DISCUSSION 12

- Review on linear regression
 - 1. Model:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$$

- (a) fitting $\hat{\beta} = (X^T X)^{-1} X^T Y$, where $X = [1_n, X_1, X_2, ..., X_k], Y = [y_1, y_2, ..., y_n]^T$ $\hat{\sigma}^2 \sim \frac{MeanRSS}{n-k-1}$
- (b) testing:
- (c) model selection:
- (d) model checking:
- 2. Hierarchy rule, parsimony rule:

Hierarchy rule: when you include interaction of two factors, say A, B, then you should want to keep A, B in the model. Help with the interpretation of the model.

Parsimony rule: when two models perform similarly, we prefer the simple models to the complicated one.

3. Model comparison of two nested models(**Lack-of-fit** test)

full model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon$ reduced model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_l + \epsilon, l < k$

Source	Df	RSS	MRSS	F
reduced model	n - l - 1	RSS(reduced)	MRSS(reduced)	
full model	n-k-1	RSS(full)	MRSS(full)	
Difference	k-l	RSS1-RSS2	MSS(diff)	MSS(diff)/MSS(full)

– If the F-test is not significant, this indicates that there is no significant difference between the two tested models. Based on **rule of parsimony**, we keep the simple(reduced) model instead of the full model. Otherwise, we keep the full model.

– Using **anova(model1,model2)** in R

4. Departure from underlying assumptions:

- (a) Effects of outliers, Influential points, Non-normality etc.
- (b) collinearity: measure how close x_j is to being a linear combination of the other explanatory variables.

– The Variance Inflation Factor is defined as $\text{VIF}_j = \frac{1}{1-R_z^2}$.

– effects : (1) inflate variance of $\hat{\beta}_j$, make the estimation of $\hat{\beta}_j$ un stable.

(2) prediction at ${\bf x}$ will have a big standard error, if the ${\bf x}$ is far from center $\bar{{\bf x}}$ of observed data.

-Exercises

- 1. go through this example to learn about effects of collinearity in regression. Adding a variable correlated with current variable will
 - affect the estimation of regression coefficients
 - affect the precision of the regression coefficients (inflate the variance)
 - affect the anova table
 - affect the testing on $\beta_j = 0$.

https://onlinecourses.science.psu.edu/stat501/node/346

- 2. Data centerization: Chap 10, Question 6
 - 6. Using the method of least squares, an experimenter fitted the model

$$\eta = \beta_0 + \beta_1 x \tag{1}$$

to the data below. It was known that σ was about 0.2. A friend suggested it would be better to fit the following model instead:

$$\eta = \alpha + \beta(x - \overline{x}) \tag{II}$$

where \overline{x} is the average value of the x's.

x101214161820222426283032y80.083.584.584.884.283.382.882.883.384.285.386.0

- (a) Is $\hat{\alpha} = \hat{\beta}_0$? Explain your answer. (The caret indicates the least squares estimate of the parameter.)
- (b) Is $\hat{\beta} = \hat{\beta}_1$? Explain your answer.
- (c) Are \hat{y}_{I} and \hat{y}_{II} , the predicted values of the responses for the two models, identical at x = 40? Explain your answer.
- (d) Considering the two models above, which would you recommend the experimenter use: I or II or both or neither? Explain your answer.
- 3. go over the project 3.