Network Simulator-2 modifications for 802.11b with Auto Rate
Fallback

Kevin Springborn

1 Introduction

The Network Simulator 2 by default uses a Black and
White model for packet reception, where two nodes
are either in range (every bit is correctly received) or
out of range (all bits are lost). Three components are
needed to accurately model modern wireless systems:
1) A signal to noise based bit reception model 2) A
data rate selection algorithm 3) Accurate modeling of
the 11 802.11b channels. Contemporary wireless sys-
tems change the data transmission rate depending on
the clarity of the communication. A high rate selec-
tion can transmit data almost 11 times faster than the
slowest data rate. Rate selection algorithms are an
important key to modeling wireless systems correctly.
Unfortunately the Black and White model does not
allow for realistic rate selection. Two nodes in range
will eventually switch to the highest rate; lower rates
will never be used. Modeling rate selection requires
a grey packet reception model, where each bit has
a probability of correct reception. Finally, 802.11b
has three orthogonal channels, on which data can be
transmitted concurrently. 802.11b channel 3 under
the right conditions can receive traffic transmitted
on channel 1. This cross channel interference must
be incorporated into a simulation of a dense wireless
deployment. This work presents extensions to ns-2 to
allow for more realistic simulations of wireless com-
munication.

The extensions were tested in a wireless only sce-
nario, using some of the Monarch logging functional-
ity. While the author suspects the code may work in
more exotic situations, such as wired-cum-wireless or
satellite scenarios, the code has not yet been tested.

This document is designed to help an experienced

ns-2 programmer understand the changes in the ex-
tensions and also to help the user understand the
current limitations of the extensions.

2 Signal to Noise Ratio(SNR)
Model

2.1 TCL Environment Variables

e Phy/WirelessPhy set ambient_noise_ double

— Sets the background noise used for all SNR
calculations

Phy /WirelessPhy set Pt_ double

— Sets the transmission power of wireless
nodes

Node/MobileNode set error_ double

— Sets a fixed chance of packet error for all
nodes in the system. Irrespective of SNR
calculations

Phy/WirelessPhy set CPThresh_ double

— This value has become the minimum ratio
of Rx powers needed in order to capture the
channel

2.2 TCL Commands

e $mobilenode change-error double

— Modifies the fixed chance of packet error for
a specific node

2.3 Implementation

A special error model is inserted in the node on
the inbound pathway. The wireless-phy tracks noise
through the use of a noise element list. A packet
that is not received or carrier sensed adds an entry
into the noise list. The entry consists of the reception
power and the duration of the reception. This allows
the wireless-phy to attach an estimate of the current
noise at the start of the reception to incoming packets
by storing the value in a field added to the packet-
stamp. The packet-stamp is information not present
in the simulation, but is information attached to the
packet for use by the simulator. The packet-stamp for
each received packet is modified to record the noise
at time of reception. The error model uses the recep-
tion noise along with the reception power (also stored
in the packet-stamp) to calculate the probability of
reception.

A packet consists of two parts a preamble and a
main section. The preamble must be transmitted at
the lowest data rate (1mbps), while the main data
can be transmitted at higher rates. The error model
calculates bit error probabilities for each section in-
dependently and multiplies bit error probabilities to
get a packet reception probability. The data rate is
not stored in the packet. It is calculated based on
the size of the packet, size of the preamble, and the
time taken to receive that packet. The probability
of receiving a bit is 1- (erfc(sqrt((Rx-power * Band-
width)/(noise * bitRate)) / 2). The bandwidth of
802.11b is 2MHz.

The data structure for managing the noise is a
sorted linked list, with each element containing the
noise value and its expiration time. The noise ele-
ments are sorted by increasing expiration time, so the
element expiring first is at the head of the list. At
any time the noise at a node is the sum of the noise
from all its current noise elements. On every read
expired noise elements are removed from the list.

2.4 Notes

The SNR simulation extension is greatly dependent
on node placement. For transmission ranges of about
250m the absolute antenna height should be .9 m

above the ground (note antenna height is the node
position + the antenna position relative to the node)

2.5 Inaccuracies

The major flaw still present in this calculation is that
the reception probability is based on the noise at the
instant the packet begins arriving at the host. In
reality a burst of noise arriving while the packet is
being received will cause bit errors, but in the current
implementation the burst will have no effect. The
solution to this is based on the fact that only one
packet can be received at a time. Upon reception
start a linked list of during_reception_noise should be
initialized. Every packet reception while the wireless-
phy is in the receive state should be added to the
during_reception_noise list. The error model can then
use this list (can be access since the error model’s
downtarget is the mac, which’s down target is the
wireless-phy) to correctly calculate reception.

Also the Complementary Code Keying(CCK) used
at the 5.5MHz and 11MHz levels of 802.11b is not
correctly modeled. At the 5.5MHz and 11MHz levels
the error model is only an approximation. To fix this
actual keys would need to be implemented and the
reception probability for each key calculated. Notice
that some codes tolerate corrupted keys.

Currently the carrier sense threshold is set to the
background noise level. If the reception power is less
than the ambient_noise, then the packet does not car-
rier sense. Look in wireless-phy::sendUp() to change
this behavior.

3 Auto Rate Fallback(ARF)

3.1 TCL Environment variables
e Mac/802_11 set Arf_ (1 or 0)

— A value of 1 enables the default ARF algo-
rithm for all nodes

— A value of 0 disables ARF for all nodes

3.2 TCL Commands

e $mobilenode enable-arf

— Enables ARF for a specific node
e $mobilenode disable-arf

— Disables ARF for a specific node

3.3 Implementation

The current ARF algorithm uses a simple count of
consecutive receptions and failures, along with a pro-
bation period. Receptions and failures are the result
of individual transmissions, such that a packet re-
transmitted once would count as a failure followed
by a reception. The constant values can be modified
in arf.h. 4 consecutive receptions trigger a rate in-
crease if possible, while 2 consecutive failures trigger
a rate decrease. Upon moving to a higher transmis-
sion rate a probation period of 1 packet is used. If
there are any failures during the probation period the
rate is immediately decremented.

All old references to the dataRate_ value were re-
placed with a call to getDataRate(). The getDat-
eRate() function checks to see if an ARF object is
defined. If the ARF object is defined, then get-
DataRate() returns the rate specified by the ARF
object. If the ARF object is not defined, then get-
DataRate() returns the value in dataRate_.

Two modifications are needed to inform the ARF
object of receptions and failures. A successful trans-
mission is signaled by the correct reception of an ACK
from the destination. The successful Transmission()
function of the ARF object is called in recvACK()
in the mac-802_11 code. A failed transmission is sig-
naled by the retransmission of the data packet. The
failedTransmission() function of the ARF object is
called in RetransmitDATA() in the mac-802_11 code.

3.4 Inaccuracies

None known.

4 Channel Switching

4.1 TCL Environment variables

e Node/MobileNode set switch_time_ double

— Sets the number of seconds required for a
node to change its interface from one chan-
nel to the next. Note: packets transmitted
during switch are delayed, while packets re-
ceived are dropped.

e Node/MobileNode set clear_rt_on_switch int

— This currently only applies to AODV rout-
ing. A value of 1 causes the routing ta-
bles to be cleared upon switching channels.
While a value of 0 leaves the routing tables
in tact.

4.2 TCL Commands

o $mobilenode switch-channel double

— Switches a node’s wireless interface to the
channel specified. During the switch pack-
ets may be lost or delayed. (New nodes
remain on channel 1 until changed)

4.3 Implementation

The basis of channel extension is adding channel in-
formation to the packet-stamp and using that in-
formation in propagation to correctly calculate the
received power. The nodes current channel (chan-
nel number_) is stored in the mobilenode object. Be-
fore the wireless-phy sends the packet onto the chan-
nel it modifies the packet-stamp to include the node’s
current channel. Tworayground::Pr() compares the
packet stamps and modifies the transmission power
passed to the propagation equations. The difference
between the channel numbers is used to lookup the
decrease in power.

Interface channel switching delays are accom-
plished by storing the ”interface up time” in the
mac and checking this in mac-802_11::recv() and
mac-802_11::send(). When a node switches channels
value of (current_time + interface_switching_delay) is
stored in mac::interfaceUpTime. mac-802_11::recv()
compares the current simulation time with the time
stored in mac::interfaceUpTime. If the interface is
switching any packets traversing the receive path-
way are dropped. mac-802_11::send() compares the

current simulation time with the time stored in
mac::interfaceUpTime. If the interface is switching
channels the outgoing packet is stored and a timer is
set for the time the interface comes back up. When
the timer is fired the packet continues along the send
pathway.

The switchChannel function in mobilenode allows
the option of clearing AODV routing tables when
a node is switched. switchChannel() simply calls a
method to clear the routing tables from the AODV
object.

4.4 Inaccuracies

Switching a channel takes place as soon as the com-
mand is issued. In reality an interface could not
switch channels until its current transmission or re-
ception is complete. The effect is that the ns-2 exten-
sion models quicker switching time that specified in
the case a reception or transmission was taking place
when the interface began changing channels.

