
Thunderbolt: Exposure and Mitigation
CS838-1 - Fall 2013
Final Project Report

Saul St. John
University of Wisconsin - Madison

Abstract
The Thunderbolt interface, similarly to its quasi-

predecessor, FireWire, exposes to external peripherals
direct access to the system bus. What’s more, Thun-
derbolt exacerbates said previously existing vulnerabil-
ity by exposing additional platform features to connected
devices. In this paper, we begin by describing and
exploring these vulnerabilities. We then discuss mit-
igation tactics against these attacks, both well-known
and novel. Subsequently, we consider countermeasures
against these techniques to mitigate a Thunderbolt-borne
threat. Finally, we discuss the construction of a proto-
type of a device that appears to behave maliciously, and
show that no mitigation techniques suggested are suffi-
cient to prevent a multi-vector Thunderbolt-born attack
in the usual case.

1 Introduction

In 2011, Apple and Intel released the first commercially
available implementation of their new Thunderbolt (ne
Light Peak) peripheral device interface. Promoted as
”the most advanced I/O ever,” Thunderbolt ”supports
high-resolution displays and high-performance data de-
vices through a single, compact port.” It is able to ac-
complish this feat by virtue of its architectural construc-
tion: as a logical extension of the PCIe bus, Thunder-
bolt affords peripheral devices the same access to system
functionality that any internal PCIe expansion card might
consume.

One of the primary facilities offered by the PCIe bus
architecture is the ability for devices to directly trans-
act with system memory, bypassing the CPU, via Direct
Memory Access (DMA). Through this interface, devices
might compromise the integrity of a running system or
exfiltrate system data. As such, the Thunderbolt interface
exposes the system to infiltration by malicious individu-
als with physical access to the machine and in possession

of a specially-constructed, purpose specific malicious de-
vice.

The contributions of this paper are two-fold: first, we
demonstrate the practicality of this attack using an in-
expensive, commonly available Thunderbolt adapter and
widely-available software to construct a malicious device
capable of exploiting a system via the Thunderbolt in-
terface. Secondly, we demonstrate that commonly sug-
gested mitigation tactics are ineffective in the face of this
attack.

The next section describes the Thunderbolt architec-
ture in greater detail, with a focus on the implementation
that exists on Apple MacBook computers. The subse-
quent section discusses a prototype implementation of a
malicious Thunderbolt device, and several potential fu-
ture enhancements to effect persistence and stealth. Next,
mitigation tactics are presented and discussed. Finally,
those tactics are analyzed, and their effectiveness evalu-
ated.

2 Background

There are three key subsystems within a modern personal
computer that are responsible for the broad attack sur-
face exposed by the Thunderbolt interface. They are de-
scribed herein.

2.1 Thunderbolt Controller
Thunderbolt is, fundamentally, a hardware-agnostic se-
rial protocol for multiplexing multiple external signals.
It achieves hardware-agnosticism by means of requiring
active components in all interconnect cables. It thereby
abstracts itself from the need to define a physical-layer
signaling protocol by requiring all interconnect devices
– including simple patch cables – to provide the neces-
sary functionality in order transmit over a given medium.

Thunderbolt itself does not define the protocols which
it supports multiplexing over its own media– however,

1



at this time, the only known use-cases for Thunderbolt
is transmission of DisplayPort signals and extension of
the PCIe bus. As an extension of the PCIe bus, it acts
as a transparent bridge– to the PCIe Root Complex, a
Thunderbolt-attached device appears no differently than
any other PCIe device on a secondary bus. As such,
a Thunderbolt connected device can invoke all system
functionality ordinarily allowed to a PCIe bus-connected
device, such as participation in the system boot process,
peer-to-peer transactions over the PCI bus, and Direct
Memory Access.

2.2 Extensible Firmware Interface

The Extensible Firmware Interface (EFI) is the logical
successor to the traditional IBM PC architecture’s Ba-
sic Input/Output System (BIOS). Unlike BIOS, EFI was
designed from the ground-up to provide a modern run-
time environment with well-defined and standardized in-
terfaces to the system components which participate in
the boot process.

2.3 I/O Memory Management Unit

An I/O Memory Management Unit (IOMMU) is a de-
vice akin to a traditional MMU such as might live in the
North Bridge of a traditional Intel x86 architecture sys-
tem. Rather than translating virtual addresses to phys-
ical addresses, however, it offers a CPU-programmable
mechanism to facilitate the translation of bus addresses
to physical addresses. On the Intel architecture, where
supported, IOMMU functionality is built into the system
Platform Controller Hub, and branded “VT-d.”

In the Intel architecture, VT-d is positioned as a fea-
ture for accelerating the I/O performance of hypervisor-
hosted virtual machines, as it allows guest virtual ma-
chines to directly participate in DMA with host devices–
the IOMMU, in this case, is programmed so as to trans-
late the addresses of guest-bound DMA to host-physical
addresses. However, it has often been suggested for use
in providing security to systems that expose interfaces
allowing DMA through external connectors (such as all
Intel-architecture Apple systems going back at least a
decade.)

3 Exposure

The Thunderbolt interface, by virtue of its ability to cou-
ple external devices so closely to the system bus, exposes
the system to a pair of attacks, described herein, each of
which can result in complete system compromise.

3.1 DMA attack

Direct Memory Access is a feature of the PCI bus that
was introduced to lessen the involvement of the sys-
tem CPU in I/O operations over the system bus. Prior
to DMA, the process for transmitting data over the bus
required the CPU to chunk data to be transmitted into
blocks acceptable for transmission over the bus and for
receipt by the device, and then send each such chunk in-
dividually. On the reverse path, the system must period-
ically poll the device for fresh data, and then retrieve it
similarly.

On a system supporting DMA, devices on the PCIe
bus can be flagged as ’Bus Masters.’ A so-flagged de-
vice is allowed to “drive” the system bus– to directly
issue read and write commands to system memory, un-
solicited. The intention is that the system notifies the
device of the memory address where it would like data
to be written to or transmitted from, and the device be-
comes responsible for satisfying the entirety of the re-
quest. However, a malicious device need not so-operate.

DMA attacks against Apple systems are not unique to
those systems with Thunderbolt interfaces; the FireWire
interface previously used was also vulnerable to such an
attack. As was shown in previous work, such as Incep-
tion [1], this sort of attack can fully compromise a run-
ning system and exfiltrate arbitrary data.

3.2 Option ROM attack

In order to allow devices to participate in the system boot
process, the PCI specification defines a mechanism by
which a device may expose an ’Option ROM’– a memory
device which may extend the functionality of the system
firmware so as to initialize itself, and provide services to
the platform firmware. Under BIOS systems, this sort of
facility was utilized to allow add-on graphic devices to
display messages from the system during initialization,
and to expose network devices’ ability to provide a sys-
tem boot image, such as by PXE.

Under EFI, the Option ROM interface has become
much more general. All devices on the PCIe bus may
expose an Option ROM, and said ROM may contain arbi-
trary data. If such data is an EFI driver image appropriate
for the execution platform, it is loaded into memory and
executed during the EFI boot process’s DXE (Driver eX-
ecution Environment) phase. As an EFI driver image dif-
fers from an EFI executable image– such as an operating
system bootloader– only by a typecode in the image’s PE
header, an EFI driver, when initialized, can perform any
of the same operations an OS bootloader or a platform
driver can. In other words, it executes in an unrestricted
environment with full access to system components.

As a result, an Option ROM can be used as the

2



launching-point for several types of attack.

3.2.1 SMM attack

On Intel-architecture systems, the System Management
Mode (SMM) is a processor state where operating sys-
tem and userland execution is suspended, and platform-
specific code executes to effect platform-specific ends
(such as power management, its original designed use-
case.). The code executed in SMM is hidden from in-
spection by the operating system by virtue of being lo-
cated at memory-addresses traditionally reserved for the
VGA graphics aperture. As this code is “invisible” from
the perspective of an initialized system, it is difficult
to validate or check for malware. Code running in the
SMM, however, has full access to system memory.

Prior to system initialization, though, the SMM mem-
ory window is made available for write access to all ap-
plications at a different memory address. It is therefore
possible for any code that executes prior to operating
system initialization to alter the SMM executable code,
thereby providing a transparent mechanism for achiev-
ing runtime persistence transparent to operating system
security mechanisms. Such an attack has been demon-
strated previously, as in [7].

What’s more, the EFI provides a standardized mech-
anism for runtime drivers to integrate themselves into
the SMM code, and register for callbacks upon receipt
of certain platform-level events, such as system manage-
ment interrupts. It is therefore possible to extend the
SMM functionality, rather than replacing or hot-patching
it, as was required under legacy systems. We are unaware
of any published EFI-specific SMM attacks at this time.

3.2.2 ACPI attack

In order to provide an interface power-management that
is more descriptive and less divorced from the operat-
ing system than SMM, the Advanced Configuration and
Platform Interface was developed and standardized. The
ACPI allows device manufacturers to describe the con-
struction and functionality of the platform to the operat-
ing system in the form of extensible “tables” with a stan-
dardized interface. Previous work has shown that these
tables can provide a mechanism for malicious pre-boot
software to integrate itself into the execution environ-
ment of a system post-boot [4]. Similar to as in the SMM
attack described previously, the EFI offers a standardized
interface to append, replace, and destroy tables in the
ACPI to executing images, thereby substantially easing
the implementation-burden of ACPI-borne malware. We
are unaware of any published EFI-specific ACPI attacks
at this time.

3.2.3 EFI runtime services table poisoning

The EFI provides a rich set of functionality to images
executing in the pre-boot environment, called the Boot
Services. Subsequent to system boot, however, those ser-
vices are no longer available. Instead, the EFI exposes a
much more limited set of services to an executing op-
erating system, known as the Runtime Services Table.
This table contains pointers to firmware-provided exe-
cutable code, located in memory and exposing a stan-
dardized call-specification, which the operating system
may call to invoke platform services. This interface al-
lows the operating system to, for example, access plat-
form NVRAM; however, it does not offer the rich set of
functionality available to boot services, such as memory
allocation (as, subsequent to boot, the responsibility for
memory management belongs to the operating system,
not the EFI firmware.)

However, the Runtime Services are also exposed to
pre-boot applications and drivers, as is a mechanism to
register for an callback function to be executed imme-
diately prior to the system entering the booted state. A
malicious application or driver might use said event as an
opportunity to replace functionality within the Runtime
Services table, and thereby hijack control-flow from the
system when platform services are invoked. We are un-
aware of any published such attacks.

3.2.4 Bootloader compromise

Rather than compromise the Runtime Services table, a
malicious application or driver might simply wait for the
boot services terminating event, and compromise the op-
erating system bootloader, which will have been by that
point loaded into memory. This sort of attack would be
much more specific to an individual operating system
and version, but could potentially offer a greater likeli-
hood of success than those described previously. We are
unaware of any published such attacks.

3.3 Persistence

Finally, we note that, while these techniques can be lever-
aged to achieve control over a running system, they do
not offer any means by which such control can be re-
tained subsequent to device removal and system reset.
We describe three such mechanisms herein.

3.3.1 Capsule Update

The EFI provides a standardized mechanism by which it
may, itself, be updated to newer versions. The process,
effectively, operates as follows:

3



1. Booted system loads update image (essentially, a
filesystem containing an update payload) into mem-
ory.

2. System stores memory address of update into
NVRAM.

3. System initiates reset that does not wipe physical
memory.

4. EFI firmware retrieves address of update from
NVRAM, mounts it, performs system-dependent
authentication, and executes payload.

While the system-dependent authentication might
conceivably present an impediment from abusing the
Capsule Update EFI facility to achieve persistence, pre-
vious work has shown the update process, itself, to be
vulnerable to exploitation. As a result, software might
achieve persistence by installing itself directly into the
system ROM. [5] [8]

3.3.2 PCH flash

In addition to the Capsule Update functionality, sys-
tem firmware may be directly altered by software uti-
lizing the interface provided by the system’s Platform
Controller Hub (on Intel-architecture systems) to flash
the system ROM. Such functionality is already available
in existent software packages such as the open-source
“flashrom” package (part of the “coreboot” suite.) The
implementation details are omitted for brevity, and the
interested reader is instructed to consult the source code
for “flashrom” for details.

3.3.3 Onboard Option ROMs

Some systems feature integrated devices which contain
a discrete ROM external to the system firmware. This
tends to be a result of the integration of previously-
external peripherals into the system’s core architecture.
One such example is the Broadcom BCM57765 Eth-
ernet controller embedded in the system board of Ap-
ple MacBook laptops that feature an integrated Ethernet
port. As these devices operate identically to their non-
integrated predecessors, a malicious software package
might achieve persistence within a system by re-locating
or copying its payload from the external device into an
onboard, writable Option ROM.

4 Mitigation

A number of suggestions have been offered by the com-
munity to the end of protecting systems against these
sorts of attack. We discuss them herein, beginning with

defenses aimed at attacks against previous, similar ex-
posures, and concluding with novel defenses and those
unique to the Thunderbolt architecture.

4.1 Disable Option ROM posting

An oft-suggested defense against malicious Option ROM
code is to simply fail to execute code from Option ROMs.
While effective, this suggestion substantially impedes
proper system behavior. For example, on a system lack-
ing a physical Ethernet adapter, the drivers required to
operate such a device might not be present in the sys-
tem firmware. However, boot-time functionality, such
as PXE, might require the availability of said drivers.
If such a driver is only available on the device Option
ROM (which is likely, as system manufacturers are un-
likely to acquiesce to the inclusion of all possible device
drivers in system ROM), failure to load drivers from op-
tion ROM would present a significant functional regres-
sion. As such, we reject this option as unfeasible.

4.2 Disable DMA access protocol

Under previous generation systems featuring the
FireWire interface, direct memory access was exposed
via a sub-protocol known as the Serial Bus Protocol-2.
It has been suggested and recommended by some man-
ufacturers that security conscious system administrators
might disable this protocol so as to prevent DMA attacks,
such as those implemented in Inception.

This option is inapplicable to Thunderbolt, however,
as the DMA interface is not exposed through a purpose-
specific sub-protocol of the connection, but is a direct
feature of the bus protocol itself.

4.3 Disable Bus-Mastering on PCI devices

Similar to the Option ROM attack mitigation technique
discussed earlier, it is often suggested that devices sim-
ply not be enabled for Bus Mastering– and, therefore,
prevented from initiating DMA transactions. While this
suggestion appears plausible, we deem it ultimately un-
workable as a result of two complications.

Firstly, during the initialization of many systems, de-
vices that can be enabled for Bus Mastering, are. This
behavior has been observed on Apple laptops, and is
thought to be common among modern systems. As a
result, it is insufficient for an operating system to simply
fail to enable bus mastering, as devices may have already
been configured to enable such memory access prior to
operating system execution. What’s more, even were
an operating system to attempt to disable bus master-
ing, there is nothing preventing a malicious device from

4



compromising the host system in the interim period be-
tween platform enabling of bus mastering, and the op-
erating system disabling of same. As such, this sugges-
tion would require firmware level modifications, in addi-
tion to alteration of the design of operating system PCI
drivers.

More severe, however, is the performance implication
of disallowing DMA from peripheral devices. Lacking
DMA, the only mechanism available to drivers to trans-
act I/O to and from devices is polling, as discussed previ-
ously, which introduces a significant performance degra-
dation in I/O heavy workloads. As a result, we dismiss
this mitigation tactic as impractical.

4.4 Epoxy

Perhaps the most straightforward mitigation suggestion
presented herein, the traditional (and, oftentimes, face-
tious,) suggestion for a complete defense against attacks
borne by external peripherals is to physically prevent
their access to the system by filling the involved con-
nectors with epoxy, which hardens to prevent device
connection. While we note that this is the only fully-
effective mitigation technique we can offer, we also re-
ject it as having an unacceptably detrimental effect on
system functionality.

4.5 Secure Boot

In theory, Secure Boot would be able to prevent an Op-
tion ROM attack by requiring valid and trusted signa-
tures on all loaded drivers, including those loaded from
Option ROMs. However, the PKI management burden
of actually implementing such a solution (where com-
petitive vendors can all be authenticated, but malicious
code cannot) appears nigh-on intractable. What’s more,
we believe this technique likely to unacceptably impinge
upon end-users’ freedom, and therefore dismiss it as a
“cure worse than the disease.”

4.6 IOMMU

In the realm of Thunderbolt-specific defenses against
DMA attacks, the most often suggested defense is the
employ of an IOMMU device. The effectiveness of this
defense is evaluated herein.

4.6.1 Practicality

Unfortunately, IOMMUs are not available in every sys-
tem; they are marketed as a value-added feature specif-
ically targeting virtualized server workloads. As a re-
sult, they tend to be more rare among laptop systems

than among desktops; in the specific case of Apple lap-
tops, they only became available as of the refresh that im-
plemented Haswell-architecture chipsets in Apple note-
books (in 2013.) Hence, there are at least two years
of products in circulation featuring a Thunderbolt con-
nector, but no IOMMU. What’s more, we note that
many vendors release devices that, in fact do feature an
IOMMU, but where it is disabled in firmware or other-
wise broken. As an IOMMU is not a device that can be
installed in a system as an aftermarket add-on, we note
that this technique cannot provide protection to the vast
majority of Thunderbolt-capable devices already in-use.

However, on systems which do feature a working
IOMMU, this technique does appear to provide protec-
tion against simple DMA attacks effectively. When en-
abled, an IOMMU device provides address translation
for all devices on the bus. It is therefor required that
all device drivers that induce a device to perform DMA
populate the IOMMU translation buffer with mappings
for the memory that device will access. As a device per-
forming a DMA attack will not have a driver already ex-
ecuting in the system, the IOMMU will not have a trans-
lation entry for the addresses being written or read, so
such an attack results in a page trapped by the operating
system, rather than in system compromise.

4.6.2 Vulnerabilities

However, the use of an IOMMU for protection against
malicious devices can be subverted by a pair of mecha-
nisms, described herein.

Peer-to-peer transactions Within an IOMMU, the
mappings maintained are each specific to a particular
bus-slot. As such, a transaction to a given bus address
issued by one device may not result in access to the same
physical address as another device might, given the same
bus address. As such, a device without any installed
mappings in the IOMMU might still transact with sys-
tem memory by inducing another device on the bus– one
with valid mappings installed– to issue transactions on
its behalf. We also note that the PCI specification explic-
itly allows devices to communicate with each other on a
peer-to-peer basis, and that such communications are not
intermediated necessarily by the IOMMU. We leave the
exploration of this vulnerability to future work.

DMAR tables Many legacy system devices, including
some which continue to be integrated by system manu-
facturers, expect to be able to read and write arbitrarily
to system memory. One such example is a VGA adapter,
which expects to be able to read from the VGA frame-
buffer in the DOS high memory area at-will. Other de-

5



vices, such as the LPC bus interface, have similar expec-
tations.

When an IOMMU device is enabled, these expecta-
tions will, by default, not be met, as there is not neces-
sarily a driver available to inform the IOMMU of these
devices’ memory needs. As a result, the ACPI spec-
ification was updated to provide an interface for plat-
form designers to inform the operating system of the
memory-mapping needs of the various system bus de-
vices, known as the Reserved Memory Region Request
(RMRR). The RMRR is a subtable of the DMA Remap-
ping table, which describe the location of the devices in
the system that need particular IOMMU mappings set-up
should the IOMMU be enabled. The operating system is
expected to parse this table and so-populate the IOMMU
translation buffer prior to enabling the IOMMU for inter-
position on bus address translation.

As noted previously, the EFI provides an interface for
the pre-boot modification of ACPI tables, and a mecha-
nism for the execution of code stored on device Option
ROMs. It follows, therefore, that a device option ROM
could, if present during the DXE load phase of the EFI
boot process, install a memory-mapping request into the
DMAR for a one-to-one translation of all or some subset
of potential bus addresses. Such a request would result
in the operating system installing mappings for the de-
vice allowing complete memory access, thus obviating
the protection offered by the IOMMU.

We describe the implementation of such an Option
ROM in the subsequent section, and consider such a
combination Option ROM and DMA attack to effectively
compromise the attack-mitigation potential offered by
the use of an IOMMU.

4.7 Inverse virtual devices

Prior to the implementation of PCI passthrough within
modern hypervisors, access to devices was interposed
upon by an emulator, which appeared to be a physical
device to the guest, but actually sanitized and validated
commands being sent to the physical hardware. Such a
virtual device, originally, was driven by a emulation pro-
cess executing in the hypervisor’s control domain; how-
ever, under the Xen architecture, “dom0 disaggregation”
implanted the functionality required to execute these em-
ulated processes in their own “stub domains.”

We suggest it possible that a system might be con-
structed that functions somewhat as the inverse of the
previously described architecture. Rather than expos-
ing bus-connected devices to the host system, they could
each be passed-through to device-specific stub domains,
each with their own carefully controlled “physical” ad-
dress space. The functionality implemented by such a
device could be exposed to the host system through an

interface similar to that used to expose devices to guests.
This would provide an effective check against DMA at-
tacks on host memory, because the “host” from the per-
spective of the device is an isolated virtual machine.

There are a number of significant hurdles that must be
addressed before such a system could be feasible. For
example, functionality would need to be implemented in
order to support zero-copy I/O to the host through a guest
(where it would be sanitized.) What’s more, it’s unclear
from existing specifications how a system should react to
an RMRR request for a device being passed through to
a guest. We leave a full exploration of the challenges of
this approach, and a more detailed analysis of it’s feasi-
bility, to future work.

5 Implementation

An Apple Thunderbolt-to-Gigabit-Ethernet adapter was
obtained and utilized to construct a proof-of-concept of
some of the attacks and mitigation countermeasures de-
scribed in this paper. Two distinct binary images were
constructed to that end.

5.1 DMA attack
Within the Thunderbolt-to-Gigabit Ethernet adapter ex-
ists a Broadcom BCM57762 network interface, which
is composed of a number of sub-modules. One such
sub-module is the Rx CPU, a MIPS-architecture proces-
sor that exists to implement functionality such as system
management interfaces (IPMI, ASF, etc), and Ethernet,
IP, or TCP segmentation and checksum offloading.

A small program, consisting of about 100 lines of
MIPS assembly, was written to attempt to corrupt mem-
ory in the lowest 64k of the physical address space
(which tends to be unused in modern systems.) This code
was compiled using the GCC toolchain, and flashed into
the device using the Broadcom-released “b57udiag” ap-
plication. When the system IOMMU was enabled this
device was not able to corrupt system memory; we thus
deem the use of an IOMMU sufficient to prevent a simple
DMA attack.

5.2 Option ROM attack
An EFI DXE runtime driver was written, consisting of
about 3000 lines of C code. It was compiled with GCC,
and built against the open-source TianoCore/EDK2
toolkit. The resultant EFI image was packaged as an
Option ROM using using commonly available tools, and
flashed onto the test device using the Linux tool “eth-
tool.”

For demonstration only, this code hijacks control flow
from the system twice, once when boot services are ex-

6



ited, and once when the system is about to power off, and
forces the display of a notification image on the primary
console for five seconds, during which time the system
is otherwise unresponsive. Subsequently, control is re-
turned to the system.

The driver also modifies the ACPI tables to request a
linear mapping for itself over the lowest 16 megabytes
of memory. When the IOMMU is enabled, the operating
system tested (Linux 3.12) did install such a mapping
into the IOMMU.

We therefore conclude that a DMA attack in concert
with an Option ROM attack can successfully foil the pro-
tections offered by an IOMMU, provided the devices is
connected to the system during boot. We also note that,
given the close physical proximity of the power connec-
tor and the Thunderbolt connector in many systems, it is
unlikely that an individual would be able to connect the
device physically, but unable to induce a system reboot.

6 Conclusion

In this study, we explored a number of vulnerabilities ex-
posed by the presence of a Thunderbolt interface within
a system, including well-known attacks such as Option
ROM and DMA attacks, and novel attacks, such as ma-
licious peer-to-peer bus traffic. We further analyzed the
various mitigation techniques that have been proposed,
and explored their strengths and drawbacks. We then
described the construction of a device implementing a
representative subset of that which would be needed to
construct a device-borne rootkit, and tested whether the
mitigation tactics that have been suggested are sufficient
to fully protect a system against malicious Thunderbolt
devices. Unfortunately, complete protection does not ap-
pear to be feasible against a malicious user with unfet-
tered physical access to the machine for a period of time
long enough to induce a reboot, so we conclude by of-
fering the following admonishment to users unwilling to
epoxy their system’s external ports: practice good Thun-
derbolt hygeine.

References
[1] Carsten Maartmann-Moe. Inception. http://www.

breaknenter.org/projects/inception, 2011–2013.

[2] Carsten Maartmann-Moe. Adventures with Daisy in
Thunderbolt-DMA-land: Hacking Macs through the Thun-
derbolt interface. http://www.breaknenter.org/2012/02/
adventures-with-daisy-in-thunderbolt-dma-land-hacking-macs-through-the-thunderbolt-interface/,
2012.

[3] Fernand Lone Sang, Vincent Nicomette and Yves Deswarte.
I/O Attacks in Intel-PC Architectures and Countermeasures.
http://www.syssec-project.eu/m/page-media/23/

syssec2011-s1.4-sang.pdf, 2011.

[4] Heasman, J. Implementing and Detecting an ACPI BIOS rootkit.
In Black Hat Europe (2006).

[5] K, L. DE MYSTERIIS DOM JOBSIVS: Mac EFI Rootkits. In
Black Hat US (2012).

[6] Sevinsky, R. Funderbolt: Adventures in Thunderbolt DMA At-
tacks. In Black Hat USA (2013).

[7] Shawn Embleton, S. S., and Zou, C. SMM Rootkits: A New Breed
of OS Independent Malware. In SecureComm 2008 (2008).

[8] Wojtczuk, R., and Tereshkin, A. Attacking Intel BIOS. In Black
Hat USA (2009).

7


