Dynamic Vectorization: A Mechanism for Exploiting Far-Flung ILP

in Ordinary Programs

Sriram Vajapeyam

Supercomputer Education and Research Centre
and
Dept. of Computer Science & Automation
Indian Institute of Science
Bangalore, INDIA 560012
sriram@csa.iisc.ernet.in

Abstract

Several ILP limit studies indicate the presence of
considerable ILP across dynamically far-apart instruc-
tions in program execution. This paper proposes a
hardware mechanism, dynamic vectorization (DV), as a
tool for quickly building up a large logical instruction
window. Dynamic vectorization converts repetitive
dynamic instruction sequences into vector form, enabling
the processing of instructions from beyond the
corresponding program loop to be overlapped with the
loop. This enables vector-like execution of programs with
relatively complex static control flow that may not be
amenable to static, compile time vectorization. Experi-
mental evaluation shows that a large fraction of the
dynamic instructions of four of the six SPECInt92 pro-
grams can be captured in vector form. Three of these pro-
grams exhibit significant potential for ILP improvements
from dynamic vectorization, with speedups of more than a
factor of 2 in a scenario of realistic branch prediction and
perfect memory disambiguation. Under perfect branch
prediction conditions, a fourth program also shows well
over a factor of 2 speedup from DV. The speedups are due
to the overlap of post-loop processing with loop process-

ing.

1. INTRODUCTION

Several studies of the maximum instruction-level
parallelism (ILP) available in ordinary programs, as
represented for example by the SPEC integer benchmarks,
have indicated the presence of considerable parallelism
across instructions that are executed considerably far apart
in the program (for example, [3, 7]). Current superscalar

P. J. Joseph Tulika Mitrat

Dept. of Computer Science & Automation
Indian Institute of Science
Bangalore, INDIA 560012

{tulika, joseph}@hampi.serc.iisc.ernet.in

processors exploit parallelism only across instructions
close-by in the dynamic program execution. This is
exemplified by the small instruction windows (ranging
from a few tens to a couple of hundred instructions) of
program execution from which instructions are dynami-
cally scheduled for execution in current processors. A
recent study [7] illustrates that instruction windows larger
than 10K instructions are often needed to expose large-
scale ILP. Considerable recent research on high-
performance processors has focused on fetching and
dispatching multiple basic blocks per cycle to build larger
instruction windows (for example, trace processors [13]
and multiscalar processors [2,11]). While the proposed
approaches enhance the instruction window size beyond
that of current superscalar processors, they either fall short
of the window sizes suggested by ILP limit studies or rely
on considerable compiler support. In this paper, we pro-
pose dynamic vectorization as a mechanism for consider-
ably enlarging a processor’s logical instruction window
beyond that of previously proposed approaches.

Several hurdles exist to scaling traditional in-
program-order instruction fetch based processors to
dynamically examine very large program segments for
ILP. The key problem is the high instruction fetch and
dispatch bandwidth needed to build up and sustain a large
instruction window. Given large fetch and dispatch
bandwidth, the necessary decentralization of the subse-
quent processor execution stages and the necessary sup-
port for efficient handling of mis-speculations in a large
window are other important problems. These issues have
been discussed in detail in [6, 13].

We propose dynamic vectorization as a hardware
mechanism for building larger instruction windows.

! Tulika Mitra is currently a graduate student at SUNY, Stony
Brook. Her contribution to this work was part of her M.E. project work
[4] done at 11Sc during 1996-97.

Dynamic vectorization overcomes several of the hurdles
to building a large instruction window processor in a
natural and efficient manner. The key idea is to detect
repetitive control flow at runtime and capture the
corresponding dynamic loop body in vector form in the
instruction window. Multiple loop iterations are issued
from the single copy of the loop body in the instruction
window. This eliminates the need to re-fetch the loop
body for each loop iteration, freeing up the fetch stage to
fetch post-loop code instead and thus build a larger win-
dow. Further, capturing all iterations in a single vector
code copy results in an efficient physical implementation
of a large logical window. Other benefits of traditional
vectorization[9] also accrue: streamlined execution, clean
partitioning of a large register space into vector
registers/queues, etc.

The significance of dynamic vectorization is its
potential to be effective on programs that are not amen-
able to compile-time vectorization (because of complex
static control flow and ambiguous memory dependences)
but exhibit simple repetitive control flow and dependence
behavior at runtime. Several ordinary programs likely
exhibit such behaviour: significant fractions of the
dynamic instructions of SPECInt92 programs, ranging
from 14% to 81%, are captured in vector form by the
mechanisms proposed in this paper (also see [13]). Simu-
lations show significant ILP improvements, with over a
factor of 2 speedup over high performance trace proces-
sors for three of the six benchmarks, assuming a high-
bandwidth, perfect disambiguation memory hierarchy. A
fourth benchmark is limited by the post-loop prediction
accuracy of the model studied, and shows close to a factor
of 3 performance improvement under perfect branch pred-
iction conditions. The improvements come from
significant overlap of post-loop code with loop execution,
and from overlap of multiple loops.

Dynamic vectorization was briefly outlined in a pre-
vious work[13]. We present a more detailed description
and study of the mechanism in this paper. The dynamic
vectorization mechanism proposed here is built on top of
trace processors [13], though it could be built into tradi-
tional superscalar processors as well. The dynamic vec-
torization mechanism is described next, in section 2. We
provide a brief summary of trace processors early in the
section, as background. In section 3 we describe impor-
tant performance enhancements and optimizations of the
basic dynamic vectorization mechanism. We discuss pre-
vious work in section 4. The experimental evaluation of
dynamic vectorization is reported in section 5. We sum-
marize the work and draw conclusions in section 6.

2. Dynamic Vectorization (DV)

We propose a dynamic vectorization (DV) mechan-
ism for trace processors; a similar scheme could be built
into traditional superscalar processors as well. We choose
trace processors as the platform since the underlying

notion of a trace lends itself well to dynamic vectoriza-
tion. In this section, we first provide a brief description of
trace processors. We next describe the vectorization of
repetitive instruction sequences that fit perfectly into the
trace lines of a scalar trace processor. (Section 3 describes
improvements to this basic vectorization mechanism.) We
describe the vector detection mechanism, detecting the
termination (loop limit) of a vectorized loop, handling of
register operands for vectorized instructions, and queue
operations. We also discuss issues involved in the han-
dling of memory dependencies.

2.1. Background: Trace Processors

Trace-centric processors [13] (or, trace processors)
fetch, decode, and dispatch a trace line at a time to an
instruction window that is partitioned at trace line boun-
daries (Figure 1). A trace line is a dynamic sequence of
basic blocks, typically containing several conditional
branches. For example, a single iteration of a loop could
constitute a trace line. A trace line is uniquely identified
by the address of its first instruction and the outcomes of
its branches. A trace cache supplies trace lines to the trace
window; upon a trace cache miss, instructions are fetched
and dispatched from a traditional instruction cache. Trace
construction logic snoops on the latter dispatch path, col-
lates instructions into trace lines (off the processor’s criti-
cal path), and enters them in the trace cache. Each line in
the trace cache contains a next address field that is used
for fetch of the successor trace line; a multiple-branch
predictor supplies the predictions necessary to lookup the
trace cache. The register instances accessed by a trace line
are classified as live-on-entry, local, and live-on-exit, with
local registers being mapped to a register file local to the
instruction window partition [13], and other registers
being mapped to a global register file. Each partition of
the instruction window has a local register file and local
copies of (most) functional units. A slower global register
file is shared across the entire instruction window. The
key feature of a trace processor is a rename cache [13]
that records rename information of registers that are
strictly local to the trace line. This rename information is
reused upon trace dispatch, resulting in only the non-local
registers of a trace line having to be renamed on trace
dispatch. Typically this enables rename and dispatch of a
16-instruction trace line in a single clock.

2.2. TraceLineVectorization

Trace line vectorization occurs in the trace fetch
stage of a trace processor. The most basic form of trace
line vectorization is based on the detection of successive
dispatches of a single trace line in the underlying scalar
trace processor. To facilitate vectorization, the trace fetch
stage maintains an ordered history of trace addresses, in
dispatch order, in the Dispatch History Buffer (DHB). The
DHB can be implemented as a shift register, with trace
addresses shifted in from the right every clock. During

Renamed-Trace Cache

’ i241‘ """ ‘ 1256 \F

Trace Cache Miss Path

Local Registers ~ [< — - -~ 1
o | [omame ——t [CoaTrees =~~~
Cache [
i [[~ [s =] i o :
Local FUs :
| Common Local Registers N
n 51%-;) Trace Line 2 T l GLOBAL
F Pat ! :
’ i17 ‘ ‘ 32 A_“%] mm] e | REGISTER
. B |
: \ Local FUs : ‘ : FILE
H |
| De Re \ : ‘ :
=) —) : \ Local Registers —---7!
F code name Trace Line 16 \‘\ ! |
\ L
|
|
|

\ |
"1 Local FUs '
|

NN

Instruction Cache

Trace Window

N o o - EL)
Global FUs

Figure 1. A Trace Processor

trace fetch, the dispatch history buffer is looked up in
parallel with the trace cache lookup (Figure 2). A match
with the most recent entry in the dispatch history buffer
indicates repetitive dispatch of the trace line and triggers
vectorization. The trace is annotated with vector informa-
tion and dispatched to a partition in the trace window. The
vector annotation as well as the execution of a vector trace
is described shortly. On subsequent clocks, the trace fetch
stage proceeds along the (predicted) loop-exit path. This
is the key to quickly building up a larger instruction win-
dow — unlike in superscalar processors, the trace fetch
stage does not have to explicitly fetch each iteration of the
loop.

The next few subsections describe the handling of a
vectorized trace in subsequent processor pipeline stages.
The trace dispatch stage renames the trace’s register
operands to vector queues. Queues are preferred to vector
registers since the loop limit of a vectorized trace is
unknown at dispatch time. The dispatch stage also marks
the trace as vectorized, and initializes certain counters
associated with the trace. The instruction window issues
all iterations of the vectorized trace from a single (anno-
tated) copy of the trace. The different instances of a vec-
torized instruction issue and complete in program order, to
facilitate the use of vector queues. However, instances of
different instructions in the trace can issue out of order
(i.e., slip) with respect to each other, provided they satisfy
dependence constraints. Multiple iterations are issued
speculatively as the loop limit is unknown at trace
dispatch time. The exact number of iterations is deter-
mined when an instance of a conditional branch in the
vectorized trace is resolved as mispredicted. Any subse-
quent iterations already issued at this point are squashed.

When a vector trace completes execution, its live-on-exit
values are copied to the global register file to correctly
handle dependences with post-loop code.

For vectorization to occur in the above model, a
trace line must start at an instruction that is the target of a
backward branch and terminate at the corresponding back-
ward branch. In this section, we assume that all traces in
the underlying trace processor are terminated at backward
branches, for purposes of exposition. Terminating at back-
ward branches trace lines that eventually do not get vec-
torized will likely result in lower ILP, due to reduction in
the average trace line length. In a subsequent section we
describe a mechanism that terminates only vectorized
traces at backward branches.

Renamed TF Re- Trace

Map
T Window

Trace Cache

4 trace addr (lookup)
I
I

L=
I DHB 1 Match? [——= vectorize
1 [yes
no

Dispatch History Buffer

trace addr

Figure 2. Detection of Repetitive Trace Dispatch.

2.3. Vector TraceDispatch and Issue

We now describe how multiple iterations are issued
from a single vectorized trace, deferring the description of
the handling of its register operands via queues to the next
subsection. Figure 3 shows different fields associated with
a vectorized trace in the trace window. Upon trace vectori-
zation, the trace dispatch stage sets the trace’s associated
vector bit. Instruction issue logic checks this bit to issue
multiple iterations (instances) of the trace to functional
units before retiring it from the trace window. Since the
number of iterations of a vector trace is typically unknown
at dispatch time, the issue logic uses two per-instruction
counters, a vector length counter VL_CTR and an issue
counter ISSUE_CTR, to determine the number of itera-
tions to be issued. The VL_CTRs are initialized to infinity
at dispatch time, thus allowing the issue logic to specula-
tively issue multiple iterations until loop termination is
detected, at which point the VL_CTRs will be set to
appropriate values. Iterations of a vectorized instruction
are issued until the instruction’s ISSUE_CTR reaches its
VL_CTR value. ISSUE_CTR is incremented upon issue
of each iteration of the instruction.

Vectorized loop execution is terminated when an
instance of a branch in the vector trace takes a direction
different from what is embedded in the trace and thus is
resolved as mispredicted. This can happen in two ways: (i)
an instance of the loop-terminating branch falls through
instead of branching back, or (ii) an instance of a loop-
internal branch branches to a basic block that is different
from the one that follows the branch in the vectorized
trace. The latter case occurs either when there is an early
loop exit from an internal point, or when a loop iteration
follows a different control path within the loop than its
predecessor iterations. The iteration/instance number (i.e.

vector trace

vector 11112

N

Opcode | Destination | Sourcel| Source2

VL_CTR
ISSUE_CTR

\ a vectorized instruction

Operand
ArchReg Q

LoEntry

PhyReg Rd/Wr-Ptr| LoExit

Figure 3. A vectorized trace in the trace window.

the ISSUE_CTR value) of the mispredicted branch
instance indicates the number of iterations to be issued of
the other instructions in the vector trace.

We first consider the simpler case of the loop-
terminating branch falling through. The VL_CTRs of all
instructions in the vector trace are set to the branch’s
ISSUE_CTR value. It is possible that instances (iterations)
beyond this value have already been speculatively issued
for (some) instructions in the trace. Such instances are dis-
carded in the following manner: each in-flight instruction
instance and each speculatively completed result value
(queue element) is tagged with the instruction’s instance
number (ISSUE_CTR) and, if necessary, a unique trace id
of the trace. When a vector trace’s iteration count is deter-
mined, all inflight instructions and speculatively com-
pleted results of the trace that have higher instance
numbers than the loop count are squashed. A simple
implementation of this squashing is described in the sub-
section on queue operations (2.5). Note that misprediction
of a loop-terminating branch does not result in the squash-
ing of post-loop instructions already fetched from a
correctly predicted loop fall-through path.

When loop execution is terminated by a
mispredicted internal branch, the VL_CTRs of all instruc-
tions prior to the branch in the trace are set to the branch’s
ISSUE_CTR, and VL_CTRs of all subsequent instruc-
tions are set to (ISSUE_CTR minus 1) (see Figure 4). For
the latter instructions, any speculatively issued iterations
with ISSUE_CTR even equal to the loop limit have to be
discarded. The simple discard mechanism described in
section 2.5 correctly handles this case. Again, post-loop
instructions from the loop-exit path are squashed only if

loop: 10| 10 10| 10| 9 9
i1 loop| o brl] br2
i2
bri (a) Loop-internal exit ISSUE_CTR
N\
br2
10 |10 10 (10| 10 10
loog o bri br2

(b) Loop terminating branch exit

Figure 4. A loop with an internal branch, and the ISSUE_CTRs
for (i) when brl is mispredicted, and (ii) when br2 is mispredict-
ed. Note that post-loop instructions will not be squashed in (b).

the correct target of the mispredicted branch is different
from the predicted loop-exit path.

Thus the processor avoids explicit fetching of all
iterations of the loop body, issuing multiple instruction
instances from a vectorized trace. This results in overlap
of the post-loop code fetch and execution with loop exe-
cution. We next describe the handling of dependences
within and across vector traces.

2.4. Handling Register Operands

The register operands of the different instances of
each vectorized instruction have to be renamed in some
manner prior to vector trace dispatch. Traditional renam-
ing of individual instruction instances is not a solution,
since this will prevent post-loop code from being
dispatched until all loop iterations are renamed. We pro-
pose associating a vector queue with each register operand
of a vectorized trace at trace dispatch time instead. Queues
are preferred to vector registers since, among other things,
the vector length is unknown at vectorization time.

We assume a pool of queues local to each trace par-
tition in the trace window, and associated queue-map table
and free list, similar to register renaming structures. Upon
vector trace dispatch, each architectural register instance
written by the trace is assigned a unique local queue, and
appropriate subsequent source operands read from this
queue. Essentially, registers are renamed to queues instead
of to physical registers. To correctly handle loop-carried
register dependences (recurrences), the live-on-entry
instance of an architectural register that is both live-on-
entry to and live-on-exit from the trace picks up as its
gueue mapping the queue id assigned to the live-on-exit
instance of the register. Figure 5 illustrates such an assign-
ment. To correctly handle dependences between the vec-
torized loop and preceding/subsequent code, the following
global physical register mappings are also picked up. Each
architectural register written by the trace is assigned
(renamed to) a global physical register, and all instances
of that architectural register share that assignment (regis-
ter R3 in Figure 5). All live-on-entry source architectural
registers pick up the current physical register mapping as
well. Note that source architectural registers that are
strictly live-on-entry to the trace line (i.e. are read but not
modified by the trace line) pick up only physical register
mappings and no queue mappings. For each operand of a
vectorized trace, slots are available in the instruction win-
dow entry to store the corresponding queue-id and physi-
cal register id as well as live-on-entry and live-on-exit bits
(Figure 3). All this information is filled in by the trace
rename stage prior to vector trace dispatch.

Register reads and writes by a vectorized trace are
handled as follows. When a vector instruction instance
issues, the physical register for an operand is read if the
live-on-entry bit of the operand is set, else the appropriate
element of the queue for the operand is read. (The han-
dling of queue reads and queue writes is described

shortly.) This selection is necessary to ensure that the first
instance of such an instruction correctly reads the value
generated by an instruction prior to the vectorized trace.
For example, the first instance of il in Figure 5 should
read the value of R1 produced by i0, while all subsequent
instances should read the value of R1 produced by the
appropriate instances of i4. If the corresponding architec-
tural register is also live-on-exit, the live-on-entry bit of
the operand is reset after the first instance issues. This
ensures that subsequent instances of the instruction read
from the queue, thus correctly handling recurrences.
Operands that are strictly live-on-entry continue to be read
from the physical register for all instruction instances.

Correct handling of register dependences between
vectorized instructions and subsequent post-loop instruc-
tions is implemented as follows. The busy bit for the des-
tination physical register of each architectural register
written by the vector trace is set upon trace dispatch, and
reset when (the relevant portion of) the loop completes
execution and the corresponding value for the architec-
tural register is copied to the global physical register. For
vector traces that exit from the loop-terminating branch,
each instruction identified at dispatch time as producing a
live-on-exit value writes the result of its last instance
(iteration) to the destination queue as well as to the
corresponding global physical register. For loop-internal
exits, the instruction that produces the live-on-exit value
of an architectural register has to be identified only after
the loop-terminating branch is resolved since the last itera-
tion of the loop executes only a part of the trace. For
example, a register might be written by an instruction
before the internal branch as well as an instruction after
the internal branch. In another scenario, a register might
be written only by an instruction after the internal branch.

/ PO -
) live-on-entry,
i0 R1<--#MAX recurrence
Q1, PO
=01 R4 <-- R1 + Rbase
i2 R3<-R4+R3 Q2,P1

share
~—= Q2 physical reg

loop i3 R3<-R3+R1
Q3, PL

i4 Rl<-R1-1
S~ - Q1,P4

—i5 BNEZ R1,i1 live-on-exit

Figure5. An example of renaming a vector trace
to queue operands.

Simple priority-encoder based logic that first sorts instruc-
tions based on ISSUE_CTR values and and then by posi-
tion of the instruction in the trace can do such
identification once the loop limit is known, and is neces-
sary with each trace partition. Assuming a 1-clock or 2-
clock penalty for this logic, the write to the physical regis-
ter can still take place before/in parallel with the write to
the queue, since queues will likely have longer access
times.

2.5. Queue Operations

Instances of a vectorized instruction are constrained
to issue in program order, allowing us to use FIFO queues
instead of vector registers for the operands. Note that dif-
ferent vectorized instructions can still issue out-of-order
with respect to each other provided they satisfy depen-
dence constraints. While the queue implementation
described below may seem complex, most of the micro-
operations described below (e.g. those involving read and
write pointers) are used in some form in traditional vector
registers [9], for example to implement vector chaining.
The use of queues in a vector machine has been proposed
previously as well[14].

Queue Write. A write to a queue by an instruction
instance appends the result to the end of the queue and
sets the ready bit for that queue element. This entails
maintaining a write pointer per queue, similar to vector
registers. If the queue is full, the instance blocks until a
queue element is available.

Queue Read. We observe that multiple instructions
can read a queue element (value). To ensure that an
instruction instance reads the value generated by the
appropriate instance of the writing instruction, the follow-
ing is done. Each element of a queue is tagged with an
instance number; queue elements are written in program
order and get increasing instance numbers starting from 1.
Each source operand is tagged with a read pointer, also
initialized to 1, which is the instance number of the queue
entry it should read. A read can only pick up the value at
the head of the queue. A read succeeds if the queue head’s
ready bit is set and its instance number matches the read
pointer of the reader; else the read blocks. The operand’s
read pointer is incremented on a successful read.

Queue Shift. The queue head has to be deleted and
the queue shifted forward when all readers of the queue
head have picked up the value. During vector trace renam-
ing, the number of instructions in the trace that read each
queue is counted and stored in the queue’s MAX-
READERS tag. (Care is taken to account for loop-carried
dependences represented by architectural registers that are
both live-on-entry and live-on-exit from the trace.) Each
read of the queue head decrements the queue’s NUM-
READERS field. When the NUM-READERS field goes
down to zero, the queue head is deleted, the queue is
shifted forward by one element, and the
NUM_READERS field is set to MAX-READERS.

Handling Vector Trace Completion. When a vector
trace completes all iterations, the following actions have
to be initiated: (i) results of all instruction instances specu-
latively executed beyond the loop limit have to be
squashed, and (ii) for live-on-exit instruction instances,
the results produced by those instances have to be copied
to the corresponding architectural register. When the loop
limit determining branch instance is resolved, the loop
limit (VL-CTR) of each instruction is available in the
trace. For live-on-exit instructions, if the issue counter at
loop termination detection equals or exceeds the
VL_CTR, the live-on-exit value has to be retrieved from
the queue and copied to the physical register. The VL-
CTR for such an instruction is forwarded to its destination
queue along with a control signal indicating the instruc-
tion as producing a live-on-exit value. When an element
with an instance number equal to the loop limit is shifted
to the head of the queue, that element is copied to the
corresponding global physical register (recorded with the
gueue at dispatch time). Note that it is possible that the
queue head’s instance number is greater than the loop
limit (because of excessive speculative execution of itera-
tions) by the time the queue receives the loop limit. To
handle such a case, it is necessary to maintain old ele-
ments of the queue in a shadow vector register until the
loop limit is determined. The required live-on-exit ele-
ment is then retrieved from the shadow vector register.
Squashing of results from iterations beyond the loop limit
is relatively simple. When all instructions in a vector trace
complete execution (of all iterations), the queues of the
trace partition are simply returned to the free pool, thus
effectively squashing any values produced by un-
necessary iterations.

The use of FIFO queues can restrict ILP to some
extent due to the introduction of artificial dependencies
between instructions. However, the use of queues consid-
erably simplifies the dynamic vectorization of traces.

2.6. Handling M emory Dependences

Memory references instructions in post-loop code
are typically issued out-of-order (i.e. speculatively) with
respect to the memory references generated by the vector-
ized loop. Furthermore, different memory reference
instructions within a vectorized trace can also issue out of
order, even though instances of each individual vector
instruction are issued in order. This requires subsequent
validation of the memory dependence speculation and
abort/redo of instructions upon mis-speculation.

We do not propose a memory disambiguation
scheme for dynamic vectorization in this paper. Our
experimental studies are conducted assuming perfect
memory disambiguation, i.e., a memory reference waits
until its dependences are resolved, but does not wait for
previous memory references that are not to the same
memory location. Several recent proposals and studies of
selective memory dependence speculation

mechanisms[1, 5] show that performance close to that of
perfect memory disambiguation is achievable with selec-
tive memory speculation. A highly effective selective
memory speculation mechanism such as store sets[1] can
be adapted to dynamic vectorization as well, so our
assumption of perfect disambiguation likely does not
result in overly optimistic results.

3. Improved DV Mechanisms

The basic dynamic vectorization mechanism
described in the previous section incurs some overheads
and performance penalties. For example, the renaming of
a vector trace line is likely to take one or two additional
cycles compared to scalar trace renaming as it has to
detect recurrences, count the number of readers for each
queue, etc. Terminating all traces at backward branches to
facilitate vectorization is another potential source of per-
formance loss. Vectorizing repetitive instances of multi-
ple scalar trace lines is a third concern. In this section, we
describe a few key improvements to address these issues.

3.1. Vector Trace Cache

We observe that a dynamically vectorizable loop
can be visited several times during the execution of a pro-
gram — consider for instance the innermost loop of a
nested loop. With the basic DV mechanism, each new
visit to the innermost loop incurs vectorization overhead.
We introduce a Vector Trace Cache that holds vectorized
traces. The vector trace cache is looked up in parallel with
the scalar trace cache. When a previously vectorized loop
is revisited, the vectorized form of the loop is likely to be
found in the vector trace cache, resulting in rename and
dispatch of the vector trace without having to incur the
DV overhead of first dispatching a few iterations of the
loop in scalar form and then detecting vectorization.
While a simple implementation of vector trace cache is to
add a "VECTOR" bit to each trace in the scalar trace
cache, a separate vector trace cache is desirable for the
following reasons. A separate vector trace cache can also
record queue mappings (similar in spirit to the scalar trace
cache) thus reducing the rename time for vector traces. A
separate cache also allows vector trace lines to be longer
than scalar trace lines, as discussed in the next section.

3.2. Improving Trace Delineation

So far we have assumed that trace lines terminate at
backward branches to facilitate vectorization. However,
not all traces that terminate at backward branches get vec-
torized. This can result in considerable performance loss
since several scalar traces can now be less than the max-
imum possible size of 16 instructions due to termination at
backward branches. Further, repetitive instruction
sequences might be longer than 16 instructions in size.

We assume that the scalar trace construction
mechanism builds 16-instruction long scalar traces when

possible, without stopping trace construction at backward
branches. For vectorization purposes, we now use
separate trace detection logic that sits in parallel with the
scalar trace detection logic. This trace detection logic con-
structs traces that terminate at backward branches, watch-
ing the instruction stream flowing into the scalar trace
detection logic as well as out of the trace cache. Addresses
of such candidate traces are recorded in the Dispatch His-
tory Buffer, instead of maintaining a history of the default
scalar traces. However, these candidate traces are not
entered into the trace window, except upon vectorization.
When a new candidate trace is constructed, its identifier is
matched with the identifier of the most recent entry in the
Dispatch History Buffer, as usual. A match triggers vec-
torization. At the vectorization point, the corresponding
scalar trace is also terminated, its next address field is set
to point to the vectorized candidate trace, and the modified
scalar trace is dispatched to the trace window followed by
the vectorized trace. Thus, backward branches terminate
scalar traces only when such termination results in vector-
ization.

3.3. Vectorizing Complex Trace Patterns

The basic DV mechanism can capture simple repeti-
tive scalar trace lines. In practise, repetitive patterns fall
into four categories: (i) simple loops, e.g. A, A, A, A; (ii)
complex loops that contain multiple candidate trace lines,
e.g. AXB, AXB, AXB,; (iii) unrolled loops that follow dif-
ferent paths in the first few iterations but repeat the pattern
subsequently, e.g. ABD-ACD, ABD-ACD, ABD-ACD;
and (iv) nested loops, e.g. ABBBC, ABBBC, ABBBC.
The last case can occur if repetition thresholds are used to
determine vectorization and the inner loop’s count doesn’t
cross the threshold. The addresses of the candidate traces
captured in the Dispatch History Buffer are maintained as
a simple shift register, with the most recently constructed
trace’s address shifted in at the right end of the register.
Each cycle, the most recent (i.e. rightmost) k addresses in
the shift register are compared with the next most recent k
addresses, for different values of k (e.g. 1, 2, 3, 4). The
largest string of addresses that matches its predecessor is
vectorized: the corresponding traces are merged into a sin-
gle long vector trace (with some upper limit on its length).
This vector trace can be longer than a scalar trace, and
thus support is needed in the rest of the processor for such
longer traces. One way of providing such support is to use
a separate small vector trace cache with longer line size,
and to either build a few long trace partitions in the trace
window for vector traces or stripe a long vector trace
across multiple scalar window partitions.

As is the case with base vectorization logic, this
shift-register based logic sits in parallel with instruction
dispatch logic. We observe that the vectorization scheme
is fairly simple, involving a set of comparators that work
in parallel followed by a multiplexor. The overhead of
merging several traces into a single vector trace is

incurred only upon vectorization.

3.4. Improving Post-Loop ILP

We recall that the base DV mechanism squashes all
post-loop instructions when a loop exits to a target other
than the predicted loop-exit path (target). A simple
method for loop-exit-target prediction is to record the
loop’s previously taken exit target in the vector trace’s
next-address field. A better method for loop-exit path
prediction is to use a Branch Target Buffer that is indexed
by some combination of the loop identifier, the loop’s pre-
vious loop-exit-target history, and the pre-loop branch his-
tory. We find that different programs need different ways
of indexing the BTB for high prediction accuracy, sug-
gesting the need for hybrid target prediction schemes.

4. Related Work

Vector instructions such as in the Cray machines[9]
exploit compile-time vectorization of programs. Dynamic
vectorization attempts to expand the realm of vectoriza-
tion by exploiting runtime information. Apart from
compile-time vectorization, a few other approaches have
been previously explored to increase the dynamic instruc-
tion window size of a processor. An early example is the
decoupled access-execute architecture[10] which separates
the program into an address slice and an execute slice; the
address slice slips ahead of the execute slice at runtime
and this results in a larger effective instruction window.

The CONDEL architecture[12] proposed by Uht
captures a single copy of complex loops in a static instruc-
tion window. It uses state bits per iteration to determine
the control paths taken by the different loop iterations and
to correctly enforce dependencies. Two key differences
exist between the CONDEL approach and dynamic vec-
torization proposed in this paper. CONDEL captures the
entire static loop body, which may not be possible if the
loop body exceeds the implemented window size. A loop
can potentially have a large static body but much smaller
dynamic size. Second, and more important, the CONDEL
architecture typically does not fetch instructions from
beyond the loop during loop execution. The dynamic vec-
torization scheme overlaps post-loop code’s execution
with the loop.

The multiscalar architecture [2,11] attempts to
build a large instruction window by statically partitioning
the program into multiblocks and having different PEs
fetch and execute different multiblocks at runtime. A key
problem faced by the multiscalar architecture is appropri-
ate static choices of multiblocks, affected by things such
as ILP, branch prediction, load-balancing across multi-
blocks, etc. Dynamic vectorization exploits valuable addi-
tional runtime information, and does not depend on the
compiler to identify traces or repetitive behaviour.

Subsequent to our initial outlining of the dynamic
vectorization and loop identification ideas[4,13], there

have been other proposals to dynamically identify loops.
However, these proposals have focused on exploiting
inter-iteration ILP and on reducing instruction fetch
bandwidth for data-parallel floating-point programs. They
do not exploit post-loop ILP, which is the focus of our
work.

5. Experimental Evaluation

In this section we report an experimental evaluation
of the dynamic vectorization (DV) scheme. Our primary
goal in this evaluation is to explore and demonstrate the
potential of DV. Several aspects of DV need to be further
explored and better understood before making specific
design choices for and focusing on a best possible DV
processor configuration. More detailed studies of DV are
part of our on-going investigations.

The first subsection describes the benchmarks and
the experimental platform. The subsequent subsection
describes the DV machine models we consider. We then
report the performance potential of the different models.

5.1. Benchmarksand Simulation M ethodology

We study the SPEC Integer benchmarks since they
represent code with relatively unpredictable control flow
and ambiguous memory dependences, and thus represent a
harder test of dynamic vectorization. We note that
dynamic vectorization can be advantageous even for
compile-time vectorizable code, such as many SPEC float-
ing point benchmarks, since it provides binary compatibil-
ity as well as other performance advantages. (While the
described DV mechanism issues no more than one
instance of each vectorized instruction every cycle, it
could be augmented to issue multiple instances as in
multi-pipe vector machines, where necessary.) We are

No. of Trace Data- Branch
Benchmark) C_ache Qache Pred.
Insts. hitrate | hitrate Acc.
(M) (%) (%) (%)
xlisp 100 90.3 99.99 96.5
ccl 105 66.48 99.43 94.6
espresso 100 74.08 99.93 97.7
sc 83 97.8 99.99 97.9
compress 69 96.48 87.04 90.5
eqntott 97 88.93 94.48 96.8

Table 1. Baseline characteristics of the

SPECInt92benchmarks used. The trace-cache is direct
mapped and has 256 lines. The data cache is 64Kbytes
(16KBytes for espresso) and 4-way set associative. The
branch predictor is a GAg(18) gshare predictor.

restricted to using the SPECInt92 version due to lack of
access to SPEC95. However, we believe that the study of
SPECInt92 still provides a reasonable demonstration of
the potential of DV. (For what it is worth, we note that the
original SPEC92 benchmark document states that all 6
SPECINnt92 programs are not vectorizable.) The
SPECInt92 benchmarks were compiled by the IBM XLC
compiler, version 3.1, on an IBM RS/6000 AIX 4.1 plat-
form, with the standard SPEC recommended -O2 optimi-
zation flag.

We simulate approximately 100 million dynamic
instructions of each program, except for compress which
completes in about 70 million instructions (Table 1). The
baseline characteristics of the benchmarks are shown in
Table 1. For SPECInt92, 100 million instructions have
been used by several studies in the past as a reasonable
simulation length for capturing program behavior.

We conduct cycle-by-cycle trace driven simulation
that accurately models various pipeline latencies in the
trace processor and DV mechanism. The trace-driven
methodology prevents us from modeling execution down
mis-speculated control paths. This restriction affects fac-
tors such as data cache interference, but doesn’t directly
affect the extent of dynamic vectorization of the correct
control path.

5.2. MachineModels

We compare a trace processor with and without the
dynamic vectorization mechanism. We now present
several details of the trace processor and DV features
modeled.

The base scalar trace processor model (ScTP) used
is similar to the one proposed and studied in [13]. The
configuration details of the base processor are given in
Table 2.

Dynamic vectorization (DV) is added to the base
scalar trace processor model. The DV model has a
separate vector trace cache of 16 entries. We allow vector
trace lines to be upto 256 instructions long, and then
observe that the average vector trace length is about 36
instructions. This suggests that a small vector trace cache
of about 16*36, i.e. about 512 instructions would suffice.
A long vector trace line is striped across multiple contigu-
ous partitions in the trace window. Enough local queues of
sufficient length are assumed in each partition, to avoid
resource limitations. The average iteration count of a vec-
tor trace turns out to be small for the benchmarks, indicat-
ing that short queue lengths will suffice. A vector trace
reuses queue renaming information, much as a scalar trace
reuses local register renaming information. However, the
global registers of a vector trace are renamed on each
dispatch of the trace. Queue access time is 2 clocks, and
there is no bypassing of results within a vector trace.
Copying of the live-on-exit value of a vector instruction to

Trace Lines

max. of 16 insts., 6 branches
per trace; terminated at indirect
branch;

Trace Window

64 trace lines (1K instructions)

Inst. Memory

Scalar Trace 256 trace lines; direct-mapped,;
Cache (L1) 1-cycle access

Inst. Cache (L2) || 100% hit rate; 2 cycle access
Data Memory

L1 Data Cache

64KB (16KB for espresso);
4-way set assoc.; unlim. bw;
unlim. lockup-free; 2-cycle hit
time; 10-cycle miss penalty;

L2 Data Cache

100% hit rate; 12 cycle access

Disambiguation

Perfect Memory Disambiguation

Rename/ 6 register map table lookups
Dispatch BW and 6 free list lookups per clock.
Issue BW any 2 insts/cycle per trace-line
Unlimited Number; Pipelined;
Functional Int-Mul 4 clks, Int-Div 8 clks,
Units other Int 1 clk; FP_ADD 3 clks,
FP_MUL 4 clks, FP_DIV 8 clks.
Physcal Local Regs 1 clk, Global Regs
Register 2 clks access; unlim. phy. regs.;
File full bypassing within trace line
Branch GAg(18), gshare, updated
Predictor speculatively (model)
Typical TFetch; TRemap, TDispatch;
Pipe Stages IExecl, .. IExecN.

Table 2. Baseline Scalar Trace Processor configuration.

the corresponding global physical register takes 2 clocks
after the instruction completes. Instances of a vector
instruction issue one per clock cycle, in program order.
Any two instructions can issue per clock within a vector
trace partition, similar to scalar trace lines. Note that this
restricts the amount of ILP exploited within a vector trace
(across all iterations) to two instructions per cycle.

The Dispatch History Buffer is 48 entries long,
allowing the vectorization of complex patterns containing
upto 16 different trace lines. A threshold of three repeti-
tions is used before vectorizing a trace line. All four kinds
of loops — simple, complex, unrolled, and nested loops
— are vectorized.

Both models allow trace lines to retire out of order
from the trace window, thus assuming a separate, larger
reorder buffer. This is again done to prevent the trace

window size from becoming a bottleneck and limiting per-
formance. The unit of atomicity for handling mis-
speculations and interrupts is assumed to be a trace line.
On a branch mispredict, the entire trace line is squashed
and execution restarted from the first instruction of the
trace, this time along the correct path.

All models assume perfect memory disambiguation,
i.e., a memory reference issues only after its dependences
are resolved, but doesn’t wait for any previous memory
references that do not access the same memory location.
As discussed in section 2.6, we do not propose a memory
disambiguation mechanism for DV in this paper.

Branch prediction can be crucial to DV perfor-
mance, especially the prediction of loop-exit paths. We
report the performance potential of DV for two cases: (i)
perfect branch prediction (ScTP-pbp vs. DV-pbp) with
unlimited instruction window size, and (ii) perfect loop
prediction and loop-exit path prediction for DV (ScTP vs.
DV-plp) with realistic instruction window size. The ScTP
and DV-plp models use a GAg(18) gshare predictor for
predicting branches; in addition, DV-plp assumes perfect
prediction when looking up the vector trace cache and
when predicting the exit target of a vector trace. This
implies that if a loop is already present in vector form in
the vector trace cache, the DV-plp model will never miss
the loop due to problems in the branch prediction bits
used in the cache lookup. (Note that perfect prediction is
not used during the initial vectorization of a loop.) Also,
post-loop ILP is never lost due to loop-exit-target
misprediction, in the DV-plp model. Further, upon a loop
prediction, the branch outcomes of only the first and last
iterations of the loop are shifted into the BHR, which is
then used for predicting branches in the post-loop path.
(In ScTP, predictions for all iterations of the loop are
naturally shifted into the BHR.) This is done to avoid
flooding the BHR with redundant information from repeti-
tive loop iterations. We will show later that this model of
BHR update has mixed effects on post-loop branch pred-
iction accuracy.

We report studies of these models since we find dif-
ferent post-loop-target prediction mechanisms work well
for different benchmarks, and the choice and accuracy of
these mechanisms have a critical impact on DV perfor-
mance. Improving loop-exit-target prediction accuracy is
part of our ongoing work. We do not discuss realistic tar-
get prediction mechanisms and models in this paper due to
space constraints.

5.3. DV PERFORMANCE

We first consider the performance of the more real-
istic SCTP and DV-plp (GAg(18) with perfect loop predic-
tion) models. Table 3 shows the ILP (Instructions Per
Cycle — IPC) obtained for the DV-plp model as well as
the base scalar trace processor model (ScTP), and the
speedups seen for the DV-plp model over the ScTP
model. While xlisp suffers from the overheads (and lack

of optimizations) of DV and two benchmarks (ccl and
espresso) show modest ILP improvement factors of
around 1.11 and 1.31 over the trace processor, the remain-
ing three benchmarks (sc, compress, and eqntott) show
large improvement factors of over a factor of 2. These
speedups are significant when it is observed that trace pro-
cessors themselves (the ScTP model) provide very good
speedups over superscalar processors. [8, 13]

Table 3 also shows components of the ILP in the
DV-plp model, to demonstrate the benefits of a large
instruction window. Post-loop ILP (the last column) is the
component of the ILP obtained by issuing instructions
from beyond a vector trace while the vector trace is still
present in the instruction window waiting to complete
execution. The post-loop ILP reported in Table 3 is com-
puted from the number of such instruction issues in the
program. We see that typically a large fraction of the ILP
comes from such post-loop ILP, i.e. by overlapping post-
loop code with loop execution. The two benchmarks with
the least ILP improvement, xlisp and ccl, have the least
post-loop ILP components. Post-loop ILP is further
classified into scalar and vector ILP, the latter occurring
when post-loop code itself contains another vectorizable
trace and thus the instruction window contains multiple
vector traces. All instructions issued from vector traces
beyond the first vector trace in the instruction window are
counted towards post-loop ILP. Three of the benchmarks
have large contributions from post-loop vector ILP, mak-
ing it important to support multiple vector traces in the
trace window. We observe that in the scalar trace proces-
sor post-loop ILP is typically less exploited since post-
loop code is not fetched until all loop iterations are
dispatched. However, since the number of loop iterations
is small for many of the benchmarks (Table 4), some
post-loop ILP is exploited even in the scalar trace proces-
sor. Further, the loop-terminating branch will likely be
frequently mispredicted since it is not recognized as a spe-
cial case in ScTP. Our studies show that loop-exit branch
targets might need different prediction mechanisms than
other branches.

Table 4 shows some characteristics of dynamic vec-
torization. The fraction of dynamic instructions vectorized
is significant for four of the six benchmarks. The average
vector length of a typical vector trace is small across pro-
grams, reflecting the short loop limits of SPECInt92. DV
is beneficial despite this, since loops are visited several
times. Capturing a vectorized trace in the vector trace
cache helps obtain DV benefits without vectorization
overhead even for these short loops. The typical size of a
vector trace is more than twice that of a 16-instruction
scalar trace for three benchmarks, showing the importance
of having separate vector trace detection logic and support
for longer vector traces. The other three benchmarks have
vector traces of the same size as scalar traces. Overall, the
vector trace sizes reflect the dynamic loop body, as

DV-plp
ScTP Post-Loop ILP
Pgm ILP Spd.
ILP scalar | vector || total

Pl e | @ || ®)
xlisp 5.05 430 | 0.85 4.4 4.8 9.2
ccl 3.71 413 1.11 25.6 10.4 36.0
espr 5.58 7.32 1.31 11.1 549 66.0
cmprs 1.75 3.64 | 2.08 39.5 31.8 71.3
sSC 4.24 9.42 2.22 26.9 63.5 86.4
eqgnt 3.78 8.82 | 2.33 29.0 52.3 81.3

Table 3. Performance of the DV-plp Machine Model,
which uses a GAg(18) predictor and perfect loop
prediction. The ScTP model is the base scalar trace
processor, with a peak ILP of 16. The speedup reported is
the factor improvement over the scalar trace processor.
Post-loop ILP is reported as percentage of DV ILP.

Vectorization DV Window Size
Brnch (insts.)
Pgm. Insts. Vec. | Vec. Pred.
Vector- | Len. | Trace Acc. TP DV

ized (VL) Len. (%)
xlisp 14.6% 6.3 35.4 94.7 94.1 593.7
ccl 22.8% 8.4 15.0 95.3 85.6 300.0
espr 81.2% 8.6 35.1 97.5 112.6 | 2093.5
cmpr || 51.1% 2.7 17.4 96.1 28.5 410.3
sC 72.1% 5.9 35.0 99.9 885 | 1121.7
eqnt 67.6% 10.6 8.7 99.2 63.2 500.6

Table 4. Some characteristics of dynamic vector traces,
and their effect on the logical instruction window. These
measurements are for the ScTP and DV-plp models.

opposed to the static loop body which might be
significantly larger.

Table 4 shows that the branch prediction accuracy
for DV is different from that for ScTP (Table 1). This
happens because the BHR update mechanism used in DV
results in the BHR contents being different when predict-
ing post-loop branches in the two models. The DV
mechanism of updating the BHR (section 5.2)
significantly aids several benchmarks, especially
compress. However, this mechanism also negatively
impacts xlisp, which is a key reason for xlisp’s negative
speedup. For espresso, a more appropriate BHR update
mechanism at loop boundaries can perhaps improve post-
loop branch prediction accuracy. This will result in
significantly improved ILP for espresso, as we show
shortly. Overall, this emphasizes the need for different
branch predictors for the different programs.

The last two columns of Table 4 show the impact of
DV on the logical instruction window size. While the
scalar trace processor typically has less than a hundred
instructions occupying the window, the DV processor has
several hundred to a few thousand instructions under con-
sideration in the instruction window. Of course, not all of
these instructions are really under simultaneous considera-
tion since different instances of a vector instruction can
only issue in program order. However, the large logical
window size does measure the processor’s ability to
quickly fetch and process instructions far apart in the exe-
cution stream.

Discussion.

We need to mention a few caveats with respect to the
models studied. While DV-plp assumes perfect loop-exit-
target prediction, the mechanism we use to update the
BHR (branch history register) is not necessarily the best,
as just discussed. Further, in both our DV models, when a
vectorized trace is revisited, one iteration of the loop is
still dispatched in scalar mode. This overhead can be elim-
inated by a simple optimization. Finally, we observe that
while loop-exit-target prediction is very easy to predict for
some benchmarks, it is more challenging for some other
benchmarks, especially when the loop exit is data depen-
dent. Careful design of the prediction mechanism is
required to achieve very high loop-exit-target prediction
accuracies.

To illustrate the effect of branch prediction, we
compare the two models under perfect branch prediction
in Table 5. We use different window sizes for the different
benchmarks in an attempt to control stalls due to
window-full condition. For three benchmarks, DV-pbp
provides a similar large improvement over ScTP-pbp. We
notice that for espresso the improvement is large (close to

ScTP- DV-pbp
Pop Post Wind
ost- indow
Pgm ILP ILP Spd. Loop || Max Full
up ILP Size Stalls
(%) (% clks)
xlisp 10.2 10.2 | 1.00 21 1K 25.9
ccl 7.5 9.0 | 1.20 60 8K 6.4
espr 11.7 345 | 2.95 93 4K 15.4
cmp 9.3 18.0 | 1.93 96 4K 0.9
egnt 9.5 223 | 2.35 94 1K 7.8

Table 5. Performance of the DV Machine Model under
ideal branch prediction. Different window sizes are
considered for different programs, based on the frequency
of window-full stalls.

a factor of 3), due to perfect prediction of the post-loop
path. This suggests that espresso’s performance in the
DV-plp model can be improved by a more appropriate
updation mechanism for the BHR at loop boundaries.

6. Summary and Conclusions

We have proposed a mechanism, dynamic vectori-
zation (DV), that increases a processor’s logical window
size and thus ILP by exploiting repetitive control flow in
programs. We find that programs with relatively complex
static control flow (and thus possibly hard to vectorize at
compile-time) often exhibit vector-like behavior at run-
time. Dynamic vectorization captures such code sequences
into vector form, enabling the building of large logical
instruction windows with relatively small physical instruc-
tion windows. Dynamic vectorization shows significant
performance improvements over a high-performance trace
processor for three of the six SPECint92 benchmarks for a
reasonably realistic branch prediction scheme, and similar
large improvements for perfect branch prediction, both
cases assuming perfect memory disambiguation.

We observe that DV performance is critically
dependent on the accuracy of predicting loops and loop-
exit paths. Further, a suitable memory disambiguation
mechanism has to be designed to handle the large logical
window of a DV processor. The memory reference
characteristics of vector traces, not discussed in this paper,
can possibly be exploited to build a suitable, efficient
disambiguation mechanism.

Overall, the potential shown by dynamic vectoriza-
tion indicates that there is considerable additional ILP to
be exploited by building larger instruction windows than
currently possible. DV attempts to do so by jumping to a
far-apart program segment (the loop exit path) even
before the loop is fully fetched. DV thus implements mul-
tiple flows of control at select points in program execution
(loops) where branch prediction can be highly accurate.
This raises interesting questions about other possible prac-
tical approaches to implementing multiple flows of con-
trol.

Acknowledgements

The first author thanks Jim Smith for his comments
on early versions of the dynamic vectorization idea in the
summer of 1996. Arghya Mukherjee contributed to por-
tions of the simulator and helped with the simulation runs.
We thank the anonymous referees for their detailed com-
ments, and Ravi Nair for use of the xtrace tracing tool.

REFERENCES

[1]

(2]

3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

George Z. Chrysos and Joel S. Emer, ‘‘Memory
Dependence Prediction using Store Sets,”” in Proc. 25th
International Symposium on Computer Architecture,
Barcelona, Spain, June 1998.

M. Franklin, ““The Multiscalar Architecture,”” Ph.D.
Thesis, University of Wisconsin-Madison, 1993.

M. S. Lam and R. P. Wilson, ‘‘Limits of Control Flow
on Parallelism,”” Proc. International Symposium on
Computer Architecture, May 1992,

Tulika Mitra, “‘Performance Evaluation of Improved
Superscalar Issue Mechanisms,”” M.E. Project Report,
January 1997.

A. Moshovos, S. E. Breach, T. N. Vijayakumar, and G.
S. Sohi, “‘Dynamic Speculation and Synchronization of
Data Dependences,”” in Proc. 24th International
Symposium on Computer Architecture, Denver, CO, June
1997.

S. Palacharla, N. P. Jouppi, and J. E. Smith,
““‘Complexity-Effective Superscalar Processors,”” Proc.
International Symposium on Computer Architecture, pp.
206-218, Jun. 1997.

Matthew A. Postiff, David Greene, Gary Tyson, and
Trevor Mudge, ““The Limits of Instruction Level
Parallelism in SPEC95 Applications,”” in INTERACT-3:
The Third Workshop on Interaction Between Compilers
and Computer Architectures, San Jose, CA, October
1998.

E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. E. Smith,
“Trace Processors,”” in 30th Int'l Symposium on
Microarchitecture, North Carolina, Dec. 1997.

R. M. Russel, *““The Cray-1 Computer System,”’
Communications of The ACM, vol. 21, pp. 63-72, Jan.
1978.

J. E. Smith, ““Decoupled Access/Execute Architectures,’
ACM Transactions on Computer Systems, Nov. 1984.

G. S. Sohi, S. E. Breach, and T. N. Vijaykumar,
““Multiscalar processors,”” Proc. 22nd International
Symposium on Computer Architecture, pp. 414-425,
June 1995.

A. K. Uht, ““Concurrency Extraction via Hardware
Methods Executing the Static Instruction Stream,”” IEEE
Transactions on Computers, vol. 41, July 1992.

Sriram Vajapeyam and Tulika Mitra, *“‘Improving
Superscalar Instruction Dispatch and Issue by Exploiting
Dynamic Code Sequences,” in 24th Annual Int'l
Symposium on Computer Architecture, Denver, CO, June
1997.

H. C. Young and J. R. Goodman, ‘““The Design of a
Queue-Based Vector Supercomputer,”” Int’l Conf. on
Parallel Processing, 1986.

