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Abstract: 

This paper discusses the detection, analysis and segmentation of motion in video using 

optical flow algorithms. Optical flow detects motion within each neighborhood of pixels by 

registering changes in the color and intensity of pixels from frame to frame. Vectors 

indicating the direction and magnitude of detected motion are created, and groups of 

similar vectors are then segmented from each other. The primary purpose of optical flow is 

to use segmentation to isolate individual moving objects within a video. This paper first 

introduces the fundamentals of optical flow and offers an overview of existing literature 

related to general motion detection. We next discuss the theory behind optical flow, 

followed by a description of our method and implementation in MATLAB. Finally, we share 

our results along with our takeaways about optical flows applications and limitations. 

 

Introduction: 

As the name may imply, motion segmentation divides a video into different regions 

based on detected motion. That is, neighborhoods of similar motion can be grouped 

together in a single layer, allowing for a dynamic scene to be broken into components of 

individual motion. The utility of this operation relies on the fact that objects in the real 

world tend to undergo smooth movements as coherent wholes. Thus, detecting these 

regions of similar motion allows us to detect moving objects in the scene.  

 



 

There are many motion detection and segregation methods. Our approach relies on 

dense optical flow to detect and characterize the motion. We define motion as a detected 

change in intensity or color of a pixel and its surrounding neighborhood. This method 

requires several assumptions in order to work correctly, and even if these assumptions 

hold true this method may still generate noise and errors based on scene complexity. Our 

implementation is most effective at detecting and segmenting rigid motion. That is, any 

motion that preserves the size and shape of an object, allowing for rotations and 

translations. Our implementation does not correctly segment objects with non-rigid or 

differential motion. Such objects are not accurately characterized as a single region of 

motion and hence they are often segmented into multiple layers.  

After detecting motion, we then analyze motion within the scene to define regions of 

interest across frames. The objects that undergo smooth motions tend to be of interest. 

Lastly we isolate these regions based on the analysis of the detected motion.  

 

Motivation: 

We were first introduced to the concept of motion analysis and manipulation in 

lecture, where we were shown working examples of motion magnification. This concept, 

albeit complex in implementation, had amazing results due to the extent and accuracy to 

which motion was amplified. The amount of information in a video that our eyes couldn’t 

perceive fascinated us. One thing that many of these techniques relied on was segmenting 

the scene for further analysis. Though techniques like chroma keying can produce excellent 

results in isolating moving objects, they require very artificial scenes to produce good 
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results. We were interested in the idea of isolating moving objects in more natural and 

arbitrary scenes and how we could extract such motion data for ourselves. From there, we 

began wondering how we might be able to apply motion detection to construct interesting 

and useful results. 

 

Problem statement: 

In our research we found that many sophisticated video based algorithms require 

data be separated into isolated regions of interest for further analysis. Our goal is to 

understand the fundamentals of optical flow and use it to detect motion from video. From 

this, we can experiment with different motion analysis techniques to segmentation motion 

into different layers. These layers will represent moving and non moving objects in the 

scene. We also wish to explore some applications of this information by creating our own 

masking and filtering effects based on the optical flow results.  

 

Related work: 

We began our topic research with motion magnification in mind. The papers read 

were from MIT CSAIL’s Video Magnification group. State of the art phase based methods 

were discussed by ​Neal Wadhwa et. al. These phase based methods are far more robust to 

noise than their previous works and capable of magnifying motions to a greater extent than 

their earlier optical flow based methods. In Frédo Durand’s “A World of Movement” they 

outlined possible applications for motion magnification including visual pulse detection 

methods, material structural properties in response to vibration, and sound recovery from 

Chase, Sprecher, Hoffmire 3 
 



 

silent video footage. We attempted to implement the first work on the topic as described by 

Ce Liu et. al in "Motion Magnification." Due to complexity and time constraints we were 

unable to implement their methods, but this paper did lead us to our topic of scene 

segmentation as it was a crucial step in their process. 

We looked at the first work in scene segmentation in ​Wang, J.y.a., and E.h. Adelson’s 

"Representing Moving Images with Layers." They define a video as a combination of layers 

containing individual moving objects which helped guide our approach to segmenting our 

video. Their motion analysis step clusters motion data and optimizing models to describe 

multiple moving object layers; this allows them to segment multiple moving objects. 

Manjunath Narayana, Allen Hanson, and Erik Learned-Miller introduce a more 

sophisticated probabilistic based analysis in their 2013 paper. This method addresses the 

issue of depth based segmentation caused by parallax; their results show that a 

probabilistic method can effectively pick the correct number of moving objects and isolate 

them regardless of the depths they span. 

 

Theory: 

Video motion data extraction techniques generally fall into two categories: dense 

and point-based computation. Dense optical flow methods attempt to calculate the 

magnitude and direction of motion vectors for each pixel neighborhood, and from the 

result can determine whether the neighborhood moved or not from frame to frame. 

Although this method can be computationally expensive, it allows for gradient maps to be 

made of the entire frame. The gradient data can be used to isolate regions of similar motion 
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and create motion layers.  Point-based optical flow detects feature points in each frame, 

and attempts to match them together. This technique is similar to SIFT point matching in 

panorama stitching. Once a feature point has been found in two adjacent frames, its change 

in position is used to determine the magnitude and direction of the motion. Because we 

were interested in creating layers based on motion, and because point-based methods have 

a lot of overhead in feature detection, we opted to implement a dense optical flow 

approach. 

Optical flow algorithms detect any change in color or intensity as motion, and this 

introduces several potential sources of error. Specifically, camera movement and changes 

in lighting cause significant errors in motion detection. As a result, it is impossible for an 

algorithm to distinguish between genuine motion and noisy data without additional 

information and assumptions. To explain how each pixel in a frame’s magnitude and 

direction can be determined, we must make an assumption called the optical flow 

constraint. In conceptual terms, this constraint assumes that a scene’s overall illumination 

intensity is constant throughout the lifetime of the exposure. Under this assumption, any 

changes detected in a pixel neighborhood are in fact due to motion and are not the result of 

an object changing color or brightness. This assumption allows for all changes detected in 

the ​x​  and ​y​  directions of the frame to be correlated with the change in ​t. ​ We can use a 

first-order Taylor polynomial to estimate this change, given in the form 

  

Equation 1:​  Optical flow solution when the constraint is satisfied 
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where ​I​ x​ , I​ y​ , and I​ t​  ​ are the derivatives in the ​x, y, ​ and ​t​  directions respectively. The solutions 

for ​v ​ and ​u ​ are the ​x ​ and ​y​  components of the movement vector associated with the current 

pixel neighborhood. We can rewrite the above as 

 

 

Equation 2:​  Optical flow with angle representation 

where the vector ​ is the combined components ​v ​ and ​u​  as before, and 𝜙 is the angle ofv→  

motion. Solving for either equation for every pixel neighborhood creates a vector field for 

the current frame. This data represents the detected motion and we can analyze this data 

to segment the frame. 

 

Method: 

We used a dense optical flow MATLAB toolbox that was developed by Stefan 

Karlsson and Josef Bigun. Within this toolbox we used an algorithm based on the Lucas and 

Kanade method. The toolbox also includes a simpler gradient-based implementation of 

dense optical flow which we did not use, but which helped give us a foundational 

understanding of optical flow. Although the package consists of forty-two MATLAB scripts, 

only five are used to calculate optical flow. The rest of the files perform illustrations of key 

steps or build a framework to process videos effectively in MATLAB. Using this framework, 

we were able to detect motion in each frame by its change in color and intensity in the ​x​ , ​y​ , 

and ​t​  directions. 
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The approach begins by calculating derivatives in the ​x​ , ​y​ , and ​t​  directions for each 

pixel of each frame, corresponding to the change in color and intensity detected. This was 

performed by using normalized kernel filters within MATLAB, because this was the 

simplest and most efficient solution. To improve results, these filters were dynamically 

convoluted to prevent boundary effects along the edges of the frame where  pixels don't 

have complete neighborhoods of values. The implementation and commented details can 

be found in grad3D.m. Using these gradient values, we performed edge detection for each 

frame. Although normalized magnitude would have been sufficient in creating an edge 

image, the final implementation used recursive temporal integration to reduce noise in a 

way that doesn’t consume excessive memory (i.e. without performing computation across 

previous and next frames). 

The final step solves for ​u​  and ​v ​  in the optical flow constraint. We cannot solve for 

individual pixels accurately, as that depends on having the detected gradients of the pixel 

showing clear motion in an observable direction; this is less likely than we first thought. 

The established method for determining the gradient quality of a neighborhood of pixels is 

through the use of 2D structure tensors, which are simply 2D matrices that represent the 

predominant direction of the gradients of a neighborhood of pixels (Figure X).  Although 

complex algorithms may have dynamic neighborhoods that change size based on the 2D 

structure tensor, our toolbox opted for a static approach. The user sets the optical flow 

resolution before runtime. Thus, if a pixel is of poor quality or is surrounded by a poor 

neighborhood, the resulting vector could still be non-existent (under constrained problem) 

or highly incorrect (bad solutions). The effective solution we used was the Lucas and 
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Kanade (LK) method, which simply makes the neighborhoods larger, thus giving coarser 

optical flow resolution to overconstrain the problem. A least squared method, similar to 

past homeworks and lecture, rejects outliers and finds the solution the entire 

neighborhood most agrees on. This solution is then included in the final optical flow 

matrices and used in frame filtering manipulations, including masking, blurring, and pixel 

replacement (superposition). 

 

Equation 3:​  2-Dimensional Structure Tensor 

Because this method is considered the naive approach, the solutions we found have 

great sources of error. Namely, even with a large neighborhood size, a pixel may reside in 

an area of either uniform color and intensity, or symmetric texture repetition, which limits 

the amount of information we receive from the gradients alone. This problem, called the 

Aperture Problem ​ (Figure 1), is a common issue with most motion-detection algorithms, as 

we are trying to predict motions of a large group of pixels simply from the information 

from a neighborhood. Thus, we also have issues when dealing with non-rigid motions 

within these neighborhoods. Optimizations are made in the toolbox to help compensate for 

these issues, such as using local regularization, vectorized coding (for parallelism), and 

more temporal integration. However, these methods go beyond the scope of this paper 

(and our mathematical knowledge). In conclusion, these issues still persist, but we are able 

to circumvent them by selecting optimal test samples to record, as shown below. 
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Figure 1:​  Aperture Problem 
Regardless of the three motion directions, the lines in the window will appear to move in the 

same direction 
 
 

Experimental results: 

Our best results came from samples that conformed to our constraints of constant 

illumination and a non-moving camera. To compensate for these issues, low noise 

environments and proper exposure were essential for minimizing errors. Violations of 

these constraints and their consequences highlight the importance of these assumptions.  

The constant illumination assumption failed when using high speed photography 

under incandescent and halogen lighting. At framerates between 400 and 1000 frames per 

second, the pulsing of fluorescent lighting is visible and causes variable illumination across 

frames. This causes motion analysis to identify the entire scene as moving, and the 

resulting mask is constructed with excessive error. 
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Figure 2:​  Illumination Error 
All static pixels are supposed to be masked out, though due to change in illumination the 

algorithm mistakens table pixels as moving, and doesn’t mask them out 
 

Camera autofocus unexpectedly violated the static camera assumption in many of 

the dynamic scenes we recorded. The expected change in the amount of blur was detected 

as motion, but our camera also linearly shifted the frame while focusing, causing jumps in 

the image which were detected as motion. This resulted in a motion mask that shows the 

whole scene during the focal jumps. The detected motion vectors and the resulting mask 

can be seen in Figure 3. 
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Figure 3: ​ Optical flow and corresponding mask errors due to autofocus 

A final an unavoidable failure in motion detection was due to areas of constant 

intensity on the interior of a moving object. For example in Figure 4; the overexposed areas 

of the flame have no defining texture or edges and cannot be detected as moving due to the 

aperture problem. 

 

Figure 4: ​ Regions of constant intensity cannot be detected as moving 

When these sources of error are minimized we can produce very compelling results 

with our segmentation. With a mask that separates the foreground and background, we can 

use use filters for creative effect. An artificial depth of field decrease can be generated by 

blurring the background and sharpening the foreground. Another visually compelling 

process is to use color coded direction information from the flow vectors to colorize 

moving objects. This draws attention to moving objects and helps distinguish between 

them via color as seen in Figure 5.  
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Figure 5: ​ Regions of similar motion are colorized together 

We were also able to perform image compositing both inside and outside MATLAB. 

For internal compositing we can layer a foreground moving object onto a different moving 

background or a static image as in Figure 6.  

 

Figure 6: ​ Flame video composited on static background done in MATLAB 

For external compositing we write a green colored background to the isolated 

motion footage to act as an procedurally generated green screen. This footage is used with 
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the chroma keying functionality of a dedicated video editor such as Blackmagic’s DaVinci 

Resolve, giving the results in Figure 7. This technique allows for compositing of footage that 

would traditionally be impossible to acquire due to the need for a green screen. 

 

Figure 7: ​ Generated chroma frame and result from compositing in DaVinci Resolve 

 

Concluding remarks: 

Video analysis presented some unique challenges, but it’s rewards can be both 

visually compelling and useful. Temporal information provides a wealth of possibilities for 

applications that could not normally be extracted from static images. We initially planned 

to implement motion magnification, but after much reading and attempted 

implementation, we found it to be too complex for our time constraints. As we looked at 

other video based computational photography techniques, we found that many of them 

required the scene to be separated into different regions for further analysis. We decided 

that this common task was something worth understanding since so many other 

techniques rely on it. In the future, we would like to employ a more sophisticated motion 
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analysis step. A technique like K-means clustering could allow us to be more resistant to 

camera movements, as this isn’t based on threshold values but groups of relative optical 

flow values. Going forward, video will be captured with autofocus disabled to improve the 

quality of the motion masks. Though it wasn’t our first topic, implementing scene 

segmentation has allowed us to understand one approach to an important initial step in 

many sophisticated video processing techniques.  

 

The video results are available on our group’s website, located ​here. 
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---------------------------------- 

Outside Code:​ We used a MATLAB toolbox/tutorial created by Stefan Karlsson and Josef 

Bigun, which was freely distributed through MATLAB’s code distribution site MathWorks. 

All code was under license, and was free to use, modify, and redistribute with the included 

license. Although the toolbox consisted of 40+ MATLAB files, less than 10 were used for 

optical flow calculation and optimization, with most other files used to build a 

video-processing framework in MATLAB and for tutorials on the fundamentals of optical 

flow. All files of the toolbox were included in the code submission. 

 

Code Written: ​We wrote 16 files of our own, all in MATLAB which either extended the 

framework to allow us to use the toolbox more effectively, or to apply our own custom 

per-frame effects through filter functions. Overall, around 300 lines of code without 

comments were written by all three group members. See the README in our code 

submission for the comprehensive list of files we created, and authorship for each specific 

file is specified at the top of the corresponding MATLAB script. 
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Individual Contributions: 

Andrew Chase ​examined the toolbox to understand how it works both in theory 

and application. He created the framework that allowed us to process videos more easily by 

abstracting the toolbox specifics, and allowing custom filtering functions to be injected into 

the optical flow process to allow for easy change of effects. He also wrote scripts to display 

the original video and final results in a MATLAB figure, as well as wrote a few filtering 

effects to experiment with the optical flow data, including creating a general masking script 

based on the flow data to which a majority of other functions rely on.  He also wrote the 

README for the program and cleaned up the code base to make it more understandable 

and efficient. 

Bryce Sprecher ​researched possible papers and read 6 in preparation for project. 

Recorded and processed test footage for motion magnification. He also recorded all high 

definition outdoor footage for motion segmentation videos, as well as wrote optical flow 

color superposition scripts and processed videos. In addition, Bryce wrote a pseudo-green 

screen script, and used output for compositing in external video editor. He also contributed 

by optimizing the mask creation script so HD video could be processed effectively and with 

that processed and formatted videos to be used in the class presentation. He also built the 

website for the project. 

James Hoffmire ​collaborated with Bryce in creating a filter that sharpens the 

foreground while blurring the background of a video. He helped to collect objects that 

demonstrate various types of motion and assisting in filming those objects in slow motion. 

He also contributed by editing and revising this final write up. 
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