
COCONUT: Seamless Scale-out of Network Elements

Soudeh Ghorbani and P. Brighten Godfrey
University of Illinois at Urbana-Champaign

Abstract
A key use of software-defined networking is to enable scale-
out of network data plane elements. Naively scaling net-
working elements, however, can cause incorrect behavior.
For example, we show that an IDS system which operates
correctly as a single network element can erroneously and
permanently block hosts when it is replicated.

In this paper, we provide a system, COCONUT, for seam-
less scale-out of network forwarding elements; that is, an
SDN application programmer can program to what function-
ally appears to be a single forwarding element, but which
may be replicated behind the scenes. To do this, we iden-
tify the key property for seamless scale out, weak causality,
and guarantee it through a practical and scalable implemen-
tation of vector clocks in the data plane. We prove that CO-
CONUT enables seamless scale out of networking elements,
i.e., the user-perceived behavior of any COCONUT element
implemented with a distributed set of concurrent replicas is
provably indistinguishable from its singleton implementa-
tion. Finally, we build a prototype of COCONUT and ex-
perimentally demonstrate its correct behavior. We also show
that its abstraction enables a more efficient implementation
of seamless scale-out compared to a naive baseline.

Categories and Subject Descriptors C.2.3 [Computer Sys-
tems Organization]: Network Operations—Network man-
agement

Keywords Software Defined Networking, Virtualization,
Network Functions, One Big Switch, Replication, One-
to-many Mapping, Consistency, Correctness, Weak Causal
Consistency

1. Introduction
An important use of software-defined networking (SDN) is
to automate scaling of networks, so that individual network

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23 - 26, 2017, Belgrade, Serbia

c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4938-3/17/04. . . 5.00

DOI: http://dx.doi.org/10.1145/3064176.3064201

functions or forwarding elements can be replicated as nec-
essary. Replication of network elements allows capacity to
scale gracefully with demand [11], provides high availabil-
ity [11], and assists function mobility [20, 63]. Multiple
SDN systems replicate network elements, in different ways.
Each tenant in a virtualized data center might be presented
one logical “big switch” abstraction that in reality spans mul-
tiple physical hardware or software switches [11, 42, 46]. As
another example, Microsoft Azure’s host-based SDN solu-
tion leverages VMSwitches to build virtual networks where
each host performs all packet-actions for its own VMs [4];
these VMSwitches act in parallel and independently despite
the fact that they might form a single virtual network. Out-
side of virtualization, caching of forwarding rules is a form
of replication; for example, [15, 32, 59, 62] cache rules at
multiple locations in the network, and Open vSwitch [50]
caches rules from user-space into kernel-space, which is crit-
ical to improve performance.

All these systems replicate logical network elements by
duplicating forwarding rules across multiple locations, with-
out coordination between them, which we call simple repli-
cation. Our work begins by asking: Does simple replica-
tion for scaling out network elements preserve the semantics
of a single element? If the network elements are stateless,
the simple replication approach taken by existing systems is
enough (§3). But if a developer writes a network function or
application such as a stateful firewall on top of a single vir-
tual “big switch”, is its functional behavior the same as if it
were running on an actual single physical switch? We show
that simple replication does indeed change the network’s se-
mantics: for example, a replicated firewall can erroneously
and permanently block hosts. In fact, our experiments show
there are scenarios that these problems occur frequently (§3).

How, then, could an SDN programmer deal with this
problem? Living with the risk of incorrect functionality is
unappealing, as critical infrastructure elements such as secu-
rity appliances (firewalls, intrusion detection systems, etc.)
are increasingly deployed in a scale-out manner. Alternately,
the programmer could write her application so that it takes
into account the distributed implementation of network el-
ements and associated race conditions. But this is inconve-
nient for the programmer at best, and is infeasible at worst,
when replication is explicitly hidden in the physical infras-

tructure underneath a tenant’s virtual network. Indeed, one
lure of the virtualized cloud for tenants is the prospect of
migrating their workloads and network applications to the
cloud “as-is”, i.e., with no re-designing and re-architecting
of their applications, with the expectation that they perform
exactly akin to their non-virtualized networks [13, 37].

Our goal is thus to achieve seamless scale-out for net-
work forwarding elements: a system which guarantees that
an SDN application writer can program to the semantics of a
single device, but which utilizes multiple replicated elements
behind the scenes.

Achieving seamless scale-out is not easy. The most
generic solution would be to synchronize replicas to provide
a strongly consistent logical view, but the required locking
would not achieve the performance necessary for the data
plane [4, 62]. Recent work [30, 33, 43, 53] provides a form
of consistency in the data plane in the sense of ensuring
“trace” properties of a single packet’s path, as in Consis-
tent Updates (CU) [53]. But this is essentially orthogonal to
our goal; seamless scale-out does not require per-packet path
consistency, and systems that provide per-packet path con-
sistency can even cause the correctness problems described
above (§3.2). Also, the mechanisms used to implement CU
assume a single atomic update point (the ingress switch of a
packet’s path). No such atomic update point exists in our set-
ting, because we need to preserve the single-device seman-
tics across a large number of flows across the whole network
with potentially unspoken dependencies.

The system we present here, COCONUT (“COrrect COn-
current Networking UTensils”), provides seamless scale-out
for network elements defined by a dynamically-updatable
OpenFlow-like abstraction. To work towards a solution, we
observe that the culprit of scale-out correctness problems
is violation of what we call weak causality. For exam-
ple, simple replication can cause a replicated firewall to
miss the weak causal dependency between a client’s out-
bound request and a server’s inbound response, so it sees
a seemingly-unsolicited inbound response first and perma-
nently blocks traffic from that server.1 We design a set of
high-level algorithms to avoid weak causality violations,
drawing on the classical concept of logical clocks [38] to
track the state of each forwarding rule at each abstract net-
work element. But providing a practical and scalable im-
plementation of these high-level algorithms is challenging;
switches do not directly implement logical clocks, and emu-
lating a large vector of logical clocks in packet header fields
is impractical. We provide a practical realization of those al-
gorithms using OpenFlow-compatible switches, leveraging
the distinguishing characteristics of SDNs and virtualized
networks, and is thus suitable for deployment in the context
of a modern virtualized data center with software switches

1 Note that even this simple example involves multiple flows entering the
network at different points, illustrating the aforementioned insufficiency of
using a single atomic update point as in CU [53].

in each physical host. Our design uses limited bits in header
fields of a physical network to emulate logical clocks in
the virtual network, while dealing with concurrent creations
and changes of multiple virtual networks that may interleave
with each other and compete for use of these bits.

To prove that COCONUT correctly provides seamless
scale-out—that is, the scaled-out network is indistinguish-
able from a singleton network element—we need a new an-
alytical framework that takes into account the sequence of
observations made by the end-points, with potential interde-
pendencies. We formalize this with a definition we call ob-
servational correctness that requires that any sequence of
end-point observations in the scaled-out network is plausible
for the singleton version. In tune with what applications ex-
pect from best-effort networks, this model is permissive of
occasional packet drops and re-ordering, while prohibiting
weak causality violations (breaking “happened before” rela-
tions [38] adopted for best-effort networks, §4.1) that could
jeopardize applications’ correctness. We formally prove that
COCONUT provides observational correctness.

We implemented a prototype of COCONUT integrated
with Floodlight [2], Open vSwitch [50], and OpenVirtex [7].
We evaluated COCONUT and several alternative schemes
on a hardware SDN testbed arranged to emulate a 20-switch
fat-tree topology and in Mininet [23] emulations up to 180
switches, with multiple topologies, load patterns, and SDN
application scenarios. Our findings are as follows:

• A strawman solution, providing strong consistency (SC)
similar to [20] by routing all data traffic through a con-
troller during updates, would come at too high a cost:
about 12 Gbps bandwidth overhead and a 20× increase in
user traffic latency even in a modest-sized network. CO-
CONUT incurs no measurable data plane performance
overhead, and has significantly lower overhead in terms
of forwarding rule update delay (3.5× faster in a network
with 128 hosts and 80 switches) and number of forward-
ing rules (2× lower).
• Unlike baseline simple replication, COCONUT correctly

achieves seamless scale-out, and does so with modest
overhead. For a 180-switch network, for example, the
mean forwarding rule updates time is only 1.2× slower
than simple replication, and the mean number of forward-
ing rules increases by only 1.6×, with just 0.7% of that
overhead persisting for longer than 100ms.
• We also compare with a natural implementation where

the programmer avoids replication-related race con-
ditions “manually” within the SDN application. CO-
CONUT enables an implementation that is both more
convenient for the programmer and provides 2.8× lower
mean latency for user data flow initiation due to its effi-
cient logical clock-based approach.

In summary, our key contributions are:

1. We observe that simple replication breaks the semantics
of a single network element and show experimentally that
it causes application-level incorrect behavior.

2. We present COCONUT, a system for seamless scale-out
in the context of OpenFlow forwarding elements in a vir-
tualized data center, and prove that it correctly preserves
a single-element abstraction.

3. We demonstrate experimentally that COCONUT
achieves its goals with modest performance overhead.

We believe this lays the foundation for a practical and de-
pendable service model for virtualized network infrastruc-
ture, and a powerful abstraction for programming SDNs.

2. Background
2.1 Basic Abstractions
COCONUT provides seamless scale-out for network ele-
ments. The abstraction of a network element that we work
with here is essentially an SDN device such as an OpenFlow
switch. Each element or switch has a table of rules, each
rule containing a priority, a match on packet headers, and a
list of actions. Although each individual rule is stateless, the
system is not: the controller can dynamically update rules
based on dataplane events, e.g., failures. Upon receiving a
packet, the switch executes the actions for the highest prior-
ity rule that matches the packet. These actions could result
in changes in the packet, dropping it, or forwarding it.

(How) are networking elements scaled-out today?
Scaling out can be realized via simple replication or one-
to-many mapping, where a logical rule is mapped to a dis-
tributed set of physical rules, each individually capable of
fully implementing the logical rule. In this technique, before
installing a rule in multiple physical flow tables, an entity
such as the network hypervisor [37] typically rewrites the
rule. For example, a rule that matches on virtual ports will
need to be rewritten to refer to physical ports [11, 20]; virtual
addresses may be translated to physical addresses or packets
may be placed into tunnels [37]; and rules that match in part
with wildcards could be replaced with multiple rules, each
using only exact-match values [12, 37]. The latter mecha-
nism is used in software switches, where wildcard rules in
userspace are cached as exact match rules in the kernel to
enhance performance [37].

Prior to COCONUT, a number of systems have provided
simple replication, mostly for scaling out static stateless net-
work elements, i.e., those whose actions or presence in the
network do not depend on the history of previous packets
or actions [18]. Simple replication of stateless elements pre-
serves the semantics of applications [18].

Modern programmable networks, however, are much
more dynamic. This can come in the form of controllers
adding, removing, or modifying forwarding rules dynami-
cally in response to application traffic. The question is, can
these stateful elements be replicated via simple replication?

 Routing
 dstip=127.2.*.* fwd(1)
 * drop

 Monitoring + Routing

 srcip= 127.1.*.*, dstip=127.2.*.* count,fwd(1)

 srcip= 127.1.*.* count

 dstip=127.2.*.* fwd(1)

 * drop

 Monitoring

 srcip=127.1.*.* count

 * drop

Figure 1: Composing monitoring and routing.

We list a few key existing applications of simple replication
(§2.2), before showing that this technique may cause incor-
rect application behavior when used for implementing dy-
namic stateful network functions (§3). We also show that the
existing works on correctness in the network not only do not
solve this problem but can exacerbate it (§3).
2.2 Applications of Replication
Network virtualization: Simple replication is a key tech-
nique for building distributed virtual switches. Nicira’s
NVP [37] and OpenVirtex [7], for example, can provide a
one-big-switch abstraction that connects VMs on the same
virtual network even though they are located in different
physical hosts or regions of the physical network, and whose
locations may change due to spinning up VMs or VM mobil-
ity. This is implemented with simple replication from a sin-
gle virtual switch onto a distributed set of software switches.

Composition of multiple virtual switches can also result
in replication. Under existing composition techniques, mul-
tiple logical rules are jointly mapped to a set of physical
rules where each physical rule is individually capable of im-
plementing multiple logical rules [16, 28, 46]. For example,
Figure 1 shows (a) a monitoring module that performs moni-
toring based on source address, (b) a destination-based rout-
ing module, and (c) a Monitoring+Routing application re-
sulting from parallel composition of the previous two mod-
ules (rules ordered from highest to lowest priorities) [46].
The first rule of the monitoring, module, for example, is im-
plemented with 2 rules in the composed application.

Network Function Virtualization (NFV): Performance
is a critical consideration in NFV where software is used
to implement network functions or applications such as
firewalls, load balancers, etc. Simple replication, used in
caching, is a key technique to enhance forwarding perfor-
mance in software switches and NFVs [32, 37, 50, 59, 62].

Implementing higher level abstractions: In the
context of network programming languages, Frenetic
[16] provides high-level primitives such set difference,
not directly supported by the hardware, by mapping
those primitives to multiple OpenFlow rules, e.g., a
rule with the match field src-IP=186.206.176.* OR

src-IP=62.205.112.38, is implemented via two rules.
In all of the above techniques, each physical instance or

replica is functionally equivalent to a faithful implementa-
tion of one (or more) logical rules, i.e., the replica performs
identical actions as the logical rule. In a fully static net-

Network

IDS

IDS

IDS

Measurement

Controller

Switch

ACLForwarding

External
input

Data traffic
Control traffic

unclassifiedwhitelist

drop

blacklist

Figure 2: SDN-enabled security architecture.

work, packets traversing the physical network result in the
same end-to-end fate as if they were processed directly by
rules in the ideal, non-replicated implementation of the log-
ical network. However, as network state changes over time,
there may be inconsistent state among the multiple replicas
that implement one logical element. Furthermore, this prob-
lem may become more serious if the changes are interde-
pendent with application-level behavior (rather than simple
route changes). We next see how this may cause application-
level incorrect behavior.

3. What Can Go Wrong?
We show with a few examples that the simple replication
can break the semantics of a single element and lead to
incorrect application behavior. Per-packet consistency [53]
does not fix the problem, and interestingly, can even trigger
the problem in an otherwise-correct network.

3.1 Example 1: SDN-enabled Security
Network Intrusion Detection Systems (IDSes) and stateful
firewalls perform complex traffic processing and analysis
that are CPU-intensive and hard to implement at high speed.
Performance can be improved significantly by programming
faster devices like SDN switches to act as an initial triage fil-
ter [49]. As depicted in Figure 2, the switch whitelists traffic
known to be benign, forwarding it directly to its destination;
blacklists traffic known to be malicious, dropping it imme-
diately; and sends only the remaining unclassified traffic to
the IDS device for more expensive analysis (e.g., DPI). The
controller uses external input, traffic measurement tools, and
notices from the IDS cluster to craft whitelists and blacklists
in the ACL table of the switch.

This concept is the crux of several security and DoS
protection systems such as Radware’s SDN-enabled De-
fenseFlow [48], and SciPass used in the TransPAC net-
work and Indiana University [9]. At Lawrence Berkeley Na-
tional Laboratory (LBNL) and NCSA, a similar system that
whitelists GridFTP traffic, which is uninteresting from a se-
curity standpoint in such scientific environments, reportedly
reduces the total traffic volume to their security appliance
cluster by about 32-37% on a typical day [8].

This architecture results in frequent ACL changes on
switches. Using custom setups that interface with the Bro
and Snort IDSes, for instance, LBNL and Indiana University
block an average of 6,000-7,000 and 500-600 IPs per day,
respectively [8], and systems that whitelist GridFTP traffic
at LBNL and NCSA result in a few hundred to several tens
of thousands ACL operations per day [10].

The traffic which is unclassified is sent to a cluster of se-
curity appliances. Such devices usually ship with analyzers
for many protocols and applications to detect protocol and
application specific attacks. The weird.bro and scan.bro
scripts in Bro, for instance, give notices when Bro observes
data being transferred in a session without seeing the SYN
ACK packet of that session, data being transferred without
observing ACK, repeated SYN ACK packets for the same
session, and failed connection attempts to multiple hosts
over a time interval. The notices from the IDS are then sent
to the controller application which might in turn install rules
on the ACL to block IPs. In some systems, such as Sci-
Pass, this blocking is by default permanent [3]. Erroneous
IP blocking is notoriously hard to debug; in most cases it re-
quires the owner of the IP to call the network operator who
then manually inspects the IDS logs [58].

However, this system can encounter a problem if the
triage switch is replicated. Consider the following setup. The
IDS cluster is set to analyze some protocols including TCP
port 80, i.e., if it receives a reply, it checks if the reply is
solicited or not. If it is, it forwards the packet to its destina-
tion. Otherwise, it sends a notice to the controller to block
the source of the traffic. A popular web service on the inter-
nal network receives a continual stream of incoming requests
from clients on port 80.2 Let P1 refer to the initial policy that
TCP port 80 on the switch is unclassified. Next, the network
operator chooses to update the policy from policy P1 to P2
where TCP port 80 is whitelisted. The only affected module
is the ACL that should add a rule to forward TCP port 80 to
the forwarding table instead of the IDS cluster.

Without replication, at any point during the update, if a
server receives a request, it is allowed to reply: its solicited
reply either traverses the forwarding table and reaches its
destination, or through the IDS that already knows about the
request—the request can only be forwarded to its destination
by the IDS after the IDS observes the request.

With simple replication, however, the switch might be
implemented using rules across multiple physical devices.
For example, in a one-big-switch setup with OpenVirtex [7],
the single rule that sends TCP port 80 traffic to the forward-
ing table is now translated into multiple rules, one residing
on each physical edge switch that acts as part of the one-big-
switch. These rules cannot be installed all at once.

Hence, the following race condition can happen: The new
rule for P2 is installed at the edge switch connected to host
A. Then, A sends a request to host B. The request is directly

2 Similar problems arise if the service is external and the client is internal.

 0

 20

 40

 60

 80

 10 20 30 40 50In
co

rr
e
ct

ly
 b

lo
ck

e
d
 h

o
st

s
[%

]

Number of switches

Simple replication
SC and COCONUT

Figure 3: Simple replication causes incorrect blocking.

forwarded to B; therefore, the IDS does not observe the re-
quest. B replies, and its reply hits a different edge switch
which still uses policy P1. Thus, B’s reply is forwarded to
the IDS. Since the IDS never saw the request, the IDS sends
(false) notices to the controller informing it that the server is
sending a stream of unsolicited replies. This will eventually
cause the controller to block the server even though the traf-
fic it is sending is already whitelisted and it is legitimately
replying to requests it receives. In other words, the hosts ob-
serve the following invalid sequence of events: A sends a
request, B receives it and replies, B is blacklisted.

This problem is troublesome to resolve. Even though the
controller knows a certain type of traffic was whitelisted, it
is difficult for the controller to realize the mistake, because
a host with some valid traffic might still have sent malicious
traffic as well. If the server owner realizes a mistake and
phones the network operator, the problem would be hard to
resolve as the IDS logs indicate a suspicious server activity
(sending unsolicited replies).

To determine how frequent this error can be, we imple-
mented a tree topology with up to 50 leaf switches acting
as the logical ACL. Each leaf switch is connected to 5 hosts
in Mininet. Each host sends requests to randomly selected
hosts with flow interarrival times and sizes drawn from the
web-server workload information in [55]. Control delays are
drawn from the measurements of HP Procurve switches in
[26]. Figure 3 shows the percentage of hosts incorrectly
blocked following a single P1 → P2 policy change, aver-
aged over 100 trials. The percentage of incorrectly blocked
hosts rapidly increases with scale, e.g., with a medium-sized
network of 20 switches, it approaches 60%. An alternative
approach of using symmetric paths for all related flows in
that example imposes great overhead for some applications
such as GridFTP, used in both NCSA and LBNL [8], that
depend on many flows.

3.2 Example 2: Logical Firewall
Imagine that an enterprise network has a firewall at the pe-
riphery of its network that permits an external server to talk
to an internal client if and only if the client has sent a re-
quest to the server. This policy could be achieved as follows,
using a single switch and a firewall application FW run-
ning on the controller (Figure 4). Initially, FW installs in
the switch a low priority flow table entry that matches all

controller

firewall
app firewall FW:

1.if (pkt.src­ip.isInternal())
2. FlowMod(match=[src­ip=pkt.dst­ip,
3. dst­ip=pkt.src­ip],
4. actions=forward, priority=10)
5. FlowMod(match=[src­ip=pkt.src­ip,
6. dst­ip=pkt.dst­ip],
7. actions=forward, priority=10)
8. BarrierRequest()
9. PacketOut(pkt, actions=OFPP_TABLE)
10.else
11. FlowMod(match=[src­ip=pkt.src­ip,
12. dst­ip=pkt.dst­ip],
13. actions=drop, priority=20)

firewall
switch

Figure 4: Replicated firewall incorrectly blocks communication.

client and server traffic and sends the packet to the controller.
When FW receives a packet from a client, it instructs the
switch to do three things: (1) install rules to allow bidirec-
tional communication between the client and the server, by-
passing the controller, (2) wait for these rules to take effect,
via a BarrierRequest message, and (3) process the orig-
inal packet again using the new rules. When FW receives
a packet from a server, it must have been unsolicited, so it
blacklists the server by installing a permanent high priority
rule that drops packets from the server. This rule provides
the desired property of safeguarding clients from connecting
to malicious servers, even if the client tries to connect.

With simple replication, i.e., if that logical switch is in re-
ality mapped to more than one physical switch, the client-to-
server traffic could traverse one physical switch, s1, and the
resulting server-to-client traffic traverses a different physical
switch s2. In this case, the response traffic may reach s2 be-
fore the rules for bidirectional communication are installed
on it, intuitively because the BarrierRequest now waits
for rules to take effect at only one switch, rather than all. The
packet, therefore, will be handled by the default rule which
sends it to the firewall application, which proceeds to install
a high priority rule D to block all traffic for that flow—an
undesirable outcome and something that would not happen
without replication. Note that even when the rules that allow
client-server communication are installed on s2, the switch
continues dropping traffic due to rule D, since it has a higher
priority. In an experiment with similar setup as §3.1, when
the client and server are connected to two separate replicas,
we found the communication is incorrectly blocked 21% of
the time. This example is similar to the previous IDS ex-
ample in its effect, but here it is triggered by normal client-
server traffic rather than an administrator’s policy change.

3.3 Shortcomings of Existing Approaches
Per-packet Consistency Is Not Enough. A line of work

has preserved properties of a single packet’s journey, even
during network updates — for example, avoiding loops and
black holes [30, 43] or preserving per-packet (or per-flow)
consistency, wherein every packet (or flow) traversing the

network is processed by exactly one global network config-
uration and never by a mix of multiple configurations [53].
These properties do not achieve seamless scale-out, because
they do not preserve dependencies across different pack-
ets or flows. In the IDS example, each source-to-destination
flow was processed by only a single policy; the problems are
only visible across flows, violating the request/reply order-
ings that the IDS policy depends on. This is a critical distinc-
tion, because Consistent Updates (CU) [53] implements per-
packet consistency by relying on each packet’s entry point as
a single point of atomic update. Seamless scale-out involves
behavior of packets across many flows from multiple entry
points and potentially flowing through endhosts; no atomic
update is possible.

In fact, application-level incorrectness can occur because
of deploying CU [53] to guarantee per-packet consistency.
This is because the two-phase update algorithm of CU itself
causes replication. We return to the example of §3.1. In the
non-replicated setting, if the network uses CU to update the
policies to whitelist TCP port 80 traffic, the update will no
longer be a single step, because the flows using rule R1 on
the ACL need to be updated one by one. Suppose that the
flow from A to B is updated, but other flows (including the
one from B to A) are not yet updated. In this case, the ACL
will have 2 rules corresponding to R1 on the ACL in Figure
2 (not shown): an old rule to match traffic using old tags (old
policy traffic) and the new rule with new tags (new policy
traffic). Now, host A sends TCP port 80 traffic with the new
tag, which is forwarded to B (new policy). B receives the
packet, and replies. Its reply to A, however, is delivered
to the IDS since it has the old tag. The IDS consequently
blocks B given that it has not seen the request, something
that would not happen without CU. The underlying problem
in this case is that CU maps a single logical rule to multiple
physical rules with different tags.

Strong Consistency Is Cost Prohibitive. SDN switches
do not directly provide primitives to preserve strong consis-
tency, but one can implement it using the controller [17, 20,
39]: when a rule needs to be updated, direct all related flows
to the controller, which temporarily emulates the switches’
behavior; perform an atomic rule update at the controller;
update the switches; and finally shift traffic back to the
switches. This technique would correctly achieve seamless
scale-out. But we show in §5 that it has dramatic perfor-
mance penalties, e.g., 20× increase in delay for the IDS ex-
ample. Shifting traffic to the controller is thus appropriate for
relatively rare virtual network migration events supported by
[17, 20, 39] but not for the ongoing process which we hope
to support.
4. Design of COCONUT
The previous examples demonstrate that simple replication
does not provide seamless scale-out. In this section, we be-
gin by presenting the intuition of what logical property the
network requires to achieve seamless scale out. We call this

property weak causal correctness, formalize it (§4.1), show
the intuition behind our design with simple (but impractical)
algorithms to preseve weak causal correctness (§4.2), and fi-
nally present a practical realization of the design (§4.3).

4.1 Not All Orderings Are Created Equal
Causality violations in §3, e.g., receiving a response before
or without the request that caused the response, are caused
by inconsistent state among replicas of one single logical
rule—a packet is handled by a new instance of a logical rule
and another packet that “comes after” it is handled by an old
instance of the same logical rule. In the IDS example in §3.1,
for instance, the request packet is handled by a new instance
of the ACL rule, but the reply that it triggers is handled by the
old instance of the same logical rule. Thus, the IDS receives
the reply packet first, missing its dependency (the request).

On the surface, it might seem counter-intuitive that the
ordering between those packets is a problem that could
compromise application correctness, since even in non-
replicated best-effort networks, packets can be reordered or
dropped. The sublety here is that even in best-effort networks
some orderings, that we call weak causality, are always pre-
served. For example, no amount of reordering or packet loss
will change the fact that with a standard TCP implementa-
tion, receiving a SYN packet always happens before sending
the first SYN ACK.

We use this intuition to formally define weak causality
and observational correctness. We first formalize network
events and define networks’ behaviors.

The endpoints interact with the network with send and
receive events. These are the only events we are ulti-
mately interested in because they are the only externally vis-
ible events, i.e., while the network could have multiple inter-
nal events such as rule lookup, packet rewrite, etc., those in-
ternal events are not visible to the endpoints. The distinction
between internal and external events is a common technique
for defining correct behavior of state machines [41]. The no-
tation rh,i(pkt) and sh,i(pkt) are used to respectively refer
to the event of receiving and sending packet pkt by endpoint
ph where this event is the ith event happening at ph. Each
sequence of external events is a trace. The behavior of a
system is the set of all plausible traces in that system [41]. In
a system with n endpoints, pi∈{0,...,n−1}, a local history of
endpoint pi, denoted by Li, is a sequence of ei,js, where ei,j
is the jth external event that happens at pi, i.e., the system’s
behavior observable by pi. A history H=〈L0, L2, ..., Ln−1〉
is a collection of local histories, one for each endpoint.

Observational correctness: For a physical network, P ,
to be an observationally-correct implementation of a logical
or abstract network, L, any trace in P ’s history should be a
plausible trace in the history of an ideal, non-replicated im-
plementation of L. That is, the possible behavior of P is a
subset of the possible behavior of a non-replicated imple-
mentation of L. We see in §3 that this condition does not
hold under simple replication, e.g., the following trace that

happens in the replicated network in the example in §3.1 is
not plausible in the non-replicated networks: A sends a re-
quest, B receives the request, B sends a reply, IDS receives
the reply. (i.e., the trace misses the event of the IDS receiving
the request that triggers the reply).

Weak causality: Event ek,l has weak causal dependency
on event ei,j , shown by ei,j → ek,l, if one of the following
cases hold:

R1: local dependencies. This applies when i=k (i.e., both
events happen in the same endpoint), j < l (i.e., ei,j comes
before ek,l), and ek,l is a send event. In the example above,
‘B sends a reply’ is locally dependent on ‘B receives the
request’. Note that we replace the traditional “program or-
der” [5] with local dependencies in rule R1. This is done
to account for the fact that a best-effort network can reorder
packets. The above condition on ek,l is what distinguishes
our notion of weak causality from the original definition of
causality in [5].

R2: sends-to. ei,j and ek,l are respectively the events of
sending and receiving the same packet.

R3: transitivity. There is some other er,t event such that
ei,j → er,t → ek,l.

If an event ek,l(q) involving packet q has weak causal
dependency on an event ei,j(p) involving packet p, we say
that q has weak causal dependency on p, denoted by p→ q.
Events and packets with no weak causal dependencies are
called concurrent.

While best-effort networks can drop packets and reorder
concurrent packets, they preserve weak causality. For in-
stance, if concurrent packets pkt1 and pkt2 are sent to end-
point pi, receiving them with any order or not receiving one
or both of them are permissible, e.g., ∅, 〈ri,j(pkt1)〉, and
〈ri,j(pkt2), ri,j+1(pkt1)〉 are plausible traces. However, a
host always receives a SYN ACK packet after sending a
SYN packet (its weak causal dependency). Receiving a SYN
ACK without sending a SYN packet, or receiving it before
sending a SYN packet, therefore, are not plausible traces.

Unlike non-replicated networks, replicated ones can vi-
olate weak causality, e.g., the IDS in §3.1 receives a reply
while missing its dependency. This implies that replicated
networks can have traces (those that violate weak causality)
that are not plausible in logical networks that they intend to
implement, and consequently are not correct.

Root cause of weak causality violation: It is not hard
to see that if no rule changes, then any trace in the repli-
cated network is a plausible trace of the logical network. The
fact that a replicated network can have implausible traces,
therefore, results from handling packets with inconsistent
instances of rules. Intuitively, handling concurrent packets
with inconsistent instances does not result in a implausi-
ble trace. Even in non-replicated networks, it is permissi-
ble to handle two concurrent packets with inconsistent state
while the network state is changing. The problem happens
when orderings of packets are known, e.g., p → q. In non-

replicated networks, p cannot be handled by a newer state
compared to q. Under simple replication, in contrast, this
property does not automatically hold because the instances
handling p and q could be different. Therefore, p might be
handled by a newer state compared to q. In the IDS exam-
ple, for instance, the event of the IDS receiving the reply (e3)
happens after the event of B sending the reply (e2), which in
turn happens after the event of B receiving the request (e1).
Yet, even though e1 → e3, the packet associated with e1
(request) is handled by a newer instance compared to the in-
stance that handles the packet associated with e3 (reply). We
provide algorithms to ensure that with COCONUT’s repli-
cation, for any two packets p and q where p→q, applying a
logical rule on q implies that no newer version of the same
logical rule is applied on p. We show in [19] that preserving
this property is sufficient for observational correctness:

Theorem 1: Any behavior of COCONUT’s implementa-
tion of replicated networks could have happened in the logi-
cal network.

The intuition behind the proof is to show that COCONUT
is weak causality-aware3 (Lemma 2 in [19]) and this is
sufficient for observational correctness.

4.2 COCONUT’s High-level Algorithms
In an implementation of a logical network with m logical
rules, LR0≤i<m, one single logical rule, LRi, is mapped to
multiple physical instances, PRi,j , where j is the ID of the
switch hosting the PRi,j instance.

Changes to a logical rule should be replicated across
all the physical rules that implement it. Without enduring
the prohibitive cost of synchronization for atomically up-
dating all the physical rules at once and in unreliable net-
works where elements can fail, inevitably, there exist in-
stances when different physical replicas are in different and
inconsistent states. Fortunately, this different network state
usually does not cause anomalous application behaviors —
unless endpoints’ applications receive packets from the net-
work, they are unaware of the network state. The problem
happens when the packet is handled by a new version of the
rule and then triggers a causal sequence of events leading to
some packet (perhaps the same or newly generated packet)
being handled by an old version of the rule.

We leverage this observation and the classical concepts
of logical and vector clocks to prevent such weak causality
violations. We use logical clocks for tracking network state
changes and restricting the space of executions to those
that are weakly causally consistent. Endpoints affix vectors
of logical clocks to packets that show their latest observed
network state. These clocks prohibit switches from applying
outdated rules that might violate weak causal correctness,

3 A network is weak causality aware iff for any two packets p and q and for
any logical rule R, p → q implies that the version of R that handles q is at
least as recent as the one that handles p.

Algorithm 1 Ideal Switch sw

1: procedure UPDATE(rule PRi,sw)
2: V Csw[i]++
3: regular-update(PRi,sw)

4: procedure RECEIVE(packet pkt, port ip)
5: rule PRi,sw =lookup(pkt, ip)
6: while (V Csw[i] < V Cpkt[i]) do
7: update(PRi,sw)
8: V Cpkt[i] := max(V Csw[i], V Cpkt[i])
9: regular-apply(PRi,sw, pkt, ip)

and prompt them to update their rules before applying them
to packets.

More specifically, in a network with m logical rules,
each packet pkt carries an m-dimensional vector of logical
clocks, V Cpkt, in which V Cpkt[j] shows the latest version
number of logical rule LRj that pkt has “observed”—that
is, the latest version known at the sender of pkt when it was
sent, or the version applied to pkt along its path (whichever
is more recent). As an example, the switch that handles a
packet p with the second version of the logical rule LRj sets
its V Cp[j]=2, and the endpoint that receives p sets V Cq[j]=2
for a packet q that it sends after receiving p. We assume that
switches are preloaded with all versions of rules, similar to
the way that switches can be preloaded with failover rules.

The reader will have already realized that in large-
scale multi-tenant datacenters hosting 10Ks of virtual net-
works [14, 57], storing a clock value for every rule in every
packet, performing operations on these V Cs, and preload-
ing switches with all rules are infeasible. Our goal in this
section is to convey the intuition behind our design and rea-
son about its correctness. Later, §4.3 presents a scalable and
OpenFlow-compatible, but slightly more complex, emula-
tion of these algorithms. Three types of entities—switches,
shells, and the controller —work with the vector clocks car-
ried by packets. We describe the role of each next.

Switch operations: Each physical switch sw has a logi-
cal clock V Csw[j] for each logical rule PRj,sw hosted at the
switch. This clock stores the current version number of the
rule that the switch will apply to matched packets. Note that
one logical rule can be hosted at multiple physical switches,
and these may have different clock values while the rule
is being updated. When a switch needs to update a rule, it
also increments its corresponding logical clock (procedure
UPDATE in Algorithm 1; regular-update is the regular
rule update operation without COCONUT).

When receiving a packet pkt on input port ip (proce-
dure RECEIVE in Algorithm 1), the switch sw looks up
the rule that needs to be applied on the packet, PRi,sw. If
V Cpkt[i] > V Csw[i], the packet or a packet that happened
before was already handled by a newer version of LRi than
the one currently active on sw. Hence, applying the out-
dated version risks weak causality violations once pkt is re-

ceived by any endpoints. So at this point, sw is required to
update the rule before handling pkt. The update(PRi,sw)

function has the switch update PRi,sw using the preloaded
rules, its clock for this rule, and the packet’s clock for this
rule, V Cpkt[i], to show the latest version number. Finally the
switch acts on pkt by applying the rule (line 9 in Algorithm
1).

Deleting a rule PRj,sw is a special case of updating it: the
logical clock of the deleted rule, V Csw[j], is incremented
and its value is set to ∅ (a special value) dictating sw to
apply other rules for matching packets.

Algorithm 2 Shelli

1: procedure RECEIVE(packet pkt)
2: for j ∈ V Ci do
3: if V Cpkt[j] > V Ci[j] then
4: V Ci[j] := V Cpkt[j]

5: remove-VC(pkt)
6: regular-fwd-to-host(pkt)

7: procedure SEND(packet pkt)
8: add-VC(pkt, V Ci)
9: regular-send-to-net(pkt)

Controller’s operations: The controller sits between the
network hypervisor and the network, and is tasked with in-
stalling the physical rules, such as those sent by the network
hypervisor to it, on switches.

Shell’s operations: A shell is a shim layer sitting be-
tween each endpoint and the network, which can run in
the hypervisor. Shells hide V Cs from the endpoints by per-
forming the necessary logical clock operations on their be-
half. For each endpoint pi, its shell shelli keeps an m-
dimensional vector V Ci of logical clocks. V Ci[j] contains
the max version number of logical rule j observed in the log-
ical clock of any packet pi has received.

For each incoming packet, pkt, shelli updates
V Ci if the packet carries any newer information, i.e.,
∀j, V Ci[j]=max(V Ci[j], V Cpkt[j]). It then removes
V Cpkt from the packet before passing it to the endpoint
(procedure RECEIVE in Algorithm 2). For any outgoing
packet pkt, shelli appends its local V C, V Ci, to the packet
before sending pkt (procedure SEND in Algorithm 2). This
V C prevents switches from handling pkt with outdated
rules that could violate weak causality.

4.3 OpenFlow-compatible Implementation
Having a scalable implementation of the simple algorithms
in §4.2 is challenging. A major scalability bottleneck is the
size of the time vectors. In general, in a distributed com-
putation with N processes, causality can only be character-
ized by vector timestamps of size N , i.e., the causal order
has in general dimension N [56]. For implementing weak-
causally consistent SDNs, where the vector timestamp tracks
the version of every forwarding rule in the network, it would

be overly burdensome (in terms of bandwidth and CPU) for
packets to carry such large vectors and endpoints, switches,
and controllers to operate on them. Another scalability chal-
lenge is preloading switches with all versions of rules. In
addition to these scalability challenges, there is a feasibility
challenge: vector clocks and their related operations cannot
be readily implemented with the match/action operations on
commodity switches today.

To overcome the feasibility challenge, we note that the
weak causality problem that VCs solve only arises when a
logical rule is in flux: there are both old and new physical in-
stances of the rule in the network. Vector operations are not
needed for stable rules that are not in flux (i.e., before or af-
ter updates). Even when rules are in flux, their exact version
numbers are not necessary for preserving weak causality. As
long as the old versions of a rule are eliminated from the
network, it is sufficient to know that the rule is being up-
dated which can be sufficiently characterized by one single
bit, which we call a tag bit (TB), to identify the current and
new versions. Switches and endpoints then need to “mark”
the TBs of the packets that are handled by such rules or any
packet after them (by a tagging operation which can be im-
plemented in existing switch hardware), and for in-flux rules,
switches need to apply their updated versions to the tagged
packets (e.g., by having the updated rules as higher priority
rules that match on the tag). These simple tricks enable us
to emulate vector operations for updating a logical rule by
reserving a TB for it and deploying regular match-action op-
erations, thus solving the feasibility challenge. Concurrent
updates could use separate update TBs.

The fact that only the in-flux rules require tags for correct
operations, along with coordination at the SDN controller,
also aids us to sidestep the scalability challenge: once an up-
date operation terminates, i.e., once the controller learns that
all the physical instances of a logical rule LR are updated,
it can re-use its TB for updating other rules. We can thus
concurrently update as many logical rules as the number of
bits dedicated to TBs. While this is likely to be sufficient for
a single virtual network, it will still be a scalability bottle-
neck for cloud providers that host 10Ks of virtual networks
and should support millions of concurrent updates of all of
these networks per day [14, 57]. We resolve this by capi-
talizing on the fact that virtually all network virtualization
platforms [7, 37, 50, 60] isolate traffic within each virtual
network, so that traffic cannot leak between two virtual net-
works. Packets carrying extra bits disjoint from the bits used
by the hypervisor and rules matching on them do not vio-
late this property. Hence, multiple virtual networks can con-
currently use the same TBs. Furthermore, the controller can
preload switches with only the necessary rules.

We describe the practical implementation of CO-
CONUT’s algorithms as well as its failover operations after
explaining the notations and requirements.

Requirements: In addition to requiring traffic isolation
between virtual networks, COCONUT requires that the TB
bits are dedicated to COCONUT’s operations, i.e., no other
entity (such as the tenants or the network hypervisor) is al-
lowed to use these bits. For simpler presentation, we fur-
ther assume that arbitrary bitmask (supported since Open-
Flow 1.1, early 2011) is supported for the header-field used
for TBs. COCONUT requires that the network hypervisor
should not cause ambiguity, i.e., it should not install multi-
ple rules with overlapping match fields and identical priority
on a switch. Moreover, assuming that by default rule pri-
orities are integer values between 0 and max-priority, CO-
CONUT requires the priorities of the physical rules that the
network hypervisor sends to the controller to be integers be-
tween 0 and b(max-priority)/2c, i.e., COCONUT uses half
the priority-space to “pre-install” rules to accelerate the up-
date process without causing ambiguity. As we will see, for
any rule P with priority x, the priority of the stable rule that
COCONUT eventually installs is 2x and the priority of the
pre-installed rules for P is 2x+ 1. This implies that for any
two rules P and L, where x=P.priority and y=L.priority, if
y ≥ x+1, then L’s priorities (2y and 2y+1) will be strictly
larger than P ’s priorities (2x and 2x+ 1) throughout.

Algorithms: For updating a set of physical rules corre-
sponding to a logical rule of a virtual network v-net, the
network hypervisor sends a set called the rule-batch, the
identifier of v-net, and the identifiers of the v-net’s shells to
the controller (arguments of the UPDATE procedure in Al-
gorithm 3). Each element of the rule-batch set, b, is a tuple
that includes the new rule that needs to be installed b.new-
rule, and the old rule that is being replaced, b.old-rule. Also,
rule-batch.new-rules and rule-batch.old-rules show, respec-
tively, the set of all new and old rules in the rule-batch.
For any given physical rule, R, we denote the match, ac-
tion, priority, and the switch hosting R by, respectively,
R.match, R.action, R.priority, and R.sw. We show the ac-
tion of installing a set of rules SR by install(SR), the
action of updating SR by overwriting value val on the var
header field by update(SR,var,val). For instance, up-
dating the priority values of all rules in SR to 10 is shown
by update(SR,priority,10).

Algorithm 3 starts by installing a set of temporary rules
T that are identical to the new rules, except: (1) they have
higher priorities; (2) they match on an unused TB, tag=1, in
addition to the rules’ existing match requirements; and (3)
the action sets tag=1 in addition to the rules’ existing actions
(line 9 in Algorithm 3). Note that a single tag bit is used for
all rules in the batch. The temporary rules T will gradually
be updated and eventually turn into the new rules. Initially,
these rules are invisible because no transmitted packets have
tag=1. But once packets do start using the new tag (i.e.,
the rules’ increased virtual clock value), the switches are
prepared and thus will not have to pay the expensive [54]
cost of relaying packets to the controller while the new rule is

Algorithm 3 Controller Update Algorithm
1: procedure UPDATE(set rule-batch, set shells, id v-net)
2: TB tag := get-tag(v-net)
3: map T
4: for b ∈ batch do
5: T [b] := b.new-rule
6: T [b].match := (T [b].mtach)&(tag = 1)
7: T [b].priority := 2× T [b].priority + 1
8: T [b].action := (tag = 1)&(T [b].action)

9: install(T)
10: wait-conf(T); update(T,match, T.match&(tag = ∗))
11: wait-conf(T); update(T, action, T.action&(tag = ∗))
12: delete(rule-batch.old-rule)
13: wait-conf(T); stop-tagging(shells, tag)
14: wait-conf(rule-batch.old-rule)
15: update(T, priority, T.priority-1)
16: wait-conf(shells); wait-conf(T)
17: release-tag(v-net, tag)

“paged in”. Specifically, since the rules have higher priority
than the old rules, if a packet matches both a T and an old
rule, the action of the new rule will be applied on it.

Once confirmations are received, the T rules are updated
not to need the TB=1 for matching packets (line 10 in
Algorithm 3). This makes the update visible as endpoints
now can receive packets matched and handled by these rules.
After receiving the confirmations (wait-conf(T)), every
instance of the rule is ready to handle packets with or without
TBs. So packets do not need to be marked any longer (line 11
in Algorithm 3) and the old rules can be deleted, since higher
priority rules are already installed (line 12 in Algorithm 3).

After receiving confirmation that the old rules are deleted,
the priorities of T rules are converted into the stable value
(line 15 in Algorithm 3). Note that this operation turns the
T rules into the stable new rules. Finally, once the controller
receives the confirmations from the shells that they no longer
tag packets with the TB and switches have installed the
new non-tagging rules, it can release the tag for v-net after
waiting for the flush time, the time for in-flight packets and
the buffered packets (that might be tagged) to be delivered
or expired and dropped (line 17 in Algorithm 3).

Algorithm 3 is for updating rules. Algorithms for delet-
ing and adding new rules are similar: for deleting a set of
rules DR, we set rule-batch.new-rule and rule-batch.old-
rule, respectively, to the set of rules that should match pack-
ets after DR’s deletion, and DR. The deletion procedure is
identical to the update procedure except for line 15 in Al-
gorithm 3, where instead of updating the priorities of T , T
is deleted since switches already host the rules that should
match packets after DR is removed with their correct priori-
ties. For adding a set of new rules, rule-batch.old-rule=∅,
and the deletion of old rules (line 12 in Algorithm 3) and
waiting for its confirmation should be skipped.

Shell operations are identical to the operations explained
in §4.2 except that each shell i keeps a V Ci for the TB bits
tag (and not all the logical rules), shown with V Ci[tag], a
timer associated with each TB bit, shown with timer(tag).
If the shell receives a stop-tagging(TB tag) command
from the controller , it sets V Ci[tag]=0, resets tag’s timer,
i.e., timer(tag)=0, and sends a confirmation to the con-
troller . Shells honor the stop-tagging(TB tag) com-
mands for the flushtime. If shell i receives a packet with
tag=1 after the flush timer for tag has elapsed, it assumes it
to be related to a different update batch and sets V Ci[tag]=1.

4.3.1 Handling Failures
We assume that different components of the system might
experience crash failure, but not Byzantine failure. We fur-
ther assume that each endpoint and its shell share fate, i.e.,
they fail together. Switches and the controller are assumed
to have reliable channels between them, similar to the main
control channel in OpenFlow. Updates related to failed links
are carried out similar to regular updates. Non-responsive
switches (those not reacting to controller commands within
a threshold) are assumed to have failed. When a switch fails,
other switches and endpoints connected to it are populated
with detour rules to reroute the traffic originally sent to the
failed switch, and drop traffic they receive from it (failover
operations). Dropping this traffic is essential for preserv-
ing safety; if the controller loses control over a switch, the
switch’s behavior, e.g., its tagging operations, will be un-
known. When a failed switch recovers, it communicates with
the controller which populates it with correct version of rules
(including the possible transient rules) before undoing the
failover operations, i.e., removing the rules that drop the traf-
fic received from the failed switch from the network and end-
points as well as deleting the detour rules.

5. Evaluation of Prototype
We implemented a prototype of COCONUT (§5.1) and eval-
uated it in both a hardware SDN testbed and a Mininet emu-
lation with multiple SDN applications and workloads (§5.2).
We compared COCONUT’s performance with a number
of baselines: simple replication (SR), a strawman solution
which provides strong consistency (SC), and CU. In sum-
mary, we found SC to be cost-prohibitive; even in modest-
sized networks, it causes 12 Gbps bandwidth overhead and
a 20× increase in user traffic latency, while COCONUT,
CU, and SR4 incur no measurable data plane performance
overhead (§5.3). In terms of forwarding rule update delay
and rule overhead, COCONUT has significantly lower over-
head compared to SC (3.5× and 2× times lower respectively
in a 80-switch network), and CU (1.5× and 245×, respec-
tively). This overhead is only 1.2× and 1.3×, respectively,
higher than SR (§5.4). Moreover, COCONUT’s extra tempo-
rary rules are likely to be evacuated from the network faster

4 Note that CU and SR do not guarantee observational correctness.

 0

 2

 4

 6

 8

 10 20 30 40 50B
a
n
d
w

id
th

 o
ve

rh
e
a
d
 [

G
b
p
s]

Number of switches

SC
Simple replication and COCONUT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400

C
D

F

Connection initiation delay [ms]

Replication-aware
 app

COCONUT
Simple replication

Figure 5: (a) SC causes significant bandwidth overhead. (b)
Replication-aware app increases delay.

(§5.5). This result should be expected: switch update time
is known to vary significantly [27, 29], with the 99th per-
centile 10 times larger than the median in some cases [29].
Thus, by updating much fewer switches, COCONUT runs a
lower risk of encountering stragglers. In some cases, the ap-
plication developer can prevent replication-related race con-
ditions by rewriting her applications to take the network
replication into account. We show that in addition to of-
fering programming simplicity, i.e., enabling developers to
use their applications “as-is”, COCONUT’s efficient logical
clock-based approach of tracking causality results in 2.8×
lower mean latency for user data flow initiation compared to
this application-level approach (§5.3). We give more details
about each of these conclusions next.

5.1 Prototype Implementation
Our COCONUT prototype consists of approximately 4K
lines of Java and Python code and integrates a number of
third party libraries and tools. We prototyped the controller
using the Floodlight platform [2]. Floodlight runs a series of
modules (e.g., user applications), each supplied with mech-
anisms to control and query an SDN network. The CO-
CONUT controller is implemented as a layer (which is itself
a module) residing between the Floodlight Virtual Switch, a
simple network virtualization developed as a Floodlight ap-
plication, and the controller platform. Our prototype exposes
much the same interface as the Floodlight platform. Hence,
modules such as the virtualization applications that wish to
be Floodlight clients simply use its interface instead. The
COCONUT controller instruments the rules received from
client modules and coordinates with shells to maintain cor-
rectness. We use OVS [50] to implement shells at the hosts
with a bridge through which passes all traffic between the
network and hosts.

5.2 Experimental Setup
Environment: For the physical network, we use the
Ocean Cluster for Experimental Architectures in Networks
(OCEAN) [1] which includes 13 Pica8 SDN Pronto 3290
switches, having a total of 676 switch ports. We “sliced”
these ports to emulate fat-tree topologies with various sizes
(up to 20 switches). To test COCONUT at scale, we also use
the Mininet emulator [23] and simulated fat-tree [6] and VL2
[21] topologies with a few hundred switches in it. Switches’
delays to apply and confirm application of updates (here-
after called control delay) are drawn from [26] in which
the authors measure the performance of several commercial
switches (HP Procurve, Fulcrum, and Quanta). We emulate
the behavior of the HP Procurve switches in our Mininet ex-
periments. We draw job allocation, flow interarrival times,
and flow sizes from [12, 55].

Controller and Applications: We used two network vir-
tualization platforms, OpenVirtex [7] and Pyretic [46], to
create one-big-switch abstractions over physical fat-tree [6]
and VL2 [21] networks of various sizes. Tenants of the net-
work use several canonical applications to insert and update
rules on their virtual one-big-switches. For OpenVirtex, the
tenant runs the Floodlight controller [2] and its existing ap-
plications such as the learning switch and firewall, as well as
the applications explained in §3. When these applications in-
stall, remove, or update a rule on the one-big-switch, Open-
Virtex translates that to possibly multiple FlowMod mes-
sages and sends them to the physical network. For Pyretic,
we use the parallel composition of the firewall and MAC
learning implementations provided in [46]. The graphs in
this section, unless stated otherwise, show the results for
the ACL application running over an OpenVirtex’s one-big-
switches over fat-tree networks with parameter k={2,...,10},
i.e., networks with (2 hosts, 5 switches), (16 hosts, 20
switches) ..., and (432 hosts, 180 switches), and the work-
load from [55]. Over these one-big-switches, the tenant’s
applications redirect a stream of traffic to a different host.
These logical rules are then mapped to many physical rules:
one rule for each port that connects to a host. We then up-
date all those rules concurrently. Unless stated otherwise, we
observe similar trends for other explained settings.

Scale-out schemes evaluated: COCONUT, SR, SC,
CU. In addition to simple replication (SR) as a baseline, we
use an implementation of Strong Consistency (SC) in SDNs
[20]. For updating a rule, SC first installs temporary tunnel-
ing rules to direct all traffic that would be affected by the
change to the controller (where it is handled by a single,
strongly consistent, version of the logical rule), and from
the controller to its destination. It then updates the rule at
the controller; next it updates switches with the new rule and
tears down the tunnels.

As another comparison point, we implemented a version
of consistent updates (CU) which provides per-packet or
per-flow consistency (§3.2). Of course, CU and COCONUT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800

C
D

F

Time [ms]

SC
CU

COCONUT
Simple replication

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 400 800 1200 1600

C
D

F

Time [ms]

SC
CU

COCONUT
Simple replication

Figure 6: Testbed’s (a) update initiation & (b) termination delays.

provide different correctness properties. The goal of this
comparison is to evaluate whether COCONUT is expensive
relative to the most powerful previously-studied notions of
correctness5. Note that CU fundamentally operates at the
granularity of a flow: (a subset of) traffic between ingress
and egress switches [29]; it installs rules that are tagged to be
specific to that flow. However, the abstraction we work with
here operates on forwarding rules in a virtual network, and
a single rule may apply to multiple flows. To translate CU to
this rule-based abstraction, we implemented a module that
duplicates rules so each flow using the rule has its own copy.
It then runs CU to update each of those flows in parallel.

5.3 Data Plane Performance Impact
While the correctness problems discussed in §3 can be
avoided via preserving strong consistency instead of weak
causal consistency, doing so comes at a great data plane per-
formance cost. Figure 5(a) shows the aggregate bandwidth
overhead imposed by SC on the controller, already a bot-
tleneck in SDNs [12, 24, 27, 37, 54], for the IDS example
of §3.1. In addition to bandwidth overhead, this practice im-
poses added latency to flows. The overhead is prohibitive
and rapidly increases with scale, e.g., for networks of size
100, over 5,000 flows experience an average of 20× increase
in latency due to an ACL rule update (not shown). Instead of
redirecting all traffic affected by the change to the controller,
one can alternatively redirect the traffic to a random switch.
This approach, hereafter called SC-switch, initially installs
temporary tunneling rules from a randomly selected switch
to the destination of the affected traffic and then tunneling
rules from switches to that switch where traffic will be pro-

5 Recent works on optimizing CU require special rule-formats [29, 40, 43],
e.g., each rule is exact-match on a single flow [29]. Such assumptions
usually hold in the network core as the rules that violate them are moved
to the network edge [29, 51]. This makes them more suitable for flow-
based traffic engineering for the network core. Thus, CU remains the most
appropriate comparison for our setting.

cessed with a single, strongly consistent, version of the log-
ical rule. After updating the rule at this switch, SC-switch
updates switches with the new rule and finally removes the
tunnels. While reducing the overhead on the controller, redi-
recting traffic to a single switch may cause significant con-
gestion at that switch, and setting up and deleting tunnels
may increase its CPU overhead. Plus, compared to SC, SC-
switch results in longer paths (and consequently more tun-
neling rules to setup and remove) because, unlike the con-
troller in this experiment, the switch is not always directly
connected to the destination of traffic. As a result, rule up-
dates with SC-switch may degrade the performance of a sig-
nificantly larger number of flows. The ACL rule update for
a 100-switch network, for example, results in an average of
7× increase in latency for more than 83K flows traversing
the randomly selected switch under SC-switch. SC and SC-
switch, therefore, are not practical and scalable.

In some cases, the application developer can rewrite her
applications to take the network replication into account. In
the example of §3.2, for instance, if the firewall application
developer is aware of the underlying replication, she could
ensure correctness by preserving the orderings of installed
rules on not just one switch but across all replicas. In par-
ticular, after receiving a packet from a client, the application
could send the rules for allowing bidirectional communica-
tion to all replicas, followed by BarrierRequests (line 8 in
Figure 4) and wait to receive the BarrierReplies from all
replicas before releasing the packet. This approach, however,
increases the delay of communication. With the previous ex-
perimental setup, for instance, more than half of the sessions
experience an increase of 2.8× or higher in their connec-
tion initiation latency compared to COCONUT. Figure 5(b)
shows the CDF of connection initiations’ delays caused by
this approach over 100 runs. In addition to the performance
penalty, in this approach, the programmer needs to be aware
of the underlying replication and rewrite her applications to
account for it. Note that while COCONUT’s delay is slightly
higher than SR, unlike SR, it prevents incorrect blocking.

5.4 How Long Are Updates Delayed?
When network state changes, SC installs tunneling rules
to and from the controller; COCONUT and CU start with
a phase that installs some initially-invisible rules. These
operations cause delay before the change starts to become
visible to data traffic (update initiation delay), and before
all switches have informed the controller their update is
complete (what we call update termination delay).

For a given “target” rule R being updated, COCONUT
and SC only install rules that are co-located with R (here,
the edge rules produced by OpenVirtex). CU, in its standard
implementation, updates all rules along the paths of flows
passing through R. In our evaluation, as an optimization for
CU, we limit this to flows that have active traffic.

First, we measure update delays on the testbed sliced to
emulate a 20-switch fat-tree topology. Figure 6 shows that

 50

 100

 [6 sw
itches,

2 hosts]

 [20 sw
itches,

16 hosts]

 [45 sw
itches,

54 hosts]

 [80 sw
itches,

128 hosts]

 [125 sw
itches,

250 hosts]

 [180 sw
itches,

432 hosts]

U
p

d
a
te

 i
n
it

ia
ti

o
n
 d

e
la

y
 [

m
s]

CU
SC

COCONUT
Simple replication

 40

 80

 120

 [6 sw
itches,

2 hosts]

 [20 sw
itches,

16 hosts]

 [45 sw
itches,

54 hosts]

 [80 sw
itches,

128 hosts]

 [125 sw
itches,

250 hosts]

 [180 sw
itches,

432 hosts]

U
p

d
a
te

 i
n
it

ia
ti

o
n

d
e
la

y
 [

m
s]

 0

 100

 200

 [6 sw
itches,

2 hosts]

 [20 sw
itches,

16 hosts]

 [45 sw
itches,

54 hosts]

 [80 sw
itches,

128 hosts]

 [125 sw
itches,

250 hosts]

 [180 sw
itches,

432 hosts]

U
p

d
a
te

 t
e
rm

in
a
ti

o
n

d
e
la

y
 [

m
s]

Figure 7: How long does it take to initiate and finish updates? Top:
initiation delays for the firewall app; middle and bottom: initiation
and termination delays for the IDS app.

while compared to SR, COCONUT increases the delay (e.g.,
1.4× increase in the median update termination time), it re-
duces the delay of SC and CU (2× and 1.8× lower me-
dian update termination delay, respectively). We use Mininet
to measure this metric at scale and observe similar trends.
Figure 7 shows mean values; error bars show 1st and 99th

percentile over 100 runs. We observe similar trends for the
IDS and firewall applications. Note that SC’s cost rapidly
increases with scale due to the overhead on the controller.
Compared to SC, SC-switch results in higher costs, because
in addition to the overhead on the switch, it needs to install
and remove larger numbers of tunneling rules. For a 180-
switch network, for instance, SC-switch is 47% slower than
SC to finish an update (not shown).

The impact of the topology: In addition to the fat-tree
networks, we experimented with the VL2 network [21] in
Mininet. We found the number of edge switches, which are
the switches that need to be updated, is the key player in CO-
CONUT’s speed, with little variation across these topology
types. For example, the mean initiation delay for the IDS
application was 47.8 ms on a VL2 network with 25 edge
switches (35 switches total and 500 hosts), which is very
close to the delay on fat-tree networks of similar size: 45.1
ms with 18 edge switches (45 switches total and 54 hosts)

100

101

102

103

104

105

106

 [6 sw
itches,

2 hosts]

 [20 sw
itches,

16 hosts]

 [45 sw
itches,

54 hosts]

 [80 sw
itches,

128 hosts]

 [125 sw
itches,

250 hosts]

 [180 sw
itches,

432 hosts]

R
u

le
 o

v
e

rh
e

a
d

CU, edge
CU, core
SC, edge

COCONUT, edge

Figure 8: How much rule-overhead is imposed and where?

and 49.8 ms with 32 edge switches (80 switches total and
128 hosts). Similarly, COCONUT’s mean termination de-
lays were 95.4 ms, 90.2 ms, and 99.3 ms on those three net-
works. SR and SC were similarly unaffected by the topology
change, and CU worsened; we omit the results for brevity.

5.5 How Much Rule Overhead Is Imposed and Where?
COCONUT, SC, and CU all require installing some tempo-
rary extra rules. Since the number of rules switches can sup-
port is limited [32], it is important to keep this cost low. We
measure the amount, location, and lifespan of this overhead.

By installing only one set of temporary rules, T s, and
morphing them into the final desired rules, COCONUT
keeps the number of extra rules minimal. Plus, similar to
SR and SC, COCONUT imposes this rule overhead only on
the switches directly hosting the rules in the update batch.
This implies that if COCONUT is used in conjunction with
the common systems that place virtualized rules at the edge
of the network [4, 37, 42], then only edge switches need
to tolerate this overhead. In contrast, CU imposes this over-
head on all the switches hosting the rules of the associated
flows, possibly including core switches. Figure 8 shows the
rule overhead (number of extra rules) and its location. Un-
like CU, COCONUT and SC only have overhead at edge
switches. Even for edge switches, COCONUT’s overhead is
singnificantly lower than SC’s and CU’s, e.g., in a 80-switch
network, respectively 2× and 245× lower.6

How Long Does Rule-overhead Persist? The extra rules
installed by SC, CU, and COCONUT are supposed to be
short-lived and all techniques remove those rules in their
clean-up operations. Figure 9 shows that only 0.7% of CO-
CONUT’s rule overhead persists in the network for more
than 100ms compared to 80.6% for SC and 60.7% for CU.
This can again be explained by the fact that CU and SC
update a significantly larger number of rules and impose a
greater load on switches and controllers.

5.6 Can Header Bits Become a Scalability Bottleneck?
COCONUT’s ability to handle concurrent updates is limited
by the number of header bits available to it; if there are too
many concurrent updates, COCONUT will have to queue the

6 Note that we measure only CU’s overhead on top of the rules we dupli-
cated to move from a flow-based to a rule-based abstraction (§5.2).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

C
D

F

Time [ms]

SC
CU

COCONUT

Figure 9: How long does the rule-overhead persist?

requests. With this in mind, can COCONUT handle mod-
ern network dynamics? A campus network may experience
up to 18K updates per month [36], but the rate is signifi-
cantly larger and more bursty in cloud environments where
customers continuously deploy, delete, and migrate services,
with an average of 12K updates per day in a typical cluster,
peaking at one update per second [47]. To test COCONUT’s
rate of applying updates, we reserve 12 header bits (the num-
ber of bits of the VLAN tag, the header field reserved for the
update operations in CU [53]), 19 header bits (the number
of bits in one MPLS label), and 4 header bytes (the smallest
possible option length in Geneve [22]) for COCONUT and
modify the IDS application to send to COCONUT 12K up-
date requests, equivalent to the average number of updates in
one day in a cloud environment of [47]. We run this exper-
iment on a fat-tree with 180 switches and measure the time
COCONUT consumes to apply all the updates. Over 20 runs
of this experiment, COCONUT applies these updates in re-
spectively 2.4, 1.3, and 0.9 minutes on average. Its 90th per-
centile update time is respectively, 2.6, 1.8, and 1.4 minutes,
i.e., more than 90% of the time its rate is 76×, 112×, and
144× faster than the peak update rate cited in [47]. Thus, we
believe the existing header fields for carrying meta-data are
more than sufficient for COCONUT’s operations [47].

6. Related work
Sequence planning techniques synthesize an ordering of up-
dates to preserve certain invariants (verified by verification
tools [34, 35]) during updates [31]. Finding such orderings
is NP-complete [31] and there does not always exist a se-
quence that preserves invariants such as loop freedom and
congestion freedom [25, 53]. Thus, CU proposes an alter-
native approach for updating the network that guarantee to
preserve trace properties [53]. CU formalized trace proper-
ties characterizing the paths individual packets take through
the network, introduced per-packet consistency, and used a
2-phase update algorithm to implement it. As discussed pre-
viously, per-packet consistency does not preserve the weak
causal correctness that is of interest to us (but also, CO-
CONUT does not attempt to preserve per-packet consis-
tency; to achieve these, the network provider could choose
to run CU). While there are a few aspects of technical simi-
larity in mechanism between CU and COCONUT (e.g., ver-

sion numbers and preloading initially invisible rules), CO-
CONUT also has quite different mechanisms, in particular a
vector of virtual clocks, each implemented as a single bit.

A few recent studies try to improve CU’s efficiency, with
various restrictions — either preserving narrower properties
such as loopfreedom that are subsets of per-packet consis-
tency or with constraints on forwarding rules [29, 33, 40,
43, 44]. None of those works provide guarantees that are
stronger than CU’s per-packet consistency.

The recently added atomic update operation of OVS and
the bundle capability of OpenFlow [45] enable atomic up-
date of a single switch and cannot be extended to multiple
replicas at different locations. Session guarantees, originally
developed for replicated storage [61], aim to present each in-
dividual application with a view of the logical element that
is consistent with its own actions. Hence, they do not pre-
vent the problems in §3 that happen because of the depen-
dencies of actions of different users and applications. For
the short-lived replication caused by migrations of middle-
boxes or virtual networks, OpenNF, LIME, and Split/Merge
strive to retain strong consistency (SC) by heavy-weight op-
erations7 such as dropping packets or redirecting them to the
controller [17, 20, 52]. In COCONUT, the dataplane con-
tinues processing packets during the update, i.e., packets are
not buffered (unlike [17, 52]), not redirected to the controller
(unlike [17, 20, 39]) which is already a scalability bottle-
neck in SDNs [12, 24, 27, 37, 54], and not dropped (unlike
[20, 52]).

Our earlier workshop paper observed the need for taking
hosts’ observations into account for defining correctness, but
did not provide actual algorithms and systems to realize that
vision [18].

7. Conclusion
We demonstrated that current network scale-out techniques
do not preserve the semantics of the native network, lead-
ing to application-level incorrectness, and presented CO-
CONUT, a system that solves this problem by preserving
weak causal correctness. Some practical challenges remain,
e.g., requiring modification at endhost hypervisors. How-
ever, COCONUT appears to be surprisingly feasible, and
represents a promising first step in an area that we believe
will become increasingly important with roll-out of network
virtualization and NFV.

Acknowledgments: We would like to thank our shepherd,
Edouard Bugnion, Jennifer Rexford, and the reviewers for
their feedback. This work was supported by a VMware
Graduate Fellowship, by NSF CNS Award #1513906, and
by the Maryland Procurement Office under Contract No.
H98230-14-C-0141.

7 OpenNF’s implementation of SC, for instance, adds 10s of ms latency
to each packet (avg. RTT<1ms in datacenters). The added latency rapidly
increases with traffic rate and number of flows [17].

References
[1] Ocean Cluster for Experimental Architectures in Networks

(OCEAN). http://ocean.cs.illinois.edu/.

[2] Project Floodlight. www.projectfloodlight.org/
floodlight/.

[3] SciPass: IDS load balancer and science DMZ.
https://github.com/GlobalNOC/SciPass/
releases/tag/1.0.4.

[4] ONS 2014 Keynote: A. Greenberg, Microsoft Azure. http:
//www.youtube.com/watch?v=8Kyoj3bKepY,
2014.

[5] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto.
Causal memory: Definitions, implementation, and program-
ming. Distributed Computing, 9(1), 1995.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, com-
modity data center network architecture. CCR, 38(4):63–74,
2008.

[7] A. Al-Shabibi, M. D. Leenheer, M. Gerola, A. Koshibe,
E. Salvadori, G. Parulkar, and B. Snow. OpenVirteX: Make
your virtual SDNs programmable. In HotSDN, 2014.

[8] J. Amann and R. Sommer. Providing dynamic control to
passive network security monitoring. In RAID, 2015.

[9] J. Amann and R. Sommer. SDN based DDoS detection using
SciPass and Bro. In TNC, 2015.

[10] S. Campbell and J. Lee. Intrusion detection at 100G. In State
of the Practice Reports, 2011.

[11] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker.
Virtualizing the network forwarding plane. In PRESTO, 2010.

[12] A. Curtis, J. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee. Devoflow: scaling flow management for
high-performance networks. SIGCOMM, 2011.

[13] Facebook Networking @Scale. SDN and NFV: Now
for the enterprise community: Mark Russinovich, Mi-
crosoft Azure. https://www.youtube.com/watch?
v=NVGeYDvoHQ8&feature=youtu.be, 2015.

[14] Facebook Networking @Scale. Synchronous geo-
replication over Azure tables: A. Greenberg, Microsoft
Azure. https://code.facebook.com/posts/
1421954598097990/networking-scale-recap/,
2015.

[15] J. Fietz, S. Whitlock, G. Ioannidis, K. Argyraki, and
E. Bugnion. VNToR: Network virtualization at the top-of-
rack switch. In SoCC, 2016.

[16] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rex-
ford, A. Story, and D. Walker. Frenetic: A network program-
ming language. In ACM SIGPLAN Notices, volume 46, 2011.

[17] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella. OpenNF: Enabling innova-
tion in network function control. In SIGCOMM, 2014.

[18] S. Ghorbani and B. Godfrey. Towards correct network virtu-
alization. In HotSDN, 2014.

[19] S. Ghorbani and P. B. Godfrey. COCONUT: Seam-
less replication of network elements. Technical re-

port, 2017. http://webhost.engr.illinois.edu/
˜ghorban2/papers/coconut_tr.pdf.

[20] S. Ghorbani, C. Schlesinger, M. Monaco, E. Keller, M. Cae-
sar, J. Rexford, and D. Walker. Transparent, live migration of
a software-defined network. In SoCC, 2014.

[21] A. Greenberg, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. Maltz, P. Patel, and S. Sengupta. VL2: A scalable and
flexible data center network. In SIGCOMM, 2009.

[22] J. Gross, T. Sridhar, P. Garg, C. Wright, I. Ganga, P. Agarwal,
K. Duda, D. Dutt, and J. Hudson. Geneve: Generic network
virtualization encapsulation. IETF draft, 2014.

[23] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McK-
eown. Reproducible network experiments using container-
based emulation. In CONEXT, 2012.

[24] K. He, J. Khalid, S. Das, A. Akella, E. L. Li, and M. Thottan.
Mazu: Taming latency in software defined networks. Tech-
nical report, 2014. http://minds.wisconsin.edu/
handle/1793/68830.

[25] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer. Achieving high utilization
with software-driven WAN. In SIGCOMM, 2013.

[26] D. Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity
switch models for software-defined network emulation. In
HotSDN, 2013.

[27] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. B4: Expe-
rience with a globally-deployed software defined WAN. In
SIGCOMM, 2013.

[28] X. Jin, J. Gossels, J. Rexford, and D. Walker. Covisor: A
compositional hypervisor for software-defined networks. In
NSDI, 2015.

[29] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
M. Zhang, J. Rexford, and R. Wattenhofer. Dynamic schedul-
ing of network updates. In SIGCOMM, 2014.

[30] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. Anderson,
and A. Venkataramani. Consensus routing: The Internet as a
distributed system. In NSDI, 2008.

[31] B. G. Józsa and M. Makai. On the solution of reroute sequence
planning problem in mpls networks. Computer Networks,
42(2):199–210, 2003.

[32] N. P. Katta, O. Alipourfard, J. Rexford, and D. Walker. Infinite
cacheflow in software-defined networks. In HotSDN, 2014.

[33] N. P. Katta, J. Rexford, and D. Walker. Incremental consistent
updates. In HotSDN, 2013.

[34] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown,
and S. Whyte. Real time network policy checking using
header space analysis. In NSDI, 2013.

[35] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. Godfrey.
VeriFlow: Verifying network-wide invariants in real time. In
NSDI, 2013.

[36] H. Kim, T. Benson, A. Akella, and N. Feamster. The evolution
of network configuration: a tale of two campuses. In IMC,
2011.

[37] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,
B. Fulton, I. Ganichev, J. Gross, N. Gude, P. Ingram, et al.

Network virtualization in multi-tenant datacenters. In NSDI,
2014.

[38] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558–
565, 1978.

[39] W. Liu, R. B. Bobba, S. Mohan, and R. H. Campbell. Inter-
flow consistency: Novel SDN update abstraction for support-
ing inter-flow constraints. In SENT, 2015.

[40] A. Ludwig, M. Rost, D. Foucard, and S. Schmid. Good net-
work updates for bad packets: Waypoint enforcement beyond
destination-based routing policies. HotNets, 2014.

[41] N. Lynch, R. Segala, and F. Vaandrager. Hybrid I/O automata.
Information and Computation, 185(1):105–157, 2003.

[42] M Ciosi et al. Network functions virtualization. Technical
report, ETSI, 2013. http://goo.gl/Q84Bxi.

[43] R. Mahajan and R. Wattenhofer. On consistent updates in
software-defined networks. In HotNets, 2013.

[44] J. McClurg, H. Hojjat, P. Cerny, and N. Foster. Efficient
synthesis of network updates. In PLDI, 2015.

[45] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
enabling innovation in campus networks. CCR, 38(2), 2008.

[46] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker, et al.
Composing software defined networks. In NSDI, 2013.

[47] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg, D. A.
Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu, et al. Ananta:
Cloud scale load balancing. In CCR, volume 43, 2013.

[48] I. Pepelnjak. DefenseFlow NetFlow and SDN based DDoS at-
tack defense. http://www.radware.com/Products/
DefenseFlow.

[49] I. Pepelnjak. Real-life SDN/OpenFlow applica-
tions. http://blog.ipspace.net/2013/06/
real-life-sdnopenflow-applications.html.

[50] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Ra-
jahalme, J. Gross, A. Wang, J. Stringer, P. Shelar, et al. The
design and implementation of Open vSwitch. In NSDI, 2015.

[51] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Gh-
odsi, and S. Shenker. Software-defined internet architec-
ture: decoupling architecture from infrastructure. In HotSDN,
2012.

[52] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield.
Split/merge: System support for elastic execution in virtual
middleboxes. In NSDI, 2013.

[53] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker. Abstractions for network update. In SIGCOMM,
2012.

[54] Rob Sherwood. Modern OpenFlow and SDN.
http://bigswitch.com/blog/2014/06/02/
modern-openflow-and-sdn-part-ii, 2015.

[55] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. In-
side the social network’s (datacenter) network. In SIGCOMM,
2015.

[56] R. Schwarz and F. Mattern. Detecting causal relationships
in distributed computations: In search of the holy grail. Dis-
tributed computing, 7(3), 1994.

[57] SDN for the cloud. SIGCOMM 2015 Keynote: A. Greenberg,
Microsoft Azure, 2015.

[58] A. Sharma. Bro: Actively defending so that you can do other
stuff. In BroCon, 2014.

[59] N. Shelly, E. Jackson, T. Koponen, N. McKeown, and J. Ra-
jahalme. Flow caching for high entropy packet fields. In
HotSDN, 2014.

[60] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller,
M. Casado, N. McKeown, and G. Parulkar. Can the produc-
tion network be the testbed? In OSDI, 2010.

[61] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer, M. M.
Theimer, and B. B. Welch. Session guarantees for weakly
consistent replicated data. In PDIS, 1994.

[62] M. Yu, J. Rexford, M. J. Freedman, and J. Wang. Scalable
flow-based networking with DIFANE. In SIGCOMM, 2011.

[63] M. Yu, Y. Yi, J. Rexford, and M. Chiang. Rethinking virtual
network embedding: substrate support for path splitting and
migration. CCR, 2008.

