
Automatic Discovery and Transfer of MAXQ Hierarchies

Neville Mehta mehtane@eecs.oregonstate.edu
Soumya Ray sray@eecs.oregonstate.edu
Prasad Tadepalli tadepall@eecs.oregonstate.edu
Thomas Dietterich tgd@eecs.oregonstate.edu

Oregon State University, Corvallis OR 97331, USA

Abstract

We present an algorithm, HI-MAT (Hierar-
chy Induction via Models And Trajectories),
that discovers MAXQ task hierarchies by ap-
plying dynamic Bayesian network models to
a successful trajectory from a source rein-
forcement learning task. HI-MAT discovers
subtasks by analyzing the causal and tem-
poral relationships among the actions in the
trajectory. Under appropriate assumptions,
HI-MAT induces hierarchies that are consis-
tent with the observed trajectory and have
compact value-function tables employing safe
state abstractions. We demonstrate empir-
ically that HI-MAT constructs compact hi-
erarchies that are comparable to manually-
engineered hierarchies and facilitate signifi-
cant speedup in learning when transferred to
a target task.

1. Introduction

Scaling up reinforcement learning (RL) to large do-
mains requires leveraging the structure in these do-
mains. Hierarchical reinforcement learning (HRL) pro-
vides mechanisms through which domain structure can
be exploited to constrain the value function and pol-
icy space of the learner, and hence speed up learning
(Sutton et al., 1999; Dietterich, 2000; Andre & Rus-
sell, 2002). In the MAXQ framework, a task hierarchy
is defined (along with relevant state variables) for rep-
resenting the value function of the overall task. This
allows for decomposed subtask-specific value functions
that are easier to learn than the global value function.

Automated discovery of such task hierarchies is com-

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

pelling for at least two reasons. First, it avoids the sig-
nificant human effort in engineering the task-subtask
structural decomposition, along with the associated
state abstractions and subtask goals. Second, if the
same hierarchy is useful in multiple domains, it leads
to significant transfer of learned structural knowledge
from one domain to the other. The cost of learning can
be amortized over several domains. Several researchers
have focused on the problem of automatically induc-
ing temporally extended actions and task hierarchies
(Thrun & Schwartz, 1995; McGovern & Barto, 2001;
Menache et al., 2001; Pickett & Barto, 2002; Hengst,
2002; Şimşek & Barto, 2004; Jonsson & Barto, 2006).

In this paper, we focus on the asymmetric knowledge
transfer setting where we are given access to solved
source RL problems. The objective is to derive use-
ful biases from these solutions that could speed up
learning in target problems. We present and evalu-
ate our approach, HI-MAT, for learning MAXQ hier-
archies from a solved RL problem. HI-MAT applies
dynamic Bayesian network (DBN) models to a single
successful trajectory from the source problem to con-
struct a causally annotated trajectory (CAT). Guided
by the causal and temporal associations between ac-
tions in the CAT, HI-MAT recursively parses it and
defines MAXQ subtasks based on each discovered par-
tition of the CAT.

We analyze our approach both theoretically and em-
pirically. Our theoretical results show that, under
appropriate conditions, the task hierarchies induced
by HI-MAT are consistent with the observed trajec-
tory, and possess compact value-function tables that
are safe with respect to state abstraction. Empiri-
cally, we show that (1) using a successful trajectory
can result in more compact task decompositions than
when using only DBNs, (2) our induced hierarchies
are comparable to manually-engineered hierarchies on
target RL tasks, and MAXQ-learning converges signif-
icantly faster than flat Q-learning on those tasks, and

Automatic Discovery and Transfer of MAXQ Hierarchies

(3) transferring hierarchical structure from a source
task can speed up learning in target RL tasks where
transferring value functions cannot.

2. Background and Related Work

We briefly review the MAXQ framework (Dietterich,
2000). This framework facilitates learning separate
value functions for subtasks which can be composed
to compute the value function for the overall semi-
Markov Decision Process (SMDP) with state space S
and action space A. The task hierarchy H is repre-
sented as a directed acyclic graph called the task graph,
and reflects the task-subtask relationships. Leaf nodes
are the primitive subtasks corresponding to A. Each
composite subtask Ti defines an SMDP with param-
eters 〈Xi, Si, Gi, Ci〉, where Xi is the set of relevant
state variables, Si ⊆ S is the set of admissible states,
Gi is the termination/goal predicate, and Ci is the set
of child tasks of Ti. T0 represents the root task. Ti

can be invoked in any state s ∈ Si, it terminates when
s′ ∈ Gi, and (s, a) is called an exit if Pr(s′|s, a) > 0.

The set Si is defined using a projection function that
maps a world state to an abstract state defined by
a subset of the state variables. A safe abstraction
function only merges world states that have identical
values. The local policy for a subtask Ti is a map-
ping πi : Si 7→ Ci. A hierarchical policy π for the
overall task is an assignment of a local policy to each
Ti. A hierarchically optimal policy for a given MAXQ
graph is a hierarchical policy that has the best pos-
sible expected total reward. A hierarchical policy is
recursively optimal if the local policy for each subtask
is optimal given that all its child tasks are in turn re-
cursively optimal.

HEXQ (Hengst, 2002) and VISA (Jonsson & Barto,
2006) are two existing approaches to learning task hi-
erarchies. These methods define subtasks based on the
changing values of state variables. HEXQ employs a
heuristic that orders state variables based on the fre-
quencies of change in their values to induce an exit-
option hierarchy. The most frequently-changing vari-
able is associated with the lowest-level subtask, and
the least frequently-changing variable with the root.
VISA uses DBNs to analyze the influence of state vari-
ables on one another. The variables are partitioned
such that there is an acyclic influence relationship
between the variables in different clusters (strongly-
connected components). Here, state variables that in-
fluence others are associated with lower-level subtasks.
VISA provides a more principled rationale for HEXQ’s
heuristic – a variable used to satisfy a precondition for
setting another variable through an action typically

changes more frequently than the other variable. A
key difference between VISA and HI-MAT is the use
of a successful trajectory in addition to the DBNs. In
Section 5.1, we provide empirical evidence that this
allows HI-MAT to learn hierarchies that are exponen-
tially more compact than those of VISA.

The algorithm developed by Marthi et al. (2007) takes
a search-based approach to generating hierarchies.
Flat Q-value functions are learned for the source do-
main, and are used to sample trajectories. A greedy
top-down search is conducted for the best-scoring hi-
erarchy that fits the trajectories. The set of relevant
state variables for each task is determined through sta-
tistical tests on the Q values of different states with
differing values of the variables. In contrast to this
approach, HI-MAT relies less on direct search through
the hierarchy space, and more on the causal analysis
of a trajectory based on DBN models.

3. Discovering MAXQ Hierarchies

In this work, we consider MDPs where the agent is
solving a known conjunctive goal. This is a subset
of the class of stochastic shortest-path MDPs. In such
MDPs, there is a goal state (or a set of goal states), and
the optimal policy for the agent is to reach such a state
as quickly as possible. We assume that we are given
factored DBN models for the source MDP where the
conditional probability distributions are represented
as trees (CPTs). Further, we are given a successful
trajectory that reaches the goal in the source MDP.
With this in hand, our objective is to automatically
induce a MAXQ hierarchy that can suitably constrain
the policy space when solving a related target prob-
lem, and therefore achieve faster convergence in the
target problem. This is achieved via recursive parti-
tioning of the given trajectory into subtasks using a
top-down parse guided by backward chaining from the
goal. We use the DBNs along with the trajectory to
define the termination predicate, the set of subtasks,
and the relevant abstraction for each MAXQ subtask.

We use the Taxi domain (Dietterich, 2000) to illustrate
our procedure. Here, a taxi has to transport a passen-
ger from a source location to a destination location
within a 5 × 5 grid-world. The pass.dest variable is
restricted to one of four special locations on the grid
denoted by R, G, B, Y; the pass.loc could be set to
R, G, B, Y or in-taxi; taxi.loc could be one of the 25
cells. The goal of pass.loc = pass.dest is achieved by
taking the passenger to its intended destination. Be-
sides the four navigation actions, a successful Pickup
changes pass.loc to in-taxi, and a successful Putdown
changes pass.loc from in-taxi to the value of pass.dest.

Automatic Discovery and Transfer of MAXQ Hierarchies

EndStart North East Pickup West South Putdown

pass.loc

pass.dest

taxi.loc
taxi.loc
pass.*

pass.loc

taxi.loc taxi.loc taxi.loc taxi.loc taxi.loc taxi.loc taxi.loc

Figure 1. A sample CAT for the Taxi domain.

3.1. Definitions and Notation

We say that a variable v is relevant to an action a if
the reward and transition dynamics for a either check
or change v; it is irrelevant otherwise. The set of
trajectory-relevant (t-relevant) variables of a, a subset
of the relevant variables, are the variables that were
actually checked or changed when a was executed in
the trajectory. A causal edge a v−→ b connects a to
another action b (b following a in the trajectory) iff v is
t-relevant to both a and b, and irrelevant to all actions
in between. A sink edge, a v−→ End connects a with
a dummy End action iff v is relevant to a and irrele-
vant to all actions before the final goal state; this holds
analogously for a source edge Start

v−→ a. A causally
annotated trajectory (CAT) is the original trajectory
annotated with all the causal, source, and sink edges.
Moreover, the CAT is preprocessed to remove any cy-
cles present in the original trajectory (failed actions,
such as an unsuccessful Pickup, introduce cycles of unit
length). A sample CAT for Taxi is shown in Figure 1.

Given a
v−→ b, the phrase “literal on a causal edge”

refers to a formula of the form v = V where V is
the value taken by v in the state before b is exe-
cuted. We define DBN-closure(v) as the set of vari-
ables that influence v recursively as follows. From the
action DBNs, add all variables that appear in internal
nodes in the CPTs for the dynamics of v. Next, for
each added variable u, union DBN-closure(u) with
this set, repeating until no new variables are added.
Similarly, the set DBN-closure(reward) contains all
variables that influence the reward function of the
MDP. The set DBN-closure(fluent) is the union of
the DBN-closures of all variables in the fluent. For
example, DBN-closure(goal) is the set of all variables
that influence the goal fluent. The CAT ignores all
variables v /∈ DBN-closure(goal), namely, those vari-
ables that never affect the goal conjunction.

3.2. The HI-MAT Algorithm

Given a CAT and the MDP’s goal predicate (or recur-
sively, the current subtask’s goal predicate), the main
loop of the hierarchy induction procedure is illustrated
in Algorithm 1. The algorithm first checks if two stop-
ping criteria are satisfied (lines 1 & 3): either the tra-
jectory contains only a single primitive action, or it

consists of actions whose relevances are identical. (In
the latter case, any further partitioning would yield
subtasks with the same abstraction as the parent.)
Otherwise, it first initializes the set of “unsolved” goals
to the set of literals in the goal conjunction (line 7).
It then selects any unsolved goal u, and finds the cor-
responding subtask (line 12). Algorithm 2 returns in-
dices i, j marking the boundaries of the subtask in the
CAT. If this CAT segment is nontrivial (neither just
the initial state nor the whole trajectory), it is stored
(line 16), and the literals on causal edges that enter it
(from earlier in the trajectory) are added to the un-
solved goals (line 17). This ensures that the algorithm
parses the entire trajectory barring redundant actions.
If the trajectory segment is equal to the entire tra-
jectory, this implies that the trajectory achieves only
the literal u after the ultimate action. In this case,
the trajectory is split into two segments: one segment
contains the prefix of the ultimate action an with the
preconditions of an forming the goal literals for this
segment; the other segment contains only the ultimate
action an (line 14). CAT scanning is repeated until all
subgoal literals are accounted for.

The only way trajectory segments can overlap is if
they have identical boundaries, and the ultimate ac-
tion achieves the literals of all these segments. In this
case, the segments are merged (line 21). Merging re-
places the duplicative segments with one that is as-
signed a conjunction of the subgoal literals.

The HI-MAT algorithm partitions the CAT into
unique segments, each achieving a single literal or a
conjunction of literals due to merging. It is called re-
cursively on each element of the partition (line 25).
It can be proved that the set of subtasks output by
the algorithm is independent of the order in which the
literal u is picked (line 11).

3.2.1. Subtask Detection

Given a literal, a subtask is determined by finding the
set of temporally contiguous actions that are closed
with respect to the causal edges in the CAT such that
the final action achieves the literal. The idea is to
group all actions that contribute to achieving the spe-
cific literal being considered. This procedure is shown
in Algorithm 2.

Automatic Discovery and Transfer of MAXQ Hierarchies

Algorithm 1 HI-MAT
Input: CAT Ω, Goal predicate G
Output: Task 〈X,S,G,C〉; X is the set of relevant vari-
ables, S is the set of non-terminal states, G is the goal
predicate, and C is the set of child actions.

1: if |Ω| = 1 then
2: return 〈RelVars(Ω),S, true, a1〉 // Primitive
3: else if CheckRelVars(Ω) then
4: S ← All states that reach G via Actions(Ω)
5: return 〈RelVars(Ω), S,G,Actions(Ω)〉
6: end if
7: U ← Literals(G)
8: n← |Ω|
9: Ψ← ∅ // Trajectory segments

10: while U 6= ∅ do
11: Pick u ∈ U
12: (i, j, u)← CAT-Scan(Ω, u, n)
13: if i = 1 ∧ j = n then
14: Ψ← Ψ ∪ {(1, n− 1,Precond(an)), (n, n, ∅)}
15: else if j > 1 then
16: Ψ← Ψ ∪ (i, j, u)
17: U ← (U − {u})∪ Literals(incoming edges)
18: end if
19: end while
20: while ∃(i, j, u1), (i, j, u2) ∈ Ψ do
21: Ψ← (Ψ− {(i, j, u1), (i, j, u2)}) ∪ {(i, j, u1 ∧ u2)}
22: end while
23: C ← ∅
24: for t ∈ Ψ do
25: 〈Xt, St, Gt, Ct〉 ← HI-MAT(Extract(Ω, ti, tj), tu)
26: C ← C ∪ {〈Xt, St, Gt, Ct〉}
27: end for
28: X ← RelVars(Ω) ∪Variables(G)
29: S ← All states that reach G via C
30: return 〈X,S,G,C〉

Algorithm 2 CAT-Scan
Input: CAT Ω, literal u, index n
Output: (i, j, u); i is the start index, j is the end index.

1: Set j such that aj
u−→ an ∈ Ω

2: σ ← {aj}
3: i← j − 1

4: while ∀v ∃k ai
v−→ ak =⇒ ak ∈ σ and i > 1 do

5: σ ← σ ∪ {ai}
6: i← i− 1
7: end while
8: return (i, j, u)

As before, when considering causal edges in line 4, we
can ignore all causal edges that are labeled with vari-
ables not in the DBN-closure of any variable in the
current unsolved goal list. Because of the way we con-
struct the CAT, we can show that this procedure will
always stop before adding an action which has a rel-
evant variable that is not relevant to the last action
in the partition. Note that the temporal contiguity
of the actions we assign to a subtask is required by
the MAXQ-style execution of a policy. A hierarchical
MAXQ policy cannot interrupt an unterminated sub-

task, start executing a sibling subtask, and then return
to executing the interrupted subtask.

3.2.2. Termination Predicate

After finding the partition that constitutes a subtask,
we assign a set of child tasks and a termination pred-
icate to it. To assign the termination condition to a
subtask, we consider the relational test(s) tu in the
action and reward DBNs involving the variable u on
the causal edge leaving the subtask (line 25 of Algo-
rithm 1). When a subtask’s relational termination
condition involves other variables not already in the
abstraction, these variables are added to the state ab-
straction (line 28), effectively creating a parameterized
subtask. For example, consider the navigation subtask
that terminates when taxi.loc = pass.dest in the Taxi
domain. The abstraction for this subtask already in-
volves taxi.loc. However, pass.dest in the relational
test implies that pass.dest behaves like a parameter
for this subtask.

3.2.3. Action Generalization

To determine if the set of primitive actions available to
any subtask should be expanded, we follow a bottom-
up procedure (not shown in Algorithm 1). We start
with subtasks that have only primitive actions as chil-
dren. We create a merged DBN structure for such
a subtask T using the incorporated primitive actions.
The merged DBN represents possible variable effects
after any sequence of these primitive actions. Next,
for each primitive action that we did not see in this
trajectory, we consider the subgraph of its DBN that
only involves the variables relevant to T . If this is a
subgraph of the merged DBN of T , we add this ac-
tion to the set of actions available to T . The rationale
here is that the added action has similar effects to the
actions we observed in the trajectory, and does not
increase the set of relevant variables for T . For exam-
ple, if the navigation actions used on the observed tra-
jectory consisted only of North and East actions, this
procedure would also add South and West to the avail-
able actions for this subtask. When considering sub-
tasks that have non-primitive children, we only con-
sider adding actions that have not been added to any
of the non-primitive children.

Given the termination predicate and the generalized
set of actions, the set of relevant variables for a sub-
task is the union of the set of relevant variables of the
merged DBN (described above) and the variables ap-
pearing in the termination predicate (line 28). Com-
puting the relevant variables is similar to explanation-
based reinforcement learning (Tadepalli & Dietterich,

Automatic Discovery and Transfer of MAXQ Hierarchies

1997) except that here we care only about the set of
relevant variables and not their values. Moreover, the
relevant variables are computed over a set rather than
a sequence of actions.

4. Theoretical Analysis

In this section, we establish certain theoretical prop-
erties of the hierarchies induced by the HI-MAT al-
gorithm. We consider a factored SMDP state-space
S = Dx1 × . . . × Dxk

, where each Dxi
is the domain

of variable xi. We assume that our DBN models have
the following property.

Definition 1 A DBN model is maximally sparse if for
any y ∈ Y where Y is the set of parents of some node x
(which represents either a state variable or the reward
node), and Y ′ = Y − {y},

∃y1, y2 ∈ Dy Pr(x|Y ′, y = y1) 6= Pr(x|Y ′, y = y2).

Maximal sparseness implies that the parents of a vari-
able have non-trivial influences on it; no parent can be
removed without affecting the next-state distribution.

A task hierarchy H = 〈V,E〉, is a directed acyclic
graph, where V is a set of task nodes, and E rep-
resents the task-subtask edges of the graph. Each task
node Ti ∈ V is defined as in Section 2.

A trajectory-task pair 〈Ω, Ti〉, where Ω =
〈s1, a1, . . . , sn, an, sn+1〉 and Ti = 〈Xi, Si, Gi, Ci〉,
is consistent with H if Ti ∈ V , and {s1, . . . , sn} ⊆ Si.
If Ti is a primitive subtask then n = 1, and Ci = a1.
If Ti is not primitive then {s1, . . . , sn} ∩ Gi = ∅,
sn+1 ∈ Gi, and there exist trajectory-task pairs
〈Ωj , Tj〉 consistent with H where Ω is a concatenation
of Ω1, . . . ,Ωp and T1, . . . , Tp ∈ Ci.

A trajectory Ω is consistent with a hierarchy H if
〈Ω, T0〉 is consistent with H.

Definition 2 A trajectory 〈s1, a1, . . . , sn, an, sn+1〉 is
non-redundant if no subsequence of the action sequence
in the trajectory, a1, . . . , an, can be removed such that
the remaining sequence still achieves the goal starting
from s1.

Theorem 1 If a trajectory Ω is non-redundant then
HI-MAT produces a task hierarchy H such that Ω is
consistent with H.

Proof sketch: Let Ω = 〈s1, a1, . . . , sn, an, sn+1〉 be
the trajectory. The algorithm extracts the conjunction
of literals that are true in sn+1 (and not before), and
assigns it to the goal, Gi. Such literals must exist

since, otherwise, some suffix of the trajectory can be
removed while the rest still achieves the goal, violating
the property of non-redundancy. Since the set Si is set
to all states that do not satisfy Gi, the condition that
all states s1, . . . , sn are in Si is satisfied.

Whenever the trajectory is partitioned into a sequence
of sub-trajectories, each sub-trajectory is associated
with a conjunction of goal literals achieved by that
sub-trajectory. Hence, the above argument applies re-
cursively to each such sub-trajectory. �

Definition 3 A hierarchy H is safe with respect to the
DBN models M if for any trajectory-task pair 〈Ω, Ti〉
consistent with H, where Ti = 〈Xi, Si, Gi, Ci〉, the to-
tal expected reward during the trajectory is only a func-
tion of the values of x ∈ Xi in the starting state of Ω.

The above definition says that the state variables in
each task are sufficient to capture the value of any
trajectory consistent with the sub-hierarchy rooted at
that task node.

Theorem 2 If the procedure HI-MAT produces a task
hierarchy H from Ω and the DBN models M then H
is safe with respect to M . Further, if the DBN models
are maximally sparse, for any hierarchy H′ which is
consistent with Ω and safe with respect to M , and Ti =
〈Xi, Si, Gi, Ci〉 in H, there exists T ′i = 〈X ′i, S′i, G′i, C ′i〉
in H′ such that Xi ⊆ X ′i.

Proof sketch: By the construction procedure, in any
segment of trajectory Ω composed of primitive actions
under a subtask Ti, all primitive actions check or set
only the variables in Xi. Thus, changing any other
variables in the initial state s of Ω yielding s′ does
not change the effects of these actions according to
the DBN models. Similarly, all immediate rewards
in the trajectory are also functions of the variables
in Xi. Hence, the total accumulated reward and the
probability of the trajectory only depend on Xi, and
the hierarchy produced is safe with respect to M .

Suppose that H′ is a consistent hierarchy which is safe
with respect to M . Let ai be the last action in the
trajectory Ωi corresponding to the subtask Ti in H.
By consistency, there must be some task T ′i in H′ that
matches up with ai. Recall that Xi includes only those
variables checked and set by ai to achieve the goal Gi.
We claim that the abstraction variables X ′i of T ′i must
include Xi. If this is not the case then, by maximal
sparseness, there is a variable y in Xi −X ′i and some
values y1 and y2 such that the probabilities of the next
state or reward are different based on whether y = y1
or y = y2. Hence, H′ would not be safe, leading to a
contradiction. �

Automatic Discovery and Transfer of MAXQ Hierarchies

Corollary 1 If the DBN models are maximally sparse
then the maximum size of the value function table for
any task in the hierarchy produced by HI-MAT is the
smallest over all safe hierarchies which are consistent
with the trajectory.

Proof: Direct consequence of part 2 of the previous
theorem. �

The significance of the above corollary lies in the fact
that the size of the value-function table is exponential
in the number of variables ni = |Xi| in the abstraction
of task Ti. If all features are binary and there are t
tasks then the total number of values for the value-
function tables is O(t 2nmax). Since the hierarchy is
a tree with the primitive actions at the leaves, the
number of subtasks is bounded by 2l where l is the
length of the trajectory. Hence, we can claim that
the number of parameters needed to fully specify the
value-function tables in our hierarchy is at most O(l)
times that of the best possible.

Our analysis does not address state abstractions aris-
ing from the so-called funnel property of subtasks
where many starting states result in a few terminal
states. Funnel abstractions permit the parent task to
ignore variables that, while relevant inside the child
task, do not affect the terminal state. Nevertheless,
our analysis captures some of the key properties of
our algorithm including consistency with the trajec-
tory, safety, minimality, and sheds some light on its
effectiveness.

5. Empirical Evaluation

We test three hypotheses. First, we expect that using
a successful trajectory along with the action models
will allow HI-MAT to induce task hierarchies that are
much more compact than (or at least as compact as)
just using the action models. Second, in a transfer
setting, we expect that the hierarchies induced by HI-
MAT will speed up convergence to the optimal policy
in related target problems. Finally, we expect that our
hierarchies will be applicable to, and speed up learning
in, RL problems which are different enough from the
source problems such that value functions either do
not transfer or lead to poor transfer.

5.1. Salience of the Trajectory

To highlight our first hypothesis, a modified Bitflip do-
main (Diuk et al., 2006) is designed as follows. The
state is represented by n bits, b0b1 . . . bn−1. There are
n actions denoted by Flip(i). Flip(i) toggles bi if both
bi−1 is set and the parity across bits b0, . . . , bi−1 is even

Root

Flip(n-2)Flip(0) Flip(n-1)

Parity(b0,…,bn-2) ∧ bn-2 = 1

2n-3 exit options

(a) VISA hierarchy. Task la-
bels are the exit conditions;
dash-dot arrows indicate exit
options.

Root

Flip(1)Flip(0)

Flip(n-1)b0 ∧…∧ bn-2 = 1

Flip(n-2)
b0 ∧ b1 = 1

(b) HI-MAT hierarchy.
Task labels are the ter-
mination conditions.

Figure 2. Task hierarchies for the modified Bitflip domain.

-3000

-2500

-2000

-1500

-1000

-500

 0

 0 10 20 30 40 50

T
ot

al
 R

ew
ar

d

Episode

Q
VISA

HI-MAT

Figure 3. Performance of Q, VISA, and HI-MAT in the 7-
Bitflip domain (averaged over 20 runs).

when i is even (odd otherwise); if not, it resets the bits
b0, . . . , bi. All bits are reset at the initial state, and the
goal is to set all bits.

We ran both VISA and HI-MAT in this domain with
n = 7, and compared the induced hierarchies (Fig-
ure 2). We observe that VISA constructs an ex-
ponentially sized hierarchy even with subtask merg-
ing activated within VISA. There are two reasons for
this. First, VISA relies on the full action set to con-
struct its causal graph, and does not take advantage of
any context-specific independence among its variables
that may arise when the agent acts according to cer-
tain policies. Specifically, for this domain, the causal
graph constructed from DBN analysis has only two
strongly connected components (SCCs): one partition
has {b0, . . . , bn−2}, and the other has {bn−1}. This
SCC cannot be further decomposed using only infor-
mation from the DBNs. Second, VISA creates exit op-
tions for all strongly connected components that tran-
sitively influence the reward function, whereas only a
few of these may actually be necessary to solve the
problem. Specifically, for this problem, VISA creates
an exit condition for any instantiation that satisfies

Automatic Discovery and Transfer of MAXQ Hierarchies

parity(b0, . . . , bn−2) ∧ bn−2 = 1, resulting in exponen-
tial number of subtasks shown in Figure 2(a). The
successful trajectory provided to HI-MAT achieves the
goal by setting the bits going from left to right, and re-
sults in the hierarchy in Figure 2(b). The performance
results are shown in Figure 3. VISA’s hierarchy con-
verges even slower than the basic Q learner because
the root has O(2n) children as opposed to O(n).

This domain has been engineered to highlight the case
when access to a successful trajectory allows for sig-
nificantly more compact hierarchies than without. We
expect that access to a solved instance will usually im-
prove the compactness of the resulting hierarchy.

5.2. Salience of the Induced Hierarchy

To test our remaining hypotheses, we apply the trans-
fer setting in two domains: Taxi and the real-time
strategy game Wargus. The Taxi problem has been de-
scribed in Section 3. The difference between the source
and target problems in Taxt is that the target is a dif-
ferent maze than the source; however, the passenger
sources and destinations remain the same. For Wargus,
we consider the resource collection problem. Here, the
agent has units called peasants that are used to harvest
gold and wood from goldmines and forests respectively,
and deposit them at a townhall. The goal is to reach
a predetermined quota of gold and/or wood. Since
our approach does not currently generalize termination
conditions involving numeric predicates, we encode the
domain so that the goal consists of two Boolean flags
that are set when the required quotas of gold and wood
are reached. We consider target problems where sev-
eral numeric parameters are scaled up from the source,
including the number of peasants, goldmines, forests,
and the size of the map. In this domain, coordina-
tion does not affect the policy significantly. Thus, in
the target maps, we learn a hierarchical policy for the
peasants using a shared hierarchy structure without
coordination (Mehta & Tadepalli, 2005). In each case,
we report the total reward received as a function of
the number of episodes, averaged over multiple trials.

We compare three basic approaches: (1) flat
Q-learning (Q), (2) MAXQ-0 learning employ-
ing a manually-engineered hierarchy for each do-
main (Manual), and (3) MAXQ-0 learning employ-
ing the HI-MAT hierarchy for each domain (HI-MAT).
The HI-MAT algorithm first solves the source prob-
lem using flat Q-learning, and generates a successful
trajectory from it. In Taxi, we also show the perfor-
mance of initializing the value-function tables with val-
ues learned from the source problem – these curves are
suffixed with “with value”. In Wargus, we include the

-4000

-3500

-3000

-2500

-2000

-1500

-1000

-500

 0

 0 5 10 15 20 25 30

T
ot

al
 R

ew
ar

d

Episode

Q
Q with value

Manual
Manual with value

HI-MAT
HI-MAT with value

Figure 4. Performance in the Taxi domain (averaged over
20 runs). Source and target problems differ only in the
wall configurations.

-20000

-15000

-10000

-5000

 0

 0 10 20 30 40 50 60

T
ot

al
 R

ew
ar

d

Episode

Q
Manual
HI-MAT

VISA

Figure 5. Performance in the Wargus domain (averaged
over 10 runs). Source: 25 × 25 grid, 1 peasant, 2 gold-
mines, 2 forests, 1 townhall; 100 gold and 100 wood re-
quired. Target: 50 × 50 grid, 3 peasants, 3 goldmines, 3
forests, 1 townhall; 300 gold and 300 wood required.

performance of VISA. The results of these experiments
are shown in Figures 4 and 5.

In Taxi, we observe that MAXQ-learning on HI-MAT’s
hierarchy converges to the optimal policy at a rate
comparable to that of the manually-engineered hier-
archy. However, in Wargus, HI-MAT’s hierarchy is
faster to converge than the manually-engineered one
because, by analyzing the solved source problem, it
is able to find stricter termination conditions for each
subtask. Consequently, reducing the policy space in
the target problem leads to a greater speed-up in learn-
ing than reducing the number of value parameters via
subtask sharing in the manually-engineered hierarchy.
The improved rate of convergence is in spite of the fact
that HI-MAT does not currently merge subtly differ-
ent instantiations of the same subtask so there is room

Automatic Discovery and Transfer of MAXQ Hierarchies

for further improvement. VISA’s performance suffers
slightly due to a large branching factor at the root
(which directly includes all the navigation subtasks).

In Wargus, the difference between the source and tar-
get problems renders direct value-function transfer
impossible even though the hierarchy structure still
transfers. In Taxi, the target problems are engineered
to allow value-function transfer to occur. However, the
target problems are different enough that the agent
has to “unlearn” the old policy. This leads to neg-
ative transfer evidenced in the fact that transferring
value functions leads to worse rates of convergence to
the optimal policy than transferring just the hierarchy
structure with uninitialized policies. This indicates
that transferring structural knowledge via the task-
subtask decomposition can be superior to transferring
value functions especially when the target problem dif-
fers significantly in terms of its optimal policy.

6. Conclusion

We have presented an approach to automatically in-
ducing MAXQ hierarchies from solved RL problems.
Given DBN models and an observed successful tra-
jectory, our method analyzes the causal and temporal
relationships between actions, and partitions the tra-
jectory recursively into subtasks as long as the state
abstraction improves. We show that the learned hier-
archies are consistent, safe, and have compact value-
function tables. Our empirical results indicate that
using the observed trajectory can allow us to learn
more compact hierarchies. Further, in a transfer set-
ting, our hierarchies perform comparably to manually-
engineered hierarchies, and improve the rate of conver-
gence where direct policy transfer does not help.

We are currently working on extending the approach
to handle disjunctive goals. Further, in order to en-
sure hierarchical optimality, we may need to deal with
non-zero pseudo-rewards. In related work, we are also
investigating methods that learn compact DBN mod-
els of the MDP. Finally, an important challenge for the
future is to investigate the transfer scenario where the
induced hierarchy may need to be altered structurally
in order to apply effectively to the target problem.

Acknowledgments

We thank Mike Wynkoop and the anonymous review-
ers for their input. We gratefully acknowledge the
support of the Defense Advanced Research Projects
Agency under DARPA grant FA8750-05-2-0249.

References

Andre, D., & Russell, S. (2002). State Abstraction
for Programmable Reinforcement Learning Agents.
AAAI (pp. 119–125).

Şimşek, Ö., & Barto, A. (2004). Using Relative Nov-
elty to Identify Useful Temporal Abstractions in Re-
inforcement Learning. ICML (pp. 751–758).

Dietterich, T. (2000). Hierarchical Reinforcement
Learning with the MAXQ Value Function Decom-
position. Journal of Artificial Intelligence Research,
13, 227–303.

Diuk, C., Littman, M., & Strehl, A. (2006). A Hierar-
chical Approach to Efficient Reinforcement Learning
in Deterministic Domains. AAMAS (pp. 313–319).

Hengst, B. (2002). Discovering Hierarchy in Reinforce-
ment Learning with HEXQ. ICML (pp. 243–250).

Jonsson, A., & Barto, A. (2006). Causal Graph Based
Decomposition of Factored MDPs. Journal of Ma-
chine Learning Research, 7, 2259–2301.

Marthi, B., Kaelbling, L., & Lozano-Perez, T. (2007).
Learning Hierarchical Structure In Policies. NIPS
HOB Workshop.

McGovern, A., & Barto, A. (2001). Automatic Dis-
covery of Subgoals in Reinforcement Learning using
Diverse Density. ICML (pp. 361–368).

Mehta, N., & Tadepalli, P. (2005). Multi-Agent Shared
Hierarchy Reinforcement Learning. ICML RRRL
Workshop.

Menache, I., Mannor, S., & Shimkin, N. (2001). Q-Cut
- Dynamic Discovery of Sub-Goals in Reinforcement
Learning. ECML (pp. 295–306).

Pickett, M., & Barto, A. (2002). PolicyBlocks: An Al-
gorithm for Creating Useful Macro-Actions in Rein-
forcement Learning. ICML (pp. 506–513).

Sutton, R., Precup, D., & Singh, S. (1999). Between
MDPs and Semi-MDPs: A Framework for Temporal
Abstraction in Reinforcement Learning. Artificial
Intelligence, 112, 181–211.

Tadepalli, P., & Dietterich, T. (1997). Hierarchical
Explanation-Based Reinforcement Learning. ICML
(pp. 358–366).

Thrun, S., & Schwartz, A. (1995). Finding Structure
in Reinforcement Learning. NIPS (pp. 385–392).

