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Abstract—We motivate DARTS, a new technique for workload
sampling to drive architectural simulation, that carefully inte-
grates hardware performance counter monitoring with fast, dy-
namic binary translation. This paper focuses on a key finding that
motivates the DARTS methodology. We present our experience
applying it to the generation of simulation points for the integer
benchmarks of the SPEC CPU2006 suite. We were able to match
existing approaches in terms of coverage of dynamic workload
behaviours and simulated performance. DARTS achieved this
with significant improvements in turn-around time, simulation
effort, and storage requirements, with a slight increase in the
number of simulation points.

I. INTRODUCTION

Detailed cycle-accurate performance models are typically
driven by methodologies based on uniform, random [1], or
program analysis based sampling [2]. Most prior research
in this area has aimed at exploring the trade-off between
representativeness and simulation throughput. However, in
industrial settings, timely delivery of inputs based on contem-
porary workloads is a major requirement, often making these
approaches too complex to execute.

This work aims to dramatically improve the efficiency
of workload sampling without compromising accuracy or
simulation speed. We do this by monitoring and analyzing
Performance Monitoring Counters (PMCs) while the workload
of interest runs in a dynamic binary translator on the same
machine. Our main contribution is the observation that, for
a large class of workloads, strong similarities exist between
(i) phase behaviours seen when a workload is run natively
on a host and (ii) when it is simulated (on the same host)
using dynamic binary translation. (In the rest of this paper,
we refer to these two modes as host mode and guest mode,
respectively). This finding paves the way for DARTS, a new
workload sampling methodology that directly generates a set
of simulation points at near-native hardware execution speeds.
In the next sections, we present this finding, and illustrate the
potential of a sampling flow based on this.

II. BACKGROUND: DYNAMIC BINARY TRANSLATORS

Most functional simulators abstract away the details of the
micro-architecture: i.e. they only simulate what a processor
does, not how it does it, to achieve high simulation speed.
Dynamic binary translators refer to a specific category of ex-
tremely fast functional simulators that emulate one instruction
set by another. A short sequence of code that needs to be
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Fig. 1: Comparing PMC data for host and guest mode runs
of the CPU2006 benchmark astar: (a) IPC (b) L2 Misses
(MB/s)

simulated (typically of the order of a single basic block), is
translated into an instruction sequence that can be natively
executed on the host. The resulting sequence is stored in a code
cache to eliminate the need to repeatedly translate frequently
executed code. In this work, we use SimNowTM[3] as our
binary translator.

III. GUEST-MODE VS HOST-MODE PMC STUDY

We ran the integer benchmarks from the SPEC CPU2006 [4]
suite (compiled using gcc with moderate optimization) first,
natively on a host system (Table I) and then on a guest modeled
by SimNowTM running on the same host. In each case we
collected and analyzed performance counter data from the
host. As an example, Figure 1 compares host and guest-mode
PMC data for astar (one of the CPU2006 benchmarks). To
make the plots easier to compare, we compressed the guest-
mode time-series data by the slowdown introduced by the
binary translator. In addition, we shifted guest-mode statistics
vertically by appropriate constants.
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TABLE I: Experimental Setup

Benchmarks SPEC CPU2006 INT Benchmark Suite

Desktop System

AMD A10-7850K Radeon R7 APU
3.5 GHz (fixed frequency)
16 GB DDR3-1866 MHz RAM
Ubuntu v15.04

Binary Translator SimNowTM

Microarchitectural
Statistics for
PMC Profiling

IPC, L1 IC Misses PKI, L1 DC Misses PKI,
L2 Accesses PKI, L2 Misses PKI, Branches PKI,
Branches Taken PKI, Branches Mispredicted PKI,
SSE Instructions PKI, x87 Instructions PKI,
DRAM Bandwidth (MB/s)

The most important observation is that the translator’s
overhead notwithstanding, the guest-mode PMC profile retains
most of the dynamic phase behaviours (e.g., Instructions Per
Cycle or IPC) as seen in the host-mode run. We observed this
to be true for all the workloads in the CPU2006 suite and
for a variety of micro-architectural statistics that we captured.
Note that the absolute values of statistics in guest and host
modes can vary significantly, which can be attributed to the
overhead of the simulator. Also, the fraction of time spent
in a certain phase in host mode may not be the same in
guest mode, as shown in the regions marked “3” and “4” in
Figure 1(a). This indicates that the scaling of phase lengths
could depend on dynamic conditions, such as frequency of
code cache invalidations. However, for our purposes, absolute
values of statistics, or the duration and stability of phases in
guest-mode are not relevant. The key need is to identify phase
boundaries, based on the relative changes in statistics. From
these studies, we are convinced that if properly identified and
exploited, guest-mode PMC behaviour can be the driver of a
new sampling methodology. One may ask, why use a guest
at all. This is to ensure that representative simulation points
be reproduced deterministically (based on instruction counts),
something that cannot be guaranteed in host mode.

These plots also show that using only one or two statistics
from the guest-mode PMC profile increases the risk of missing
workload phases that fail to manifest due to the influence of
the translator. In the regions marked “1” and “2”, we observe
relative stability of the guest-mode L2 Miss profile of astar,
whereas host-mode shows a certain amount of dynamic be-
haviour (Figure 1(b)). However, taken together with guest-
mode IPC profile (marked “1” and “2” in Figure 1(a)), the
variation in workload behaviour is apparent. Hence, in our
work, we use a vector of statistics, in most cases expressed as
Per Kilo Instructions (PKI), to profile guest-mode workload
behaviour (Table I).

IV. EXPERIMENTAL EVALUATION

Based on the above findings, we have developed a prototype
methodology called DARTS, that applies machine learning
techniques to guest-mode PMC data and generates a minimal
set of simulation points that are then fed to a cycle-accurate
performance model of a target architecture.

To illustrate how well the selected sample points cover
the different phases of each workload, we reduced each

Fig. 2: 2D PCA plot comparing host-mode PMC profile and
simulated sample points for astar

sample from the original host-mode hardware PMC profile
to 2 dimensions using Principal Components Analysis [5],
the original dimensionality being 11 (Table I). Next, we did
the same for each simulation point, using statistics obtained
from simulating it on a cycle-accurate model of the same
machine. The resulting points were plotted in 2-dimensional
space. Figure 2 shows the results of this exercise for astar.
We observe that we have at least one simulation point for all
the major phases (dense clusters) in the benchmark.

Similar studies on other CPU2006 workloads yielded good
results as well, and we were able to generate and validate
a complete set of simulation points for the CPU2006 suite.
Cycle-accurate simulations of these points yielded IPC errors
(2%) that were comparable to a mature in-house methodology,
with a 15% increase in the number of points simulated.
However, we estimate significant savings in (i) the time taken
to deliver these points (from a month to less than a week),
(ii) disk space requirements (13X) and (iii) simulation effort
(16X). We believe with additional tuning of our methodology,
we can outperform traditional approaches on the first two
metrics as well. This methodology is now deployed and is
being used for ongoing workload sampling efforts.
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