers are required and no training stage is used.
The algorithms combine several heuristic rules to
extract content.

Extracted Text

Extracted Text

This work was supported by the National Basic Research Program of
China (973 Program) (No. 2004CB318109).

 These algorithms present each input page as a DOM
tree.

DOM Tree Generation

Form

News BBS

DataBase

Logic
Tier

Presentation
Tier

Blog

Scripts XHtml State

Explanation
Tier

Figure 2. Architecture of ContentEx

Figure 2 shows the architecture of ContentEx. There are
thre

d as follows:

are codes executed by

sed to

ludes statements

e layers in ContentEx: Explanation Tier, Logic Tier and
Presentation Tier. Functions of them are discussed as follows:

A. Explanation Tier

Input pages are preprocessed and changed into DOM trees
in this layer. We have provided four preprocessing functions in
ContentEx: Ignoring Form tags, Removing scripts, Converting
to XHTML and Removing statements. The first three functions
are proposed in [1], and our experiment shows that Removing
statements can also improve qualities of results.

The four preprocessing functions are explaine

 : Some tags are used to performIgnoring Form tags
interaction between users and web pages, and these
tags are classified as form tags in [1]. Usually these
tags don’t contain content.

 Removing scripts: Scripts
browsers, and they are not content we care.

nction is u Converting to XHMTL: This fu
generate error-free web pages.

 Removing statements: Statements inc
about copyright, statements about disclaimer and
statements about posting messages complying with
local laws.

B. Logic Tier

We realize content extraction algorithms in this layer.
Ideally, one generic method can be found to accomplish
content extraction from news pages, forum pages and blog
pages, which are all important information sources on the web.
But layouts and design criteria of these three kinds of pages are
so different that different methods may be needed to get ideal

results. The method we use to extract content from forum
pages is discussed in Section 3.

C. Presentation Tier

Results of content extraction are displayed in this layer. We
have published content extraction as a web service, which can
be accessed through Internet. And results of content extraction
can be stored in XML format or in a database.

III. ALGORITHM

Considering features of forum pages, we use filters to
remove noises in forum pages and use remainders as extraction
results. There are two types of filters to extract content from
forum pages in ContentEx: link table filter and common pattern
filter. They are described as follows:

A. Link Table Filter

The link table filter is designed to remove navigation links,
advertisements and multiple pieces of related links in each
input page. Crunch [2, 3] proposes a link table remover which
eliminates table cells with a low text-to-link ratio. It is
restricted to pages that use a HTML <table> layout, and is not
always effective. In ContentEx, we realize a self-search link
table filter, and the algorithm we use in the filter is shown in
Figure 5.

1 Construct DOM tree T for the input page;
2 for each terminal node N of T:
3 if N is a text node:
4 textCnt(N) = word count of text in N;
5 linkCnt(N) = 0;
6 else if N is a link node:
7 textCnt(N) = 1;
8 linkCnt(N) = 1;
9 else:
10 textCnt(N) = 0;
11 linkCnt(N) = 0;
12 for each non-terminal node N of T:
13 Initialize textCnt(N) = 0 and linkCnt(N) = 0;
14 for each child C of N:
15 textCnt(N) = textCnt(N) + textCnt(C);
16 linkCnt(N) = linkCnt(N) + linkCnt(C);
17 Calculate

18 for each node N of T in DFS order:
19 if N is a link node:
20 if score(parent(N)) < Threshold:
21 N = parent(N);
22 while score(parent(N)) < score(N):
23 N = parent(N);
24 Delete N from T;

() ()
()

()

textCnt N linkCnt N
Score N

textCnt N

Figure 3. Link Table filter Algorithm

This algorithm converts each input page into a DOM tree in
Step 1. Firstly, it counts the number of words (textCnt) and the
number of links (linkCnt) for each terminal node in Steps 2-11.
Secondly, it counts these two numbers for non-terminal nodes
in Steps 12-16, and textCnt and linkCnt of each non-terminal
node are the sum of the textCnt and linkCnt of all its children.
It calculates text-to-link ratio scores for non-terminal nodes in
Step 17. In Steps 18-24, it traverses through the DOM tree in
DFS (Depth First Search) order to find link tables and remove
them. The search process of link tables starts from any link
node and a link table is found when the score of parent of the
link node is below a pre-defined threshold. The link table is
further extended in Steps 22-23 until the largest possible link
table is found. The discovered link table is then removed from
the DOM tree in Step 24. Traversing in DFS order guarantees
that deleting nodes will not impact traversing. Extending link
tables from bottom up will avoid deleting useful information in
the input page. Compared with link table remover in [2, 3], our
algorithm makes no assumption about any specific tag.

B. Common Pattern Filter

Our extraction target from forum pages is content of posts
and content of replies as shown in Figure 1. So other visible
parts such as author names, time of post and information of
authors are all noises we want to remove from forum pages. In
order to improve precision of our extraction, we sum up some
patterns of noises frequently appearing in forum pages, and use
regular expressions to remove noises following in these
patterns. Patterns we provide in ContentEx are discussed as
follows:

 Time pattern: Forum pages often contain timestamps to
indicate when threads are post. We sum up some time
patterns to delete text nodes which consist of a few
words and these words match time patterns.

 IP pattern: Some forum pages show authors’ IP
addresses which are also common noises.

 Colon pattern: We delete text nodes with a colon as
their last non-blank word.

 Copyright pattern: We delete text nodes containing
string “all right reserved”. Because these nodes only
show copyright messages of input pages, and are not
the content we care.

 Repeated short text pattern: Repeated short texts are
usually generated automatically and are used as
navigation messages. So we can remove them.

IV. EXPERIMENT

A. Test Data

When dealing with pages produced by the same template,
effects of content extraction algorithms are often similar. So we
try our best to test the algorithm on pages produced by different
templates. Our test pages are from 221 forums. Some of them
are produced by popular software (like “Discuz!”), and others

are designed by their owners. We select 2 pages from each of
these sites. So the total number of pages we use to test how we
extract threads from forum pages is 442.

B. Performance Measures

 Text-based Precision-Recall: Text-based Precision is
defined as the text number of content in extraction
results divided by the total text number of extraction
results. And Text-based Recall is defined as the text
number of content in extraction results divided by the
total text number of content. Experience tells us that
when text-based precision and recall are both above
90%, content extraction algorithms can fulfill actual
requirements. So we choose the baseline of text-based
precision-recall of our systems as 90%.

 Processing Time: ContentEx is designed to fulfill
actual demand. So processing time is also an important
evaluation index we must consider.

C. Result

The precision and recall of our forum content extraction
algorithm are 93% and 99% respectively. They are both above
our baseline. If more filters are used, we may get a higher
precision but a lower recall.

J. Prasad and A. Paepcke in [1] propose that Converting to
XHTML is very expensive and has little effect. So when test
Processing Time, we don’t convert input pages into XHTML.
Under this condition, our ContentEx can handle 67 forum
pages in one second.

V. CONCLUSION

In this paper, we propose ContentEx, a framework for
automatic content extraction programs, which we use to
organize and reuse codes related to content extraction. We
expect that by using this framework and pre-defined modules
in this framework we can realize solutions of content extraction
more easily. Algorithms which can be integrated into
ContentEx must be totally automatic and must present each
input page as a DOM tree.

In this paper, we also discuss how we realize content
extraction from forum pages. Considering features of forum
pages, we use filters to extract content. Experimental results
show that our solutions can fulfill the requirement from our
actual applications.

REFERENCES
[1] J. Prasad, and A. Paepcke, “CoreEx: Content Extraction from Online

News Aritcles,” http://ilpubs.stanford.edu:8090/832/

[2] S. Gupta, G. K. Kaiser, P. Grimm, M. F. Chiang, and J. Starren,
“Automating Content Extraction of HTML Documents,” World Wide
Web, 2005, vol. 8, pp. 179-224.

[3] S. Gupta, G. Kailer, D. Neistadt, and P. Grimm, “DOM-based Content
Extraction of HTML Documents,” In WWW’03: Proceedings of the
12th International Conference on World Wide Web, Budapest, Hungary,
2003, pp.207-214..

	I. Introduction
	II. Architectrue of ContentEx
	A. Explanation Tier
	B. Logic Tier
	C. Presentation Tier

	III. Algorithm
	A. Link Table Filter
	B. Common Pattern Filter

	IV. Experiment
	A. Test Data
	B. Performance Measures
	C. Result

	V. Conclusion
	References

