
COCONUT: Seamless Scale-out

of Network Elements

Soudeh Ghorbani

P. Brighten Godfrey

University of Illinois at Urbana-Champaign

Simple abstractions

Network operating system / network hypervisor

Firewall Load-

balancer Router

Scale-out implementation

Is the implementation a faithful
reproduction of the abstraction, i.e., are
the scaling-out techniques transparent?

? Firewall Load-

balancer IDS

Firewall Load-

balancer IDS

App Incorrect behavior

Stateful firewall Blacklisting the legitimate hosts

Load balancer Dropping connections

IDS Blacklisting the legitimate hosts

Logical firewall

Policy: permit an external server to talk to an internal client if and only

if the client has sent a request to the server.

X

Firewall App

1

2

4

5
6I E

E↔I
3

Logical firewall

Firewall App

X EI

Logical firewall + scaling out = bug

* Experiment based on traces from:

[1] Inside the Social Network's (Datacenter) Network. Arjun Roy et al. SIGCOMM 2015.

[2] Dynamic Scheduling of Network Updates. Xin Jin et al. SIGCOMM 2014.

Communication is incorrectly blocked 21% of the time! *

Do existing solutions work?

Per-packet consistency and correctness
• Consistent Updates [Reitblatt et al., SIGCOMM 2012]

• Too weak: Focus on a single packet/flow.

• Solution requires single point of entry for traffic.

• Can even introduce cross-flow race conditions due to duplicated

rules!

Strong consistency of replicas
• LIME [Ghorbani et al., SOCC’14], OpenNF [Gember-Jacobson et al.,

SIGCOMM’14]

• Temporarily redirects all data plane traffic through controller during

update.

• Too inefficient: strong consistency would be cost prohibitive, e.g.,

latency can increase 10-100x!

Hard Choices: Transparency vs. Efficiency

 Most efficiency

 Least transparency

 Least efficiency

 Most transparency

 Serializability

 Linearizability

 Sequential

consistency

 Eventual

consistency

(possibly to an

incorrect state)

Root-cause of the incorrect behavior

Firewall App

EI
A packet is handled by a new network state and then triggers a sequence of events

leading to other flows’ packets being handled by an old state.R
o

o
t

c
a
u

s
e

Prio Flow Action

10 E↔I fwd
Prio Flo

w

Action

0 E↔I Send to

controller

Logical firewall + scaling out = bug

COCONUT in one slide

Logical clocks track network state (forwarding rules) versions and restrict the
space of executions to those that are causally consistent.

Each packet carries a vector of logical clocks (VC) showing the latest
versions of the rules applied on it or any packet before it.

Endpoints keep VCs showing the latest version of rules they have observed
on packets and affix their VCs to packets that they send out.

Switches

 Switches are preloaded with all versions of the rules.

 Switches keep a clock for each rule showing the local version of the active

rule.

 Larger packet clock than the local logical clock of a matching rule prompts

the switch to update the rule before applying it.

 Packet’s VC is updated if necessary.

3

1

2

Firewall

App

EI

ID V Prio Flow Action

R 0 0 E↔I Send to

controller

R 1 10 E↔I fwd

<R:0> <R:0>

ID V Prio Flow Action

R 0 0 E↔I Send to

controller

R 1 10 E↔I fwd

COCONUT in one slide
Logical clocks track network state (forwarding rules) versions and restrict the
space of executions to those that are causally consistent.

<R:1>

request

<R:0>

Firewall

App

EI

<R:1> <R:0>

request

<R:1>

<R:0><R:1>

COCONUT in one slide

ID V Prio Flow Action

R 0 0 E↔I Send to

controller

R 1 10 E↔I fwd

ID V Prio Flow Action

R 0 0 E↔I Send to

controller

R 1 10 E↔I fwd

Firewall

App

EI

<R:1> <R:0>

<R:1>

reply

<R:1>

<R:1>

COCONUT in one slide

ID V Prio Flow Action

R 0 0 E↔I Send to

controller

R 1 10 E↔I fwd

ID V Prio Flow Action

R 0 0 E↔I Send to

controller

R 1 10 E↔I fwd

Simple but impractical

Impractical for packet to carry clocks for all rules
• Datacenters with ~100K servers have millions of rules [1].

• Switches and end-hosts cannot perform vector operations on such big

vectors for each packet (especially not with integer versions).

Impractical to preload switches with all rules
• Preloading when the rule is created adds more delay than we want.

[1] Scalable Rule Management for Data Centers. Masoud Moshref et al. NSDI’13.

Down to Earth:
COCONUT within OpenFlow

Only concurrent updates require distinct versions
• Large scale networks are updated a few hundred to a few thousand times a

day [1].

• Updates with COCONUT take <1s, so a few vector entries are enough.

• Each version can be a single bit (old vs. new), thereafter reused.

Don’t guarantee that rules are preloaded
• Unlucky race condition ⇒ Versioning catches it & sends to controller.

[1] "Ananta: cloud scale load balancing." Patel, Parveen, et al. SIGCOMM 2013.

physical network

Firewall Load-

balancer ACL

network hypervisor / operating system

IDS

controllercontroller

Router

COCONUT

commands/events

physical network

Firewall Load-

balancer ACL

IDS

controllercontroller

Router

COCONUT One switch

(modified)

S
c
iP

a
s
s

O
V

S

UIUC’s OCEAN

SDN cluster

mininet

network hypervisor / operating system

Is this enough for transparency?

 A rigorous notion of behavior.

• Trace: sequence of externally-visible actions.

• Behavior: set of all plausible traces.

 Transparency: The possible behavior of P is a subset of the possible behavior of a

non-replicated implementation of L.

 Theorem: Coconut provides transparency, i.e., any behavior of COCONUT’s

implementation of replicated networks could have happened in the logical

network.

COCONUT guarantees transparency

Metrics
 Transparency

 Update delay

 Rule overhead

How much?

Where?

For how long?

Topologies
 VL2

 Fat-tree

Experimental Evaluation

Workload
"Inside the social network's (datacenter)

network.” Roy, Arjun, et al. SIGCOMM 2015

Schemes
 Strong Consistency (SC) [1]

 Simple Replication (SR)

 COCONUT

[1] "Transparent, live migration of a software-defined network." Ghorbani, Soudeh, et al. SoCC 2014.

With COCONUT:
 Transparency

 No data plane performance overhead.

 Up to 20x increase in latency with SC

 Up to 12Gbps bandwidth overhead with SC

 Modest update delay

 1.2x higher than SR

 3.5x lower than SC

 Modest rule overhead

 1.6x higher than SR

 2x lower than SC

Faster updates than Strong Consistency

Experiment:

• Hardware testbed

• 20 switch fat tree topology

• 16 hosts

• IDS application

Faster updates than application-level barrier solution

Experiment:

• Mininet

• Tree with 20 switchs at leaf

• 100 hosts

• IDS application

• Switch update delay

distribution drawn from

measurements of HP

ProCurve switches

Conclusion:

We identified the problem: incorrect

application-level behavior under the existing

techniques for scaling-out.
1

We developed an analytical framework to

reason about the problem.
3

We identified its root cause: causality

violation.
2

We developed a algorithms and a system,

COCONUT, to efficiently scale out networks

transparently.

4

Backup

One big switch abstraction

Controller

Scaled out physical network

• “Transparent, live migration of a

software-defined network.”

Soudeh Ghorbani, Cole

Schlesinger, Matthew Monaco,

Eric Keller, Matthew Caesar,

Jennifer Rexford, David Walker,

SoCC 2014.

• “OpenNF: Enabling Innovation

in Network Function Control,”

Aaron Gember-Jacobson,

Raajay Viswanathan, Chaithan

Prakash, Robert Grandl, Junaid

Khalid, Sourav Das, and Aditya

Akella, SIGCOMM 2014

Strong Consistency (SC) via centralization

For a small network, latency can

increase 10-100x!

It doesn’t scale.

 Most efficiency

 Most transparency

Unpredictable network behavior whenever

something changes.

 Most efficiency

 Most transparency

Change is a nightmare.

[1] “Tomorrow’s network operators will be programmers.” Nick Feamster. OOPSALA keynote 2015.

[2] "Ananta: cloud scale load balancing." Parveen Patal et al. SIGCOMM 2013.

[3] “Networking Options and Challenges in a Multi-Data Center and Multi-Cloud Provider Environment.” Mark Bluhm. FutureNet 2016.

• A survey of network operators shows [1]:

• 89% are never completely certain that changes will not introduce a

new bug.

• 82% are concerned that changes might break existing functionality

unrelated to the changes.

• A big problem given the frequency and criticality of change:

• 100s to 1000s of changes per day [2,3].

• Majority of them are critical, e.g., related to fixing security issues [3].

physical network

Firewall Load-

balancer ACL

IDS

controllercontroller

Router

COCONUT One switch

(modified)

S
c
iP

a
s
s

O
V

S

UIUC’s OCEAN

SDN cluster

mininet

network hypervisor / operating system

