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Abstract
Information extraction can be defined as the task
of automatically extracting instances of specified
classes or relations from text. We consider the case
of using machine learning methods to induce mod-
els for extracting relation instances from biomedi-
cal articles. We propose and evaluate an approach
that is based on using hierarchical hidden Markov
models to represent the grammatical structure of
the sentences being processed. Our approach first
uses a shallow parser to construct a multi-level rep-
resentation of each sentence being processed. Then
we train hierarchical HMMs to capture the regu-
larities of the parses for both positive and negative
sentences. We evaluate our method by inducing
models to extract binary relations in three biomedi-
cal domains. Our experiments indicate that our ap-
proach results in more accurate models than several
baseline HMM approaches.

1 Introduction
In many application domains, there is the potential to greatly
increase the utility of on-line text sources by using automated
methods for mapping selected parts of the unstructured text
into a structured representation. For example, the curators of
genome databases would like to have tools that could accu-
rately extract information from the scientific literature about
entities such as genes, proteins, cells, diseases, etc. For this
reason, there has been much recent interest in developing
methods for the task of information extraction (IE), which
can be defined as automatically recognizing and extracting in-
stances of specific classes of entities and relationships among
entities from text sources.

Machine learning methods often play a key role in IE sys-
tems because it is difficult and costly to manually encode
the necessary extraction models. Hidden Markov models
(HMMs) [Leek, 1997; Bikel et al., 1999; Freitag and McCal-
lum, 2000] , and related probabilistic sequence models [Mc-
Callum et al., 2000; Lafferty et al., 2001], have been among
the most accurate methods for learning information extrac-
tors. Most of the work in learning HMMs for information ex-
traction has focused on tasks with semi-structured and other
text sources in which English grammar does not play a key

“. . .
Here we report the identification of an integral membrane
ubiquitin-conjugating enzyme. This enzyme, UBC6, local-
izes to the endoplasmic reticulum, with the catalytic domain
facing the cytosol.
. . .” �

subcellular-localization(UBC6,endoplasmic reticulum)

Figure 1: An example of the information extraction task. The top of
the figure shows part of a document from which we wish to extract
instances of the subcellular-localization relation. The bottom of
the figure shows the extracted tuple.

role. In contrast, the task we consider here is extracting infor-
mation from abstracts of biological articles [Hirschman et al.,
2002]. In this domain, it is important that the learned models
are able to represent regularities in the grammatical structure
of sentences.

In this paper, we present an approach based on using hier-
archical hidden Markov models (HHMMs) [Fine et al., 1998]
to extract information from the scientific literature. Hierar-
chical hidden Markov models have multiple “levels” of states
which describe input sequences at different levels of granu-
larity. In our models, the top level of the HMMs represent
sentences at the level of phrases, and the lower level of the
HMMs represent sentences at the level of individual words.
Our approach involves computing a shallow parse of each
sentence to be processed. During training and testing, the
hierarchical HMMs manipulate a two-level description of the
sentence parse, instead of just processing the sentence words
directly. We evaluate our approach by extracting instances of
three binary relations from abstracts of scientific articles. Our
experiments show that our approach results in more accurate
models than several baseline approaches using HMMs.

An example of a binary relation that we consider in our
experiments is the subcellular-localization relation, which
represents the location of a particular protein within a cell.
We refer to the domains of this relation as PROTEIN and
LOCATION. We refer to an instance of a relation as a tuple.
Figure 1 provides an illustration of our extraction task. The
top of the figure shows two sentences in an abstract, and the
bottom of the figure shows the instance of the target relation



subcellular-localization that we would like to extract from
the second sentence. This tuple asserts that the protein UBC6
is found in the subcellular compartment called the endoplas-
mic reticulum. In order to learn models to perform this task,
we use training examples consisting of passages of text, an-
notated with the tuples that should be extracted from them.

In earlier work [Ray and Craven, 2001], we presented
an approach that incorporates grammatical information into
single-level HMMs. The approach described in this paper ex-
tends the earlier work by using hierarchical HMMs to provide
a richer description of the information available from a sen-
tence parse.

Hierarchical HMMs originally were developed by Fine et
al. (1998), but the application of these models to information
extraction is novel, and our approach incorporates several ex-
tensions to these models to tailor them to our task. Bikel et
al. (1999) developed an approach to named entity recognition
that uses HMMs with a multi-level representation similar to
a hierarchical HMM. In their models, the top level represents
the classes of interest (e.g. person name), and the bottom
level represents the words in a sentence being processed. Our
approach differs from theirs in several key respects: (i) our in-
put representation for all sentences being processed is hierar-
chical, (ii) our models represent the shallow phrase structure
of sentences, (iii) we focus on learning to extract relations
rather than entities, (iv) we use null models to represent sen-
tences that do not describe relations of interest, and (v) we
use a discriminative training procedure. Miller et al. (2000)
developed an information-extraction approach that uses a lex-
icalized, probabilistic context-free grammar (LPCFG) to si-
multaneously do syntactic parsing and semantic information
extraction. The genre of text that we consider here, however,
is quite different from the news story corpus on which avail-
able LPCFGs have been trained. Thus it is not clear how well
this intriguing approach would transfer to our task.

2 Sentence Representation
In most previous work on HMMs for natural language tasks,
the passages of text being processed have been represented
as sequences of tokens. A hypothesis underlying our work is
that incorporating sentence structure into the learned models
will provide better extraction accuracy. Our approach is based
on using syntactic parses of all sentences to be processed.
In particular, we use the Sundance system [Riloff, 1998] to
obtain a shallow parse of each given sentence.

The representation we use in this paper does not incorpo-
rate all of the information provided by the Sundance parser.
Instead our representation provides a partially “flattened”,
two-level description of each Sundance parse tree. The top
level represents each sentence as a sequence of phrase seg-
ments. The lower level represents individual tokens, along
with their part-of-speech (POS) tags. In positive training ex-
amples, if a segment contains a word or words that belong to
a domain in a target tuple, the segment and the words of in-
terest are annotated with the corresponding domain. We refer
to these annotations as labels. Test instances do not contain
labels – the labels are to be predicted by the learned IE model.

Figure 2 shows a sentence containing an instance of the

“This enzyme, UBC6, localizes to the endoplasmic reticulum, with the catalytic domain
facing the cytosol.”

1 NP SEGMENT DET this
UNK enzyme

2 NP SEGMENT:PROTEIN UNK:PROTEIN ubc6
3 VP SEGMENT V localizes
4 PP SEGMENT PREP to
5 NP SEGMENT:LOCATION ART the

N:LOCATION endoplasmic
N:LOCATION reticulum

6 PP SEGMENT PREP with
7 NP SEGMENT ART the

N catalytic
UNK domain

8 VP SEGMENT V facing
9 NP SEGMENT ART the

N cytosol

(a) (b) (c)

Figure 2: Input representation for a sentence which contains a
subcellular-localization tuple: the sentence is segmented into
typed phrases and each phrase is segmented into words typed with
part-of-speech tags. Phrase types and labels are shown in column
(a). Word part-of-speech tags and labels are shown in column (b).
The words of the sentence are shown in column (c). Note the group-
ing of words in phrases. The labels (PROTEIN, LOCATION) are
present only in the training sentences.

subcellular-localization relation and its annotated segments.
The sentence is segmented into typed phrases and each phrase
is segmented into words typed with part-of-speech tags.
For example, the second phrase segment is a noun phrase
(NP SEGMENT) that contains the protein name UBC6 (hence
the PROTEIN label). Note that the types are constants that
are pre-defined by our representation of Sundance parses,
whereas the labels are defined by the domains of the particu-
lar relation we are trying to extract.

3 Hierarchical HMMs for Information
Extraction

A schematic of one of our hierarchical HMMs is shown in
Figure 3. The top of the figure shows the positive model,
which is trained to represent sentences that contain instances
of the target relation. The bottom of the figure shows the null
model, which is trained to represent sentences that do not
contain relation instances (e.g. off-topic sentences). At the
“coarse” level, our hierarchical HMMs represent sentences
as sequences of phrases. Thus, we can think of the top level
as an HMM whose states emit phrases. We refer to this HMM
as the phrase HMM, and its states phrase states. At the “fine”
level, each phrase is represented as a sequence of words. This
is achieved by embedding an HMM within each phrase state.
We refer to these embedded HMMs as word HMMs and their
states as word states. The phrase states in Figure 3 are de-
picted with rounded rectangles and word states are depicted
with ovals. To explain a sentence, the HMM would first fol-
low a transition from the START state to some phrase state ��� ,
use the word HMM of � � to emit the first phrase of the sen-
tence, then transition to another phrase state �	� , emit another
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Figure 3: Schematic of the architecture of a hierarchical HMM for
the subcellular-localization relation. The top part of the figure
shows the positive model and the bottom part the null model. Phrase
states are depicted as rounded rectangles and word states as ovals.
The types and labels of the phrase states are shown within rectangles
at the bottom right of each state. Labels are shown in bold and states
associated with non-empty label sets are depicted with bold borders.
The labels of word states are abbreviated for compactness.

phrase using the word HMM of �
� and so on until it moves
to the END state of the phrase HMM. Note that only the word
states have direct emissions.

Like the phrases in our input representation, each phrase
state in the HMM has a type and may have one or more labels.
Each phrase state is constrained to emit only phrases whose
type agrees with the state’s type. We refer to states that have
labels associated with them as extraction states, since they
are used to predict which test sentences should have tuples
extracted from them.

The architectures of the word HMMs are shown in Fig-
ure 4. We use three different architectures depending on the
labels associated with the phrase state in which the word
HMM is embedded. The word HMMs for the phrase states
with empty label sets (Figure 4(a)) consist of a single emit-
ting state with a self-transition. For the extraction states of
the phrase HMM, the word HMMs have a specialized archi-
tecture with different states for the domain instances, and for
the words that come before, between and after the domain
instances (Figures 4(b) and 4(c)). All the states of the word
HMMs can emit words of any type (part-of-speech). That is,
they are untyped, in contrast to the typed phrase states. The
word states are annotated with label sets, and are trained to
emit words with identical label sets. For example, the word

ENDSTART

END

START

LOCATION

START

(between)

(after)

(any)

      with two domain labels
(c) embedded model for extraction state

      with one domain label
(b) embedded model for extraction state

      non − extraction state
(a) embedded model for

(after)

(before)

LOCATION
PROTEIN

LOCATION

PROTEIN

(between)

(before)

END

Figure 4: Architectures of the word HMMs for the subcellular-
localization relation. Bold text within states denotes domain labels.
For states with implicit empty labels, italicized text within paren-
theses denotes the position of the state’s emissions relative to the
domain words. The figure shows (a) the structure of the embedded
HMMs for phrase states without labels, (b), phrase states with one
label and (c) phrase states with two labels.

HMM shown in Figure 4(b) can explain the phrase “the endo-
plasmic reticulum” by following a transition from the START
state to the (before) state, emitting the word “the”, transition-
ing to the LOCATION state, emitting the words “endoplas-
mic” and “reticulum” with the LOCATION label and then
transitioning to the END state. In order for a phrase state to
emit a whole phrase, as given by the input representation,
and not sequences of words that are shorter or longer than
a phrase, we require that the embedded word HMM transi-
tion to the end state exactly when it has emitted all the words
of a given phrase. Thus word HMMs will always emit se-
quences of words that constitute whole phrases and transi-
tions between phrase states occur only at phrase boundaries.

The standard dynamic programming algorithms that are
used for learning and inference in HMMs – Forward, Back-
ward and Viterbi [Rabiner, 1989] – need to be slightly mod-
ified for our hierarchical HMMs. In particular, they need to
(i) handle the multiple-levels of the input representation, en-
forcing the constraint that word HMMs must emit sequences
of words that constitute phrases, and (ii) support the use of
typed phrase states by enforcing agreement between state and
phrase types.

The Forward algorithm for our hierarchical HMMs is de-
fined by the recurrence relationships shown in Table 1. The
first three equations of the recurrence relation provide a
phrase-level description of the algorithm, and the last three
equations provide a word-level description. Notice that the
third equation describes the linkage between the phrase level
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Table 1: The left side of the table shows the Forward-algorithm recurrence relation for our hierarchical HMMs. The right side of the table
defines the notation used in the recurrence relation.

and the word level. The Backward and Viterbi algorithms re-
quire similar modifications, but we do not show them due to
space limitations.

As illustrated in Figure 2, each training instance for our
HMMs consists of a sequence of words, segmented into
phrases, and an associated sequence of labels. For a test in-
stance, we would like our trained model to accurately pre-
dict a sequence of labels given only the observable part of the
sentence (i.e. the words and phrases). We use a discrimina-
tive training algorithm [Krogh, 1994] that tries to find model
parameters, WX , to maximize the conditional likelihood of the
labels given the observable part of the sentences:

WXZYM[�\0]_^`[9abdcFegf \Qh8i e0j kQe;l X�m
n (1)

Here
k e

is the sequence of words/phrases for the o th instance,
and

i e
is the sequence of labels for the instance. This training

algorithm will converge to a local maximum of the objective
function. We initialize the parameters of our models by first
doing standard generative training. We then apply Krogh’s
algorithm which involves iterative updates to the HMM pa-
rameters. To avoid overfitting, we stop training when the ac-
curacy on a held-aside tuning set is maximized.

In order for this algorithm to be able to adjust the param-
eters of the positive model in response to negative instances
and vice–versa, we join our positive and null models as shown
in Figure 5. This combined model includes the positive and

model

model

null

positive

ENDSTART

Figure 5: Architecture of the combined model. The positive and null
models refer to the models in Figure 3.

the null models (shown in Figure 3) as its two submodels,
with shared START and END states.

Once a model has been trained, we can use the Viterbi al-
gorithm to predict tuples in test sentences. We extract a tuple
from a given sentence if the Viterbi path goes through states
with labels for all the domains of the relation. For example,
for the subcellular-localization relation, the Viterbi path for
a sentence must pass through a state with the PROTEIN la-
bel and a state with the LOCATION label. This process is
illustrated in Figure 6.

4 Hierarchical HMMs with Context Features
In this section we describe an extension to the hierarchical
HMMs presented in the previous section that enables them to
represent additional information about the structure of sen-
tences within phrases. We refer to these extended HMMs
as Context hierarchical HMMs (CHHMMs). Whereas the
hierarchical HMMs presented earlier partition a sentence

k
into disjoint observations

k �8p � where each
k �8p � is a word, a

CHHMM represents
k

as a sequence of overlapping obser-
vations qF�8p � . Each observation q9�8p � consists of a window of
three words, centered around

k ��p � , together with the part-
of-speech tags of these words. Formally, q ��p � is a vectorr k �8pts �
uv/w l�k �8p � lxk �8pts �0yzv/w l/{ �8pts �
u|v�w l0{ ��p � l0{ ��pts �0yzv�w0} where

{ �8p � is the
part-of-speech tag of word

k �8p � . Note that q9��p � and q �8pts �0yzv/w
share

k �8p � lxk ��pts �0yzv�w l/{ �8p � and
{ �8pts �0yzv/w , although these features

are located in different positions in the two vectors. Figure 7
shows the vectors emitted for the phrase “the endoplasmic
reticulum” by a word HMM in the CHHMM.

Using features that represent the previous and next words
allows the models to capture regularities about pairs or triplets
of words. For instance, a CHHMM is potentially able to
learn that the word “membrane” is part of a subcellular loca-
tion when found in “plasma membrane” while it is not when
found in “a membrane”. Furthermore, by using features that
represent the part-of-speech of words, the models are able to
learn regularities about groups of words with the same part
of speech in addition to regularities about individual words.
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...MAS20 and MAS22 are found in the mitochondria...

... ...

Phrase # Words Word label sets Phrase label sets
1 MAS20 and MAS22 ~ PROTEIN ����~ PROTEIN � ~ PROTEIN �
2 are found �_� �
3 in � �
4 the mitochondria ��~ LOCATION � ~ LOCATION �
Extracted tuples: subcellular-localization(MAS20, mitochondria)

subcellular-localization(MAS22, mitochondria)

Figure 6: Example of the procedure for extracting tuples of the subcellular-localization relation from the sentence fragment “...MAS20
and MAS22 are found in the mitochondria...”. The top of the figure shows how the most likely path explains the sentence fragment. Bold
transitions between states denote the most likely path. Dashed lines connect each state with the words that it emits. The table shows the label
sets that are assigned to the phrases and the words of the sentence. The extracted tuples are shown at the bottom of the figure.

START END(before) (after)

(between)

LOCATION

endoplasmic, ADJ, N,

ADJ,

nullnull,

null,null, the, ADJART,endoplasmic,

reticulum,

the, endoplasmic, reticulum, ART, N

Figure 7: Generation of the phrase “the endoplasmic reticulum” by
a word HMM in a CHHMM. The bold arcs represent the path that
generates the phrase. The vector observations � .!) I emitted by each
state are shown in the rectangles above the model and are connected
with dotted arcs with the emitting state. The word that would be
emitted by each state of the equivalent HHMM is shown in boldface.

The advantages of this representation are especially realized
when dealing with an out-of-vocabulary word; in this case
part-of-speech tags and neighboring words may be quite in-
formative about the meaning and use of the out-of-vocabulary
word. For example, an out-of-vocabulary adjective will rarely
be a protein, since proteins are usually nouns.

Because the number of possible observations for a given
word state in a CHHMM is very large (all possible vectors
representing sequences of three words and their POS tags), to
model the probability of an observation q��8p � , our CHHMMs
assume that the features are conditionally independent given
the state. Under this assumption, the probability of the obser-

vation q �8p � being emitted by state �3� p � is then defined as� h q �8p � j �Q� p � m�Y c�
� v��t� � � � h q ��p � p �
j �Q� p � m (2)

where
� � h q ��p � p � j �Q� p � m is the probability of word state �3� p �

emitting an observation whose � -th feature is q �8p � p � .
Note that the features employed by the representation of

Equation 2 are clearly not conditionally independent. Con-
secutive words are not independent of one another and cer-
tainly the part-of-speech tag of a word is not independent of
the word itself. However, we argue that the discriminative
training algorithm we use [Krogh, 1994] can compensate in
part for this violation of the independence assumption.

5 Empirical Evaluation
In this section we present experiments testing the hypothesis
that our hierarchical HMMs are able to provide more accurate
models than HMMs that incorporate less grammatical infor-
mation. In particular we empirically compare two types of
hierarchical HMMs with three baseline HMMs.� Context HHMMs: hierarchical HMMs with context

features, as described in the previous section.� HHMMs: hierarchical HMMs without context features.� Phrase HMMs: single-level HMMs in which states are
typed (as in the phrase level of an HHMM) and emit
whole phrases. These HMMs were introduced by Ray
and Craven (2001). Unlike hierarchical HMMs, the
states of Phrase HMMs do not have embedded HMMs
which emit words. Instead each state has a single multi-
nomial distribution to represent its emissions, and each
emitted phrase is treated as a bag of words.



� POS HMMs: single-level HMMs in which states emit
words, but are typed with part-of-speech tags so that a
given state can emit words with only a single POS.� Token HMMs: single-level HMMs in which untyped
states emit words.

We evaluate our hypotheses on three data sets that we have
assembled from the biomedical literature.1 The data sets are
composed of abstracts gathered from the MEDLINE database
[National Library of Medicine, 2003]. The first set contains
instances of the subcellular-localization relation. It is com-
posed of 769 positive and 6,360 negative sentences. The pos-
itive sentences contain 949 total tuple instances. The number
of actual tuples is 404 since some tuples occur multiple times
either in the same sentence or in multiple sentences. The
second, which we refer to as the disorder-association data
set, characterizes a binary relation between genes and disor-
ders. It contains 829 positive and 11,771 negative sentences.
The positive sentences represent 878 instances of 145 tuples.
The third, which we refer to as the protein-interaction data
set, characterizes physical interactions between pairs of pro-
teins. It is composed of 5,457 positive and 42,015 negative
sentences. It contains 8,088 instances of 819 tuples.

We use five-fold cross-validation to measure the accuracy
of each approach. Before processing all sentences, we ob-
tain parses from Sundance, and then stem words with Porter’s
stemmer [Porter, 1980]. We map all numbers to a special
NUMBER token and all words that occur only once in a train-
ing set to an OUT-OF-VOCAB token. Also, we discard all
punctuation. The same preprocessing is done on test sen-
tences, with the exception that words that were not encoun-
tered in the training set are mapped to the OUT-OF-VOCAB
token. The vocabulary is the same for all emitting states in the
models, and all parameters are smoothed using m-estimates
[Cestnik, 1990]. We train all models using the discriminative
training procedure referred to in Section 3 [Krogh, 1994].

To evaluate our models we construct precision-recall
graphs. Precision is defined as the fraction of correct tu-
ple instances among those instances that are extracted by the
model. Recall is defined as the fraction of correct tuple in-
stances extracted by the model over the total number of tuple
instances that exist in the data set. For each tuple extracted
from sentence

k
, we calculate a confidence measure as:i9h k m�Y��Q� h j kJj m� � h j kJj m n

Here � � refers to the END state of the combined model,�	� h j kJj m is the probability of the most likely path, given by the
Viterbi algorithm, and � � h j kJj m is the total probability of the
sequence, calculated with the Forward algorithm. We con-
struct precision-recall curves by varying a threshold on these
confidences.

Figures 8, 9 and 10 show the precision-recall curves for the
three data sets. Each figure shows curves for the five types of

1Earlier versions of two of these data sets were used in our pre-
vious work [Ray and Craven, 2001]. Various aspects of the data sets
have been cleaned up, however, and thus the versions used here are
somewhat different. All three data sets are available from
http://www.biostat.wisc.edu/˜craven/ie/.
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Figure 8: Precision vs. recall for the five types of HMMs on the
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Figure 9: Precision vs. recall for the five types of HMMs on the
disorder-association data set.

HMMs described at the beginning of this section. We show
error bars for the Context HHMM precision values for the
subcellular-localization and protein-interaction data sets.
For these two data sets, the hierarchical HMM models clearly
have superior precision-recall curves to the baseline models.
At nearly every level of recall, the hierarchical HMMs ex-
hibit higher precision than the baselines. Additionally, the
HHMMs achieve higher endpoint recall values. The results
are not as definitive for the disorder-association data set.
Here, the POS HMMs and the Token HMMs achieve preci-
sion levels that are comparable to, and in some cases slightly
better than, the Context HHMMs. There is not a clear winner
for this data set, but the Context HHMMs are competitive.

Comparing the Context HHMMs to the ordinary HHMMs,
we see that the former results in superior precision-recall
curves for all three data sets. This result demonstrates that
clearly there is value in including the context features in hi-
erarchical HMMs for this type of task. In summary, our em-
pirical results support the hypothesis that the ability our hier-
archical HMM approach to capture grammatical information
about sentences results in more accurate learned models.
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6 Conclusion
We have presented an approach to learning models for infor-
mation extraction that is based on using hierarchical HMMs
to represent the grammatical structure of the sentences being
processed. We employ a shallow parser to obtain parse trees
for sentences and then use these trees to construct the input
representation for the hierarchical HMMs

Our approach builds on previous work on hierarchi-
cal HMMs and incorporating grammatical knowledge into
information-extraction models. The application of HHMMs
to IE is novel and has required us to modify HHMM learn-
ing algorithms to operate on a hierarchical input representa-
tion. In particular our methods take into account that phrases
and states must have matching types, and that phrase states
must emit complete phrases. We have also introduced a novel
modification of HHMMs in which observations can be fea-
ture vectors. With respect to previous work on incorporating
grammatical knowledge into IE models, our main contribu-
tion is an approach that takes advantage of grammatical infor-
mation represented at multiple scales. An appealing property
of our approach is that it generalizes to additional levels of
description of the input text.

We have evaluated our approach in the context of learning
IE models to extract instances of three biomedical relations
from the abstracts of scientific articles. These experiments
demonstrate that incorporating a hierarchical representation
of grammatical structure improves extraction accuracy in hid-
den Markov models.
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