
Transparent access to grid resources for user software

Sander Klousa, Jaime Freyb, Se-Chang Sonb, Douglas Thainb,
Alain Royb, Miron Livnyb, Jo van den Branda

a NIKHEF, P.O. Box 41882, 1009 DB Amsterdam, The Netherlands
bComputer Science Department, University of Wisconsin, United States

Abstract
Grid computing promises access to large amounts of computing
power, but so far adoption of grid computing has been limited to
highly specialized experts for three reasons. First, users are used
to batch systems, and interfaces to grid software are often com-
plex and different than those in batch systems. Second, users are
used to having transparent file access which grid software does
not conveniently provide. Third, efforts to achieve wide-spread
coordination of computers while solving the first two problems is
hampered when clusters are on private networks. Here, we bring
together a variety of software that allows users to almost trans-
parently use grid resources as if they were local resources while
providing transparent access to files, even when private networks
intervene. As a motivating example, the BaBar Monte Carlo pro-
duction system is deployed on a truly distributed environment, the
European DataGrid, without any modification to the application
itself.

1 Introduction
At ‘GRID 2002’ Gabrielle Allen et al. made the observa-
tion that there is an eminent shortage of ‘real grid users’ [1].
They claim two main obstacles prevent applications from
benefitting from grid computing. First, the absence of a vi-
sion how to implement this new technology and second a
toolkit of higher level grid services, tailored for the appli-
cation needs, is not available. They introduced the GridLab
project aimed at delivering an API through which applica-
tions access and use distributed resources.

We fully acknowledge these two problems and the need
for projects that enable straight forward development of new
applications suitable for distributed systems. However, the
idea that almost every existing application ought to be re-
structured to be deployed on a distributed system comes at
an enormous cost in development and debugging labor. Re-
gardless, a large number of users hopes to benefit from large-
scale distributed computing. If a way is found to deploy ap-
plications on a distributed system without making modifica-
tions, then both hardware and human resources can be used
more efficiently.

How are we to make distributed computing accessible
to ordinary computing applications, that so far struggle to

benefit from the promises of distributed computing? Typ-
ical developers write their applications on standalone ma-
chines, making liberal use of complex and powerful libraries
and programming environments. By re-using existing tools,
developers are able to concentrate on their craft rather than
reinventing computing from the ground up. Software is cre-
ated, debugged, and validated on ordinary workstations long
before any thought turns to distributed computing. These is-
sues are the challenge of distributed computing in the real
world and lead to the shortage of grid users: for social and
technical reasons, little attention is paid to the distributed
nature of resources during the development of most user ap-
plications.

The solution we propose is two fold. First, the users in-
teract with a well-known batch interface that hides the com-
plexities of a system that spans various administrative do-
mains. Although this batch system provides familiar func-
tionality for the end users, its implementation is unconven-
tional: it harnesses multi-domain resources as if they all be-
long to one giant local computing pool. Second, the appli-
cation runs in a virtual environment that provides it with the
illusion of a local system, independent of the actual location
of the resources it uses.

These objectives are achieved by integrating the func-
tionality of five components. The first component is ‘Con-
dor’, a batch system providing a standard user interface to
manage distributed resources. The second component is
‘Condor-G’, a tool that uses inter-domain resource manage-
ment protocols to provide resource discovery and resource
access across administrative domains. The third component
is called ‘gliding in’, a technique that allows the remote re-
sources to become an integral part of the original batch pool.
‘Generic connection brokering’ is the fourth component,
making it possible to use the other components across fire-
walls and private networks. The last component is ‘Parrot’;
it implements an interpositioning technique based on the de-
bugger trap to provide the application with transparent file
I/O over a wide area network without any modification to
the user application.

As a motivating example, the deployment of an applica-

tion into a real distributed environment is described, without
any modification to the application itself. This application,
the BaBar Monte Carlo production system, is representative
of the applications described earlier; it consists of multiple
processes and complex libraries, poorly suited to most dis-
tributed computing and file systems. In particular, the prob-
lem of working through an aggressive firewall that discards
active TCP connections is addressed.

2 Working on a computational grid
There exist countless systems for harnessing remote proces-
sors and accessing remote data, but many place stringent re-
quirements on the applications that they accept. A batch sys-
tem might require that all programs be a single executable
performing no interprocess communication. A distributed
file system may provide unusual consistency semantics that
are at odds with a user’s expectations. Many experimental
systems expect users to re-write their software to take advan-
tage of new features, while many production systems expect
users to have administrator privileges on all machines on a
network.

A computational grid is inherently an unfriendly envi-
ronment with its own challenges. Significant problems arise
when resources need to be discovered, acquired and man-
aged across the boundaries of administrative domains. Fur-
thermore, installing most software on a new cluster is a
labor-intensive process that defies automation: executables,
scripts and libraries must be unpacked and installed; envi-
ronment variables and other settings must be configured;
database structures must be initialized; dependent software
must be discovered and installed. Some software expects a
uniform user database across multiple machines; this is an
impossibility on a computational grid. The nature of a dis-
tributed environment ensures that network outages and per-
formance variations are common events.

Users and applications should be shielded from these
complications. The satisfaction of a user with grid com-
puting depends heavily on the amount of effort required to
deploy an application on a distributed system. This effort is
drastically reduced when users can submit their jobs through
a well-known batch interface, one that does not require ex-
tra knowledge to run an application on resources in differ-
ent administrative domains. The assembly of such a sys-
tem is presented in section 2.1. The way this ‘overlay batch
system’ deals with network complexity is entirely different
from that of a standard batch system. In contrast to nor-
mal batch nodes, grid resources can often not be accessed
directly by the batch system. These connection issues are
handled by a generic layer in between the batch system and
its system calls as will be discussed in section 2.2.

Another equally important factor in the user experience
is the success rate of the remotely executed applications.
In section 2.3 the construction of a virtual environment is

discussed that allows almost any application that runs cor-
rectly on a local machine to complete successfully on grid
resources as well.

2.1 Resource management

The proposed user interface to the grid resources is orga-
nized around Condor, a batch system to manage the work-
load [2]. It provides a job queuing mechanism, a scheduling
policy, a priority scheme, resource monitoring and resource
management. The users submit their jobs to the batch sys-
tem, which places them into a queue. The batch system
chooses when and where the jobs are run based upon its
policy and monitors their progress. Ultimately the user is
informed upon completion.

Consider a grid environment in which an individual user
may, in principle, have access to computational resources at
many sites. The user defines a job on a user interface ma-
chine by specifying the resource requirements, the input and
output files and the program to be executed. An agent runs
on a machine with access to the batch system and provides
a reliable single access point to all the resources the user
is authorized to use. Condor-G [3] contains an implemen-
tation of such an agent. The functionality of Condor-G is
shown in Fig. 1. It uses the protocols defined by the Globus
Toolkit [4], a de facto standard for grid computing, to com-
municate with the grid sites.

B a t c h s y s t e m

User interface machine

User

Define

job

R e q u e s t

job

Gr id resources

storage system

Resource

broker

S i t e A

Job manager

Job managerS c h e d u l e r

S i t e N

Job manager

Job managerS c h e d u l e r

Grid
manager

Condor - G

Condor

Figure 1: Condor-G functionality. The batch scheduler cre-
ates a grid manager to handle jobs on remote resources.

Note that these figures use the following convention: tasks are in circles,

processes in boxes and groups in boxes with rounded corners.

The scheduler of the batch system responds to the re-
quest to run jobs on grid resources by creating a new grid
manager process to submit and manage those jobs. One grid
manager handles all jobs for a single user and terminates
once they are complete. All authentication requests are han-
dled by Condor-G via the Grid Security Infrastructure (GSI,
[5]), which allows for single sign-on based on a Public Key
Infrastructure (PKI). The grid manager submits the jobs to

a grid site using the Grid Resource Allocation and Manage-
ment (GRAM, [6]) protocol. On the grid sites, each received
job results in the creation of a job manager process. This
process handles the job life cycle at the grid site. It connects
back to the grid manager, with GSI mechanisms for authenti-
cation and retrieves the job’s executable and input files using
Global Access to Secondary Storage (GASS, [7]). The stan-
dard output and error of the jobs are streamed real-time via
the same route. The process submits the job to a scheduler
running on the grid site and keeps the grid manager up to
date about the job status. The grid manager in turn informs
the batch system on the user site to make sure the user gets
an accurate overview of the jobs on the remote resources.

The techniques described above allow for the construc-
tion, submission and monitoring of jobs on remote re-
sources. Condor-G provides fault tolerance that handles the
complications of a truly distributed environment. Still, it
does not provide a complete integration of the grid resources
with the batch system on the user site. Jobs submitted to var-
ious grid sites end up in different queues, often with differ-
ent types of scheduling policies and priority schemes. The
user does not know and does not want to know the details
of the resource allocation mechanisms for all these sites to
get information about the expected time the job will run.
An overview of allocated resources that can immediately be
used to run the jobs listed in a user queue is much more
convenient. The jobs in this queue are awaiting either the
allocation of new resources or one of the already allocated
resources to become available. This functionality is imple-
mented with a technique called ‘gliding-in’ [3], which is
shown in Fig. 2.

In the gliding-in scheme, Condor-G no longer submits
user jobs to the remote resources. Instead, the submitted
jobs contain the batch system processes themselves. The re-
quired software for these jobs is downloaded from a central
storage with a GSI enabled file transfer protocol (GSIFTP,
[8]). When the processes are running on the remote grid
resources, it will appear as if the batch system on the user
site has grown. Users can now submit their jobs to these
resources directly via their batch system, without the use of
grid mechanisms. In this sense, gliding-in creates an overlay
batch system: the acquired grid resources provide all of the
features of normal batch nodes.

As a positive side effect, this method disentangles the
stages of allocation and execution. The batch system can
guarantee optimal queuing times to its users by submitting
batch processes to all remote resources, annulling the ones
it does not use. This prevents a job from waiting at one re-
mote resource while another resource capable of serving the
job is available1. Batch processes on remote sites shut down
gracefully when they do not receive any jobs to execute af-
ter a (configurable) amount of time, thus guarding against

runaway processes. Resource allocation can further be op-
timized with the development of more intelligent resource
planning and scheduling agents, which are able to negotiate
with grid scheduling tools.

B a t c h s y s t e m

G r i d

manager

User interface machine

User

Define

job

R e q u e s t

job

Gr id resources

storage system

C e n t r a l s t o r a g e

Batch

scheduler

S i t e A

Job manager

Job manager
S c h e d u l e r

S i t e N

Job manager

Job managerS c h e d u l e r

R e s o u r c e

acquirer

Batch

resource

manager

storage system

Gr id access ib le

Figure 2: Gliding-in functionality. The remote resources be-
come an integral part of the pool, directly managed by the
batch system on the user site.

2.2 Dealing with network complexity

The effort to achieve this wide-spread coordination of com-
puters is hampered when clusters are on private networks.
Batch systems in general assume the availability of bidirec-
tional communication to the worker nodes. Although worker
nodes on grid sites often have outbound IP connectivity,
problems arise when the batch system on the user site tries
to initiate contact with the worker nodes on private networks
or behind firewalls. Private networks are however common
practice, since they provide easy network management and
address planning as well as a solution to the IPv4 address
shortage problem. Firewalls play important roles in protect-
ing networks and are ready to play an even more important
role as the security headquarters of integrated security sys-
tems.

For the batch system to work seamlessly across private
networks and over firewalls the symmetry in the peer-to-peer
connections needs to be recovered. The solution should be
scalable and not require any special privileges on the side of
the grid resources. Generic Connection Brokering (GCB)
[9] possesses these properties. An example of a system us-
ing GCB is shown in Fig. 3.

The system shown consists of one node in the public
and two in the private network that try to run applications
requiring bidirectional communication between them. The
applications are GCB-enabled on both the public and pri-
vate nodes, i.e. they are able to use GCB functionality to

1This can also be accomplished by directly submitting the user job to multiple sites. However, the separation of the allocation and execution stages
allow for a more opportunistic scheduling approach. It is not necessary to have the user job available when a request for resource allocation is submitted.

solve communication issues. Outbound IP connectivity of
the nodes on the private networks is crucial for this solu-
tion2. The nodes in the private network send a register re-
quest to the GCB server (solid lines). The server creates
proxy sockets of the same type as the client sockets, binds
them, makes them passive and returns the addresses to the
private nodes. From now on, the private nodes use these ad-
dresses as their network identity (i.e. whenever they need to
inform other processes of their address, they send the proxy
address instead of their real address). When the public node
wants to connect to the private node, it asks the GCB server
to broker the connection. The server decides, based on the
network situation of both nodes, who should actively con-
nect and arranges accordingly (dotted lines). If either can-
not connect to the other, because e.g. both are on private
networks, it lets both parties connect to the server and relays
the packets between them (dash dotted line).

Pub l i c n e t wo r k

P r iva te network

GCB laye r

Application

GCB laye r

Application

P r i v a t e n e two r k

GCB laye r

Application

Broker

GCB server

R e l a y

Connection reversed by broker

Figure 3: GCB functionality. Connections involving nodes on
private networks are rearranged when necessary.

Gliding-in and GCB form a powerful combination in the
area of grid computing. Together they are capable of extend-
ing the functionality of a batch system on the user site into
private networks of other domains without the need of ad-
ministrative privileges. GCB is implemented as a layer be-
tween the batch system software and its system calls. Since
the GCB layer provides the same interfaces and semantics
of socket calls, the batch system software can normally be
linked with GCB without modifications3.

The GCB layer checks every incoming message and de-
cides to either pass it to the batch system process, or handle it
appropriately if it is a GCB command. GCB can use both the
TCP and UDP protocols for communication. In our experi-
ence the end to end reliability of TCP makes this protocol
preferable over the UDP protocol in hostile environments.
Although the UDP protocol is in principle superior in per-
formance, it silently fails to pass the stringent requirements

of the active components in some private networks.
The GCB server is implemented as a process that can

run with standard user privileges. Since the server does
not assume the responsibility of initiating connections to the
clients, it can be placed anywhere on the public internet. It
maintains accurate information about the status of the clients
using the heartbeat messages they send periodically. The
server is the weakest point in the system described. It main-
tains the connections to all machines in the private networks,
and represents both a single point of failure and a security
concern.

GCB may be deployed to any grid site that allows only
outbound connections from the worker nodes without inter-
vention of network administrators. This stretches site secu-
rity policies, maybe even to an extent that allows for abuse.
Security however, should be provided in an orthogonal way
to connectivity, and developments are on their way to pro-
vide GCB with a strong security mechanism.

Resources managed by the GCB server can span mul-
tiple private networks. This means that there is a risk of
private IP address collisions, since this version of GCB uses
the standard TCP/IP addressing scheme. An extended ad-
dressing scheme is implemented in a new version of GCB
(extended or eGCB) to uniquely identify all machines.

The batch system on the user site was successfully ex-
tended across various administrative domains, private net-
works and firewalls with the techniques discussed in this sec-
tion. Although this allows for easy resource management, it
does not provide transparent access to files. For this an in-
terposition agent can be used, which allows modification of
the file I/O of any application, without modifying the appli-
cation itself.

2.3 Remote execution with interposition agents

An interposition agent is a piece of software that inserts itself
between two existing layers of software in order to modify
their discourse. By inserting an interposition agent rather
than modifying an existing piece of software, we may mea-
sure, debug, and enhance an application without requiring
intimate knowledge of its innards. An interposition agent
has many uses in a distributed system:

Seamless integration. The most common use of an in-
terposition agent is to connect an application to a new re-
source, such as a storage device, without requiring any spe-
cial changes or coding in the application. For example, an
interposition agent can allow an application to seamlessly
connect to a remote storage server. The application merely
perceives it to be an ordinary file system.

Improved reliability. In general, remote data services are
far less reliable than local file systems. Remote services

2This statement is not entirely correct. The nodes on the private networks need to be able to contact the GCB server and the GCB server needs to be
accessible via a public internet address. If the GCB server manages only one private network, it could be installed on the head node and the private nodes
would not need outbound IP connectivity. This construction would however require the ability to start a long-running process on the head node.

3Note that GCB is only linked to the batch system software, which does the resource management. The user application will run exactly as it is.

are prone to failed networks, power outages, expired cre-
dentials, and many other problems. An interposition agent
can attach an application to a service with improved reliabil-
ity. For example, it can emulate a reliable TCP connection
across network outages and address changes or add reliabil-
ity at the file system layer by detecting and repairing failed
I/O connections. When combined with generic connection
brokering as discussed in the previous section, it can even
provide bidirectional communication for peer-to-peer appli-
cations across private networks and firewalls.

Private name-spaces. Batch applications are frequently
hardwired to use certain file names for configuration files,
data libraries, and even ordinary inputs and outputs. An in-
terposition agent can be used to create a private name-space
for each instance of an application, thus allowing many to
run simultaneously while keeping their I/O activities sepa-
rate. For example, several instances of an application hard-
wired to write to ”output.txt” may be redirected to write to
”output.n.txt”, where n is the instance number.

Remote dynamic linking. Although dynamic linking of-
fers many technical advantages for programs that share code
or data, it presents a number of practical problems. It is
all too easy to migrate an application only to discover that
needed libraries are missing, or worse yet, that the avail-
able libraries are the wrong version. An interposition agent
can solve these problems by allowing an application to link
against libraries stored at a single, well-known server.

Profiling and debugging. The vast majority of applica-
tions are designed and tested on standalone machines. A
number of surprises occur when such applications are moved
into a distributed system. Both the absolute and relative cost
of I/O operations change, and techniques that were once ac-
ceptable (such as linear search) may become disastrously in-
efficient. By attaching an interposition agent to an applica-
tion, a user may easily generate a trace or summary of I/O
behavior and observe precisely what the application does.

Parrot is an interposition agent that provides the fea-
tures discussed above for standard Unix applications [10]. It
observes and potentially modifies the interaction between an
unmodified process and the operating system kernel using
the standard Linux ptrace debugging interface, which traps
all system calls of the process. When used in an unfriendly
distributed system, Parrot provides the illusion of a user’s
home environment, including files, user identities and more.
It can customize an application’s environment to create a
synthetic name-space formed from multiple remote services.
In addition, it is able to hide network outages, server crashes
and other failures that are endemic to distributed systems.

Although the notion of interposition agents is not new,
they have seen relatively little use in production systems.
This is due to a variety of technical and semantic difficulties
that arise in connecting real systems together. For example,
many different I/O protocols may be attached to an appli-

cation, but few provide the full range of POSIX semantics
expected by many applications. For this reason a dedicated
protocol was created, Chirp4, which provides the precise se-
mantics that applications expect. Each Chirp operation is
a remote procedure call from a client to a server. A Chirp
operation is initiated by a client, which sends a formatted
request. The server acts upon the request and sends a re-
sponse. It is assumed that Chirp is carried over a stream
protocol such as TCP. Authentication and authorization can
be done through a variety of methods. Most interesting for
the current setup is the GSI authentication as mentioned be-
fore, which allows for integration of the Chirp server with
the batch system using the existing infrastructure.

Parrot is an extension to an existing operating system;
it augments file-handling capabilities without affecting a
process’ ability to interact with other processes on the same
machine or over a network. Parrot is considerably simpler
than other tools like virtual operating systems such as User
Mode Linux and virtual machines such as VMWare, both
of which require the user to build and maintain virtual net-
works, large file system images, and all the elements of an
isolated operating system in miniature. Parrot consists of a
single executable measuring only 8.4 MB with all options
enabled, and as small as 1 MB in minimal configuration.

Figure 4 shows the control flow necessary to trap a sys-
tem call through the ptrace interface. Parrot registers its in-
terest in an application process with the operating system
kernel. At each attempt by the application to invoke a sys-
tem call, the host kernel notifies Parrot. Parrot may then
modify the application’s address space or registers, includ-
ing the system call and its arguments. Once satisfied, Parrot
instructs the host kernel to resume the system call. At com-
pletion, Parrot is given another opportunity to make changes
before passing control back to the kernel and the application.

4. resume enter

2. trap enter
syscall
5. exec

6. trap return

8. resume return

result
7. modify9. return

3. modify call

Host Kernel

Application

1. syscall

Parrot

Figure 4: Interpositioning via the debugger interface.

3 An example application
The Monte Carlo production system of the BaBar high-
energy physics experiment [11] in progress at the Stanford

4http://www.cse.nd.edu/~ccl/software/manuals/chirp.html

Linear Accelerator Center is called SP55. Although the ex-
act details of this application do not matter, it is interest-
ing to know how SP5 operates at an abstract level. First, it
loads the data that describe the configuration of the detec-
tor and the physics of particle generation. Once loaded, it
enters a compute-intensive phase where it generates an ar-
bitrary number of events that can each be summarized in
10-100 kilobytes. This means, in theory, SP5 has the right
structure for distributed computing. The initial data can sim-
ply be distributed to a number of processors, production can
be performed in parallel, and the produced events can be
returned to a central site. Once initialized, any processor
can produce an arbitrary number of events, so the number
of processors can be chosen to balance startup time against
desired throughput.

In practice, SP5 has a number of complexities that make
it difficult to deploy in a distributed system. A standard
file system contains the SP5 executable and scripts, sev-
eral dynamic libraries, the input configuration, and the out-
put events. The program is wrapped by a script that es-
tablishes environmental settings and verifies the integrity of
the files before invoking the program. It also makes use of
several dynamically-loaded libraries, particularly the Objec-
tivity database, which manages the configuration and event
data structures.

Objectivity is a decentralized, cooperative database built
on top of a standard file system. Consistency management,
access control, and crash recovery are performed coopera-
tively by clients rather than enforced by a server. A minimal
central server assists only with a locking protocol. To read
the configuration data or write events, the client library re-
quests a lock from the lock server, manipulates the file sys-
tem directly, and then releases the lock.

This structure is quite reasonable when viewed alone, but
is difficult to adapt to an existing distributed system. For
example, the file system activity of the Objectivity client li-
brary cannot be carried over a standard distributed file sys-
tem. The delayed-writeback semantics of NFS clients are
too weak for database structures, while the strict open-close
semantics of AFS would result in data loss on the append-
only transaction log. Objectivity does have the capability to
speak NFS directly to a server, bypassing the buffer cache,
but deploying this requires superuser privileges at both the
client and the server; an unlikely capability in a grid com-
puting environment. Instead, we use Parrot to make SP5
believe it is accessing Objectivity locally, while redirecting
the access across the network.

3.1 Deploying SP5 on a computational grid

Figure 5 shows how the pieces of the distributed environ-
ment fit together. The configuration data and output events
are stored in an Objectivity-managed file system on a well-

known central server. A central lock server process assists
with mutual exclusion. A number of worker nodes are used
to execute instances of SP5. Access to a number of worker
nodes at various institutions is obtained by way of Condor-G
and the Globus toolkit as discussed in section 2.1.

U s e r s i t eG r id r e s ou r c e s

Database &
Libraries

C e n t r a l s e r v e r

Job managerS c h e d u l e r

Batch
sys tem

GCB

Interposition
agent

F i le I /O
server

S P 5

Lock
server

Figure 5: Deploying SP5 and Parrot on a distributed system.
Communication between the batch system and the grid re-
sources is arranged with GCB. File I/O of the user application
is arranged with the interposition agent.

No special software is installed on any of the worker
nodes and no superuser access is available in these envi-
ronments, so Parrot needs to carry all of the SP5 file sys-
tem operations back to a Chirp server run with standard user
privileges deployed at the central server. Parrot makes the
remote file system appear local to SP5. This is comparable
to an NFS client that mounts its root file system from a re-
mote device: all executables, dynamic libraries, and other
program components are loaded from the central server via
the Chirp protocol. Parrot makes local copies of executa-
bles; this is a technical necessity, because Unix can only ex-
ecute a program identified by a local file name. All data files
are accessed remotely without caching, to avoid consistency
problems in the database.

In addition to the file system, a number of other small
settings were necessary to fully emulate the home environ-
ment. For example, the Objectivity libraries examine the
POSIX user identifier and host name in order to implement
access control on the database. Because worker machines
may not necessarily share a user database with the central
server, Parrot is instructed to trap these system calls and
change the results to match what would be seen at the central
server.

Aggressive firewalls posed a serious problem to the de-
ployment of this system. It is quite common for a comput-
ing cluster to be connected to the public Internet by way of a
firewall and network address translator (NAT). In the clusters
targeted by this application, the NAT permits cluster nodes
to initiate outgoing TCP connections to the public Internet,
but prohibits incoming connections. To translate external
addresses into internal addresses, the NAT must keep state
about every TCP connections that it carries.

The problem arises when a NAT must discard TCP con-
5http://www.slac.stanford.edu/BFROOT/www/Computing/Offline/Production/userguide/userguide.html.

nections that it perceives to be idle. Each connection con-
sumes some state in the firewall, so it cannot keep them for-
ever. The most aggressive NAT encountered discards TCP
connections that have been idle for only one minute. When
this happens, there is a double penalty: not only is the con-
nection lost, but the NAT does not even return an RST packet
indicating that the connection was lost. The result is that
both sides think the connection is present but lossy, and
retry up to their maximum timeouts, which can range from
minutes to hours.

This problem was deadly to SP5. Once it initialized,
the lock server connection was held open and idle, while
the Chirp connection was only used for the output of each
event, at intervals of slightly more than a minute. While
SP5 was processing the first event, the NAT would discard
the TCP connections. A short time later, the entire system
would hang while attempting to write out the first event.

Although it is simple to discount this firewall as an aber-
rant device, reconfiguring its timeout cannot be considered
a reasonable solution. For the same reasons software can-
not be installed at the worker node and superuser privileges
are not available, reconfiguring the network interior at will
is not an option. (In fact, it was later discovered that these
are the factory settings for the NAT in question. The idea
of negotiating with a network administrator every time this
model of NAT is encountered is not very tempting.)

One solution to this problem is to change the network
endpoints to generate enough traffic to keep the NAT state
alive. For example, the networking stack at the central server
can be modified to send TCP keepalives at the rate of several
per minute. This technique was applied in order to preserve
the connection between SP5 and the lock server. However,
it is unsatisfying because it requires administrator privileges
on at least one end and has a system wide effect, thus all
sockets are affected.

A more comprehensive solution is to make the network
protocol recoverable, so that the failure of the TCP connec-
tion becomes a harmless event. For example, Parrot was
modified so that a failed Chirp connection was recovered
by reconnecting and reopening the needed files. With this
recovery method, the Chirp connection was made fail-fast;
hence, any delay of greater than thirty seconds was assumed
to be a transient network failure and would result in discon-
nection and recovery. This solution is more robust than sim-

ply applying keepalives – it also tolerates the crash and re-
covery of the Chirp server – but could only be implemented
because the Chirp protocol was dedicated for this specific
implementation and thus could easily be modified.

The Chirp recovery method reveals an old problem in
the design of distributed file systems. Strict POSIX seman-
tics require that an application holds references directly to
files rather than names. That is, once an application opens
a file by name, it keeps access to that file even if the name
is deleted or renamed. Distributed file systems such as NFS
and AFS solve this problem by exposing inode numbers to
clients. When recovering from a disconnection, NFS and
AFS clients can be assured of access to the correct files by
referring to the inode numbers. Chirp cannot do this di-
rectly; the Chirp server is implemented on top of an ordi-
nary file system and thus can only open files by name. How-
ever, the Chirp protocol can verify that the binding between
names and inodes has not changed after a recovery by sim-
ply querying inode numbers with the stat operation. If they
have not changed, then recovery is successful. Otherwise,
recovery has failed, Parrot forces the application to fail im-
mediately, and the batch system becomes responsible for re-
starting it from the beginning.

3.2 Performance

After addressing the problem of recovery, issues of perfor-
mance are discussed. Table 1 shows the run-times of SP5,
gradually increasing the logical and physical distance be-
tween it and its data on the central server. As discussed ear-
lier, SP5 begins with an I/O-intensive startup phase, and then
settles into a CPU-intensive phase of configurable length.
As the distance increases, the I/O-intensive phase pays an
increasing price, but the CPU-intensive phase is relatively
stable.

The first line of Table 1 shows the performance of un-
modified SP5, running on the same machine as where the
data reside.The application is run in ‘validation mode’, pro-
ducing additional histograms to cross check the results. Fur-
thermore, it produces a full debugging output so that the cor-
rectness of the output can be verified. As a result the produc-
tion is approximately a factor of 5 slower than the standard
production on this machine. The average and standard devi-
ation of initialization times are shown along with the average

distance method protocol CPU time to initialize time per event
local OS files 1 GHz 446±46s 64s
local parrot files 1 GHz 668±26s 65s
local parrot chirp 1 GHz 777±48s 66s
LAN parrot NFS 1 GHz 4464±172s 113s
LAN parrot chirp 1 GHz 4505±155s 113s
wan parrot chirp 2.5 GHz 6275±330s 88s

Table 1: Performance of SP5 and Parrot deployed in a distributed system.

time to process an event. It initializes in 446 seconds and
then processes one event every 64 seconds. Each measure-
ment of the initialization time is the result of 10 trials. The
time to process one event is an average of 2000 events. A
small numbers of outliers beyond 5 σ were attributed to un-
related network traffic and discarded. Each successive row
adds one component in order to measure its contribution.
The second row adds Parrot, but without any remote I/O or
other features; SP5 just accesses local files through Parrot.
The third row adds Chirp, but without a network; SP5 ac-
cesses a Chirp server on the same machine using Parrot. As
can be expected, both Parrot and Chirp slow down initializa-
tion, but have little effect on event processing.

The fourth and fifth rows show the performance of
SP5 accessing its data over a local area network (latency
130± 10µs). In the fourth row, SP5 is using a kernel-level
NFS client to access Objectivity’s files, ignoring potential
consistency problems due to caching. In the fifth, SP5 is
using Parrot and Chirp to accomplish the same task safely
without a cache. Although initialization is an order of mag-
nitude slower than the unmodified case, the performance of
Chirp is comparable to NFS. The overhead is more a func-
tion of the network than of Parrot or Chirp.

The final row shows the performance of the complete
system as depicted in Figure 5. SP5 accesses its data over
a wide-area network (latency 654± 50µs) via the firewall
as discussed above. Notice that the performance numbers
are not directly comparable, as the CPU is about 2.5 times
as fast as the others. However, the same qualitative result
as the other lines may be seen: initialization is slow, but
event processing is reasonable. Note that the opportunity
to distribute jobs over many resources can decrease the turn
around time of the data processing by an order of magnitude
or more, even when one makes suboptimal use of remote
resources. Hence, an exact comparison between identical
machines is not really the issue for production software in a
grid environment.

Overall, the BaBar experiment must process billions of
events to complete the required simulations. In the worst
case of accessing data over a wide area network, the cost
of computing events equals the cost of initialization at only
70 events. Given that a typical instance of SP5 processes
10,000, the cost of remote execution, while significant, can
be amortized across a large run.

4 Conclusions
The batch system provides the user with a familiar interface
to distributed resources. The complexities that arise from re-
source management in a system spanning multiple adminis-
trative domains and private networks can effectively be hid-
den by Condor-G, the gliding-in technique and GCB. The
GCB server is the weakest point in the system described. It
maintains the connections to all machines in the private net-
works, and represents both a single point of failure and a
security concern. Developments are on their way to provide

GCB with a strong security mechanism and an extended ad-
dressing scheme to avoid IP address collisions between mul-
tiple private domains. Optimal queuing times can be guaran-
teed to the users by submitting batch processes to all remote
resources, annulling the ones which are not used. Resource
allocation can further be optimized with the development of
more intelligent resource planning and scheduling agents.

Interposition agents bridge the gap between applications
and systems when neither are available for modification. By
raising the level of abstraction on which an application exe-
cutes in a batch system, a transparent and reliable environ-
ment is provided, even in an unreliable distributed system.
Deploying a complex application into a distributed system
is quite feasible for an ordinary user with the tools presented
in this paper, as shown with the BaBar Monte Carlo produc-
tion system.

Acknowledgments

We thank Concezio Bozzi and the BaBar Monte Carlo
production team for their assistance with SP5 and the pro-
duction site. Furthermore, we acknowledge the valuable
help of David Groep and Jeff Templon during the deploy-
ment of our application on the NIKHEF EDG testbed.

References
[1] Gabrielle Allen et al., GridLab: Enabling Applications on the Grid,

Proceedings of Grid Computing, Springer, ISBN 3-540-00133-6,
2002, p. 39-45.

[2] Todd Tannenbaum, Derek Wright, Karen Miller, and Miron Livny,
Condor - A Distributed Job Scheduler, Beowulf Cluster Computing
with Linux, The MIT Press, ISBN 0-262-69274-0, 2002.

[3] J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke, Condor-
G: A Computation Management Agent for Multi-Institutional Grids,
Journal of Cluster Computing volume 5, 2002, pages 237-246.

[4] I. Foster and C. Kesselman, Globus: A Toolkit-Based Grid Archi-
tecture, The Grid: Blueprint for a new Computing Infrastructure,
Morgan Kaufmann, ISBN 1558604758, 1999, p. 259-278.

[5] I. Foster, C. Kesselman, G. Tsudik, S. Tuecke. A Security Architec-
ture for Computational Grids, ACM Conference on Computer and
Communications Security, 1998, p. 83-92.

[6] K. Czajkowski et al., A Resource Management Architecture for
Metacomputing Systems, Workshop on Job Scheduling Strategies
for Parallel Processing, 1998, p. 62-82.

[7] J. Bester et al., GASS: A Data Movement and Access Service for
Wide Area Computing Systems, Workshop on I/O in Parallel and
Distributed Systems, 1999.

[8] William Allcock et al., Protocols and Services for Distributed Data-
Intensive Science, Proceedings of ACAT, 2000, p. 161-163.

[9] S. Son and M. Livny, Recovering Internet Symmetry in Distributed
Computing, Proceedings of CCGrid, 2003.

[10] D. Thain, S. Klous, and M. Livny, Deploying Complex Applica-
tions in Unfriendly Systems with Parrot, Journal of Supercomputing,
2004.

[11] P.F. Harrison and H.R. Quinn, Physics at an Asymmetric B Factory,
The BaBar Physics Book, SLAC Report 504, 1998.

