
1 Linear model formulas

In R linear models are specified using a model formula, which is an expression that contains a tilde (the
∼ character). The response is on the left-hand side of the tilde, typically as the name of a variable,
e.g.˜optden, but it can also be a function of a variable, e.g.˜log(BrainWt).

The right-hand side of the formula is composed of model terms separated by plus signs. In the formulas
below we write the response as y, continuous covariates as x, z, u, . . . and categorical covariates as f

and g. Note that the categorical covariates are assumed to be stored as factors (which includes ordered
factors).

Some of the formulas for typical models are:

Simple linear regression The formula

y ~ x

denotes the simple linear regression model

yi = β0 + β1xi + εi, i = 1, . . . , n

In the formula shown above, the intercept term is implicit. If you prefer to make it explicit you can
write the formula as

y ~ 1 + x

Regression through the origin If you do not want the intercept term in the model, you must suppress
it using the formula

y ~ 0 + x

or, alternatively,

y ~ x - 1

The model specified in this way can be written as

yi = βxi + εi, i = 1, . . . , n

Notice that you can remove terms, even the implicit intercept, with a negative sign.

Multiple linear regression Multiple covariates can be listed on the right hand side, as in

y ~ 1 + x + z + u

corresponding to the model

yi = β0 + β1xi + β2zi + β3ui + εi, i = 1, . . . , n
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Polynomial regression To include polynomial terms in the model you must protect the circumflex
operator by surrounding the term with I(), which is the identity operator. It implies that the
expression inside is to be taken literally in terms of the arithmetic operators, not as the formula
language operators. The model

yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi, i = 1, . . . , n

is written

y ~ x + I(x^2) + I(x^3)

Another specification for a polynomial regression model uses the poly() function which generates
orthogonal polynomial terms. The fitted responses will be the same from the model shown above
and from

y ~ poly(x, 3)

but the coefficients will be different because they are defined with respect to the orthogonal poly-
nomials. These have some advantages if you are doing the calculations by hand but in practice you
don’t expect to be doing so.

One categorical covariate The model described as a one-way analysis of variance for the levels of
factor, f, corresponds to the formula

y ~ f

Often we use the function aov() instead of lm() to fit such models. aov() is the same as lm() except
that it puts an extra tag on the fitted model that designates it as only having categorical covariates.
This changes, for example, the summary() method, which produces an analysis of variance table
instead of a summary of the estimated coefficients. The model that is fit is sometimes written as

yij = µ+ αi + εij , i = 1, . . . , I j = 1, . . . , ni

although it is not fit in that form.

Two categorical covariates, additive The formula for an additive two-factor analysis of variance
model,

yijk = µ+ αi + βj + εijk, i = 1, . . . , I j = 1, . . . , J k = 1, . . . , nij ,

is

y ~ f + g

This produces a two-factor analysis of variance table. In the balanced case the analysis of variance
table for this model is equivalent to that for the model

y ~ g + f
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in the sense that, although the rows of the table will be in a different order, they are otherwise
the same. For unbalanced data the order of the factors is important. The sums of squares in the
table are sequential sums of squares corresponding to the contribution of the first factor, given the
intercept, then the contribution of the second factor, given the first factor and the intercept, and so
on. In particular, blocking factors, which represent uncontrolable sources of variability, should be
listed before experimental factors.

Two categorical covariates, allowing for interactions If the data include replicate observations (more
than one observation at the same combination of covariate values) we can fit and analyze a model
with interaction terms with a formula like

y ~ f + g + f:g

where an expression like f:g is a two-factor interaction. Similar expressions are used for higher-order
interactions. This model can also be expressed as

y ~ f * g

In general the asterisk operator, (*), generates the main effects plus interactions. A three-factor
model with all the main effects, two-factor interactions and the three-factor interaction can be
written as

y ~ f * g * h

Combination of continuous and categorical covariates What is sometimes called an analysis of
covariance model incorporates both categorical and numeric covariates. If there is only one numeric
covariate, x, then the model can be described in terms of the lines formed by the fitted values on the
y versus x plot. The most common models are the parallel lines (different intercepts, same slope)
generated by

y ~ f + x

and the model in which slopes and intercepts both vary according to the levels of f

y ~ f * x

which is equivalent to

y ~ f + x + f:x

Occasionally we incorporate an interaction term without a main-effect for f.

y ~ x + f:x

I call this the “zero-dose” model because it is used in the case that x represents something like a
dose and the levels of f corresponds to different treatments. We don’t have a main effect for f in
such a model because a zero dose of treatment 1 is the same as a zero dose of treatment 2. Thus
the lines for the different levels of the factors should coincide at x=0.

3



Carbohydrate amount (ml)

O
pt

ic
al

 d
en

si
ty

0.1

0.2

0.3

0.4

0.5

0.6

0.7

●

●

●

●

●

●

0.2 0.4 0.6 0.8

Figure 1: Observations of optical density versus carbohydrate amount from the calibration of a Formalde-
hyde assay.

2 Examples

The datasets package contains several sample datasets that have been used in different texts. By default,
this package is attached in an R session.

Simple linear regression The Formaldehyde data are a simple example from a calibration study
consisting of 6 observations of the carbohydrate content (ml.) (variable carb) and the corresponding
optical density (variable optden). Figure˜1 is a data plot with the fitted simple linear regression line.
This model is fit as

> summary(lm1 <- lm(optden ~ 1 + carb, Formaldehyde))

Call:

lm(formula = optden ~ 1 + carb, data = Formaldehyde)

Residuals:

1 2 3 4 5 6

-0.006714 0.001029 0.002771 0.007143 0.007514 -0.011743

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) 0.005086 0.007834 0.649 0.552

carb 0.876286 0.013535 64.744 3.41e-07

Residual standard error: 0.008649 on 4 degrees of freedom

Multiple R-squared: 0.999, Adjusted R-squared: 0.9988

F-statistic: 4192 on 1 and 4 DF, p-value: 3.409e-07

(In what follows we will often skip the full summary output and concentrate on the coefficients table,
produced by coef(summary()), or the analysis of variance table, produced by anova().)

Regression through the origin To constrain the line to pass through the origin (that is, to suppress
the (Intercept) term) we fit the model as

> coef(summary(lm1a <- lm(optden ~ 0 + carb, Formaldehyde)))

Estimate Std. Error t value Pr(>|t|)

carb 0.8841294 0.005736558 154.1219 2.181654e-10

A comparative analysis of variance of these two models

> anova(lm1a,lm1)

Analysis of Variance Table

Model 1: optden ~ 0 + carb

Model 2: optden ~ 1 + carb

Res.Df RSS Df Sum of Sq F Pr(>F)

1 5 0.00033073

2 4 0.00029920 1 3.1526e-05 0.4215 0.5516

produces the same p-value as the t-test on the intercept coefficient in model lm1, which is as it should be,
because these are two versions of the same test.

Polynomial regression Alternatively, we could fit optden as a quadratic function of carb using

> coef(summary(lm1b <- lm(optden ~ 1 + carb + I(carb^2), Formaldehyde)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0116827 0.0060015 -1.9466 0.14675

carb 0.9711234 0.0267825 36.2596 4.613e-05

I(carb^2) -0.0962121 0.0263094 -3.6569 0.03532

Notice that the quadratic term is significant at the 5% level and generally we would retain it in the model.
The reason we don’t see much curvature in the data plot (Fig.˜1) is because there is such a strong linear
trend that it masks any nonlinear behaviour.

An alternative specification is
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Figure 2: Scatterplot of the volume of usable lumber versus the girth of the tree for 31 black cherry trees.
The left panel is on the original scale. The right panel is on the log-log scale.

> coef(summary(lm1c <- lm(optden ~ poly(carb, 2), Formaldehyde)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.4578333 0.0017452 262.3429 1.221e-07

poly(carb, 2)1 0.5599550 0.0042748 130.9904 9.810e-07

poly(carb, 2)2 -0.0156326 0.0042748 -3.6569 0.03532

Multiple linear regression The trees data are measurements of the volume of usable lumber (variable
Volume) from a sample of 31 black cherry trees. Covariates are a measurement of the girth (Girth), which
is comparatively easy to measure (you just walk up to the tree and loop a tape measure around it),
and the height (Height), which is somewhat more difficult to measure. (There is some confusion in the
description of the data regarding whether the girth has been converted to an equivalent diameter - we’ll
assume it is the girth.) If we consider the tree to have the shape of as a cylinder or a cone we would
expect that the volume would be related to the square of the girth times the height. In Fig.˜2 we show the
volume versus the girth on the original scale and on a log-log scale. There is not a tremendous difference
in the patterns but careful examination shows better linear behavior in the log-log scale.

Our initial model is

> coef(summary(lm2 <- lm(log(Volume) ~ log(Girth), trees)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.353325 0.230663 -10.202 4.18e-11

log(Girth) 2.199970 0.089835 24.489 < 2.2e-16
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To fit a model corresponding to a conical or cylindrical shape we add a term in log(Height) (recall that
we are on the log-log scale)

> coef(summary(lm2a <- lm(log(Volume) ~ log(Girth) + log(Height), trees)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -6.631617 0.799790 -8.2917 5.057e-09

log(Girth) 1.982650 0.075011 26.4316 < 2.2e-16

log(Height) 1.117123 0.204437 5.4644 7.805e-06

Testing specific combinations of parameters At this point we may want to check if a version of
the formula for the volume of a cylinder or of a cone, both of which have the form

V = k d2h

where k is a constant, d is the diameter (or, equivalently, the girth or circumference at the base) and h
is the height. Such an expression would correspond to a value of 2 for the log(Girth) coefficient and 1
for the log(Height) term. The log(Height) term is highly significant and the coefficients of log(Girth)

and log(Height) are reasonably close to 2 and 1. In particular, confidence intervals on these coefficients
include 2 and 1

> confint(lm2a)

2.5 % 97.5 %

(Intercept) -8.269912 -4.993322

log(Girth) 1.828998 2.136302

log(Height) 0.698353 1.535894

The confidence intervals do not, by themselves, answer the question of whether a model of the form

log(Volumei) = β0 + 2 log(Girthi) + log(Heighti) + εi, i = 1, . . . , 31

is a reasonable fit. To fit this model we use an offset expression in the model formula.

> lm2c <- lm(log(Volume) ~ 1 + offset(2*log(Girth) + log(Height)), trees)

and perform a comparative analysis of variance

> anova(lm2c,lm2a)

Analysis of Variance Table

Model 1: log(Volume) ~ 1 + offset(2 * log(Girth) + log(Height))

Model 2: log(Volume) ~ log(Girth) + log(Height)

Res.Df RSS Df Sum of Sq F Pr(>F)

1 30 0.18769

2 28 0.18546 2 0.0022224 0.1678 0.8464

The large p-value indicates that the more complex model (general values of the coefficients for log(Girth)
and log(Height)) does not fit significantly better than the simpler model (assuming 2*log(Girth) +

log(Height)), thus we prefer the simpler model.

7



Insect count

S
pr

ay

C

E

D

A

B

F

●

●

0 5 10 15 20 25

count

S
pr

ay

C

E

D

A

B

F

●●

0 1 2 3 4 5

Figure 3: Comparative boxplots of the insect count by spray type in the InsectSprays data. The sprays
have been reordered according to increasing mean response. In the lower panel the response is the square
root of the count.

One-way analysis of variance Next consider the InsectSprays data with a response, count, related
to a categorical covariate, spray. Comparative boxplots (Fig.˜3) show that the square root of the count
is a more reasonable scale for the response and that there is considerable differences in the response
according to the spray type.

Althought we can fit a model with categorical covariates using the lm() function, there is an advantage
in using the aov() function instead, because it allows us to extract some additional information that applies
only to categorical factors. Also, summary() applied to an aov() model produces the analysis of variance
table, which for such models, is more interesting than the coefficients table.

> summary(av1 <- aov(sqrt(count) ~ spray, InsectSprays))

Df Sum Sq Mean Sq F value Pr(>F)

spray 5 88.438 17.6876 44.799 < 2.2e-16

Residuals 66 26.058 0.3948

If we want to express the model in terms of “effects” we can obtain these as

> model.tables(av1)
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Tables of effects

spray

spray

A B C D E F

0.9482 1.0642 -1.5676 -0.6481 -1.0030 1.2062

or, if we are interested in the estimates of the means for each group,

> model.tables(av1, type="means")

Tables of means

Grand mean

2.812433

spray

spray

A B C D E F

3.761 3.877 1.245 2.164 1.809 4.019

Various types of “multiple comparisons” methods are also available. We will discuss these later.

Multi-factor analysis of variance When we have more than one categorical covariate, as in the
OrchardSprays data,

> str(OrchardSprays)

'data.frame': 64 obs. of 4 variables:

$ decrease : num 57 95 8 69 92 90 15 2 84 6 ...

$ rowpos : num 1 2 3 4 5 6 7 8 1 2 ...

$ colpos : num 1 1 1 1 1 1 1 1 2 2 ...

$ treatment: Factor w/ 8 levels "A","B","C","D",..: 4 5 2 8 7 6 3 1 3 2 ...

we simply include them in the model formula. It happens that for this experiment there are two blocking
factors, rowpos and colpos, and one experimental factor, treatment, so we put the blocking factors first.

> summary(av2 <- aov(decrease ~ factor(rowpos) + factor(colpos) + treatment, OrchardSprays))

Df Sum Sq Mean Sq F value Pr(>F)

factor(rowpos) 7 4767 681.1 1.7884 0.1151

factor(colpos) 7 2807 401.0 1.0530 0.4100

treatment 7 56160 8022.9 21.0667 7.455e-12

Residuals 42 15995 380.8

These data are arranged in what is called a “Latin square” design, which is a special type of fractional
replication. There are 64 observations on three factors, each at 8 levels, so not only are there no replica-
tions, we don’t even have an observation in each of the possible 8×8×8 = 512 combinations, and cannot
try to fit a model with interaction terms.
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Figure 4: Comparative boxplots of the number of warp breaks per loom by tension setting for the
warpbreaks data. Panels are determined by wool type. The upper two panels are on the original scale of
number of breaks. The lower two panels are on the reciprocal scale (i.e. number of looms per break).

Multi-factor anova with replications The warpbreaks data, shown in Fig.˜4, are counts of the
number of warp breaks per loom (a length of wool) according to the tension setting for the wool and
the type of wool. We see that on the original scale of the number of breaks per loom there is increasing
variance with an increasing level of the response, whereas on the reciprocal scale (number of looms per
break) the variability is much closer to being constant.

Because there are 9 replications at each of the wool/tension combinations

> xtabs(~ wool + tension, warpbreaks)

tension

wool L M H

A 9 9 9

B 9 9 9

we can fit a model with main effects for wool and for tension and the wool:tension interaction.

> summary(av3 <- aov(breaks ~ wool * tension, warpbreaks))

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 450.7 450.67 3.7653 0.0582130
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tension 2 2034.3 1017.13 8.4980 0.0006926

wool:tension 2 1002.8 501.39 4.1891 0.0210442

Residuals 48 5745.1 119.69

In this model the interaction is significant. When an interaction is significant we typically retain both of
the main effects in the model.

However, if we fit the model on the reciprocal scale

> summary(av3a <- aov(1/breaks ~ wool * tension, warpbreaks))

Df Sum Sq Mean Sq F value Pr(>F)

wool 1 0.0002403 0.00024035 0.9001 0.347511

tension 2 0.0033455 0.00167274 6.2642 0.003826

wool:tension 2 0.0012088 0.00060442 2.2635 0.114978

Residuals 48 0.0128174 0.00026703

we no longer have a significant interaction and could reduce the model to the main effects only

> summary(av3b <- aov(1/breaks ~ tension + wool, warpbreaks))

Df Sum Sq Mean Sq F value Pr(>F)

tension 2 0.0033455 0.00167274 5.9629 0.004758

wool 1 0.0002403 0.00024035 0.8568 0.359087

Residuals 50 0.0140262 0.00028052

Here we have reordered the factors tension and wool so that wool is the last term and thus the second
row of the analysis of variance table corresponds to a test of the main effect of the wool given that tension
had been taken into account. (If you look closely at the sums of squares, degrees of freedom and mean
squares you will see that they are consistent in models av3b and av3a but that is a consequence of the
data being completely balanced with respect to these factors. To be safe, always make the factor you are
going to test be the last one in the model formula.) The wool factor is not significant and we can reduce
the model to a single factor model

> summary(av3c <- aov(1/breaks ~ tension, warpbreaks))

Df Sum Sq Mean Sq F value Pr(>F)

tension 2 0.0033455 0.00167274 5.9797 0.004645

Residuals 51 0.0142666 0.00027974

corresponding to Fig.˜5 in which we can see a trend across the three ordered levels of tension; low tension
gives a low reciprocal number of breaks (corresponding to a higher frequency of breaks), medium tension
gives an intermediate reciprocal number and high tension gives the highest reciprocal number.

This is a common situation with a factor like tension whose levels are in a natural ordering, L < M <

H. Details will be given later but, for now, it is enough to see that if we convert the factor to an ordered
factor
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Figure 5: Comparative boxplots of the number of warp breaks per loom by tension setting for the
warpbreaks data. Panels are determined by wool type. The upper two panels are on the original scale of
number of breaks. The lower two panels are on the reciprocal scale (i.e. number of looms per break).

> str(warpbreaks <- within(warpbreaks, tension <- ordered(tension)))

'data.frame': 54 obs. of 3 variables:

$ breaks : num 26 30 54 25 70 52 51 26 67 18 ...

$ wool : Factor w/ 2 levels "A","B": 1 1 1 1 1 1 1 1 1 1 ...

$ tension: Ord.factor w/ 3 levels "L"<"M"<"H": 1 1 1 1 1 1 1 1 1 2 ...

and fit the model as before,

> summary(av3d <- aov(1/breaks ~ tension, warpbreaks))

Df Sum Sq Mean Sq F value Pr(>F)

tension 2 0.0033455 0.00167274 5.9797 0.004645

Residuals 51 0.0142666 0.00027974

we get the same analysis of variance table but now the two degrees of freedom for tension are divided
into a linear trend and a quadratic relationship in addition to the linear trend

> coef(summary.lm(av3d))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.2798e-02 2.2760e-03 18.8040 < 2.2e-16

tension.L 1.3633e-02 3.9422e-03 3.4582 0.001106

tension.Q -8.0425e-05 3.9422e-03 -0.0204 0.983803

With a p-value of 98.4%, the quadratic term is not at all significant, indicating that we could reduce to
only the linear trend.
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Figure 6: Selling price versus assessed value for a random sample of 16 single-family homes located on
corner lots and 48 single-family homes not on corner lots.

Analysis of covariance models The data shown in Fig.˜6 are from a study (conducted several years
ago) described as

A tax consultant studied the current relation between selling price and assessed valuation
of single-family residential dwellings in a large tax district by obtaining data for a random
sample of 16 ”arm’s length” sales transactions of single-family dwellings located on corner lots
and for a random sample of 48 recent sales of single-family dwellings not located on corner
lots.

Assuming a linear relationship between the selling price and the assessed value, there are three different
models we would typically consider:

> coef(summary(lm3 <- lm(Selling ~ 1 + Assessed, assessed)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -118.79385 15.93796 -7.4535 3.517e-10

Assessed 2.64738 0.21314 12.4208 < 2.2e-16

in which there is no distinction between corner lots and non-corner lots,

> coef(summary(lm3a <- lm(Selling ~ 1 + Corner + Assessed, assessed)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -107.45972 13.55094 -7.9301 5.803e-11
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CornerY -6.20568 1.19331 -5.2004 2.447e-06

Assessed 2.51646 0.18062 13.9321 < 2.2e-16

in which there is a common slope but a different intercept for the corner lots, and

> coef(summary(lm3b <- lm(Selling ~ 1 + Corner * Assessed, assessed)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) -126.90517 14.72247 -8.6198 4.327e-12

CornerY 76.02153 30.13136 2.5230 0.014304

Assessed 2.77590 0.19628 14.1424 < 2.2e-16

CornerY:Assessed -1.10748 0.40554 -2.7309 0.008281

in which there are different intercepts and slopes for the corner lots.
We could use a comparative analysis of variance to compare a simpler model (H0) versus a more

complex model (Ha).

> anova(lm3, lm3a)

Analysis of Variance Table

Model 1: Selling ~ Assessed

Model 2: Selling ~ 1 + Corner + Assessed

Res.Df RSS Df Sum of Sq F Pr(>F)

1 62 1475.2

2 61 1022.1 1 453.15 27.044 2.447e-06

> anova(lm3a, lm3b)

Analysis of Variance Table

Model 1: Selling ~ 1 + Corner + Assessed

Model 2: Selling ~ 1 + Corner * Assessed

Res.Df RSS Df Sum of Sq F Pr(>F)

1 61 1022.1

2 60 909.1 1 113 7.4578 0.008281

Because these F tests have one numerator degree of freedom there will be a corresponding t-test for
a coefficient. This will be the t-test on the coefficient in Ha that distinguishes it from H0.

3 Classes and methods for linear models

A model fit with lm() has class "lm"

> class(lm2)

[1] "lm"
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for which there are several methods defined

> methods(class="lm")

[1] add1.lm* alias.lm* anova.lm case.names.lm*

[5] confint.lm* cooks.distance.lm* deviance.lm* dfbeta.lm*

[9] dfbetas.lm* drop1.lm* dummy.coef.lm* effects.lm*

[13] extractAIC.lm* family.lm* formula.lm* fortify.lm

[17] hatvalues.lm influence.lm* kappa.lm labels.lm*

[21] logLik.lm* model.frame.lm model.matrix.lm plot.lm

[25] predict.lm print.lm proj.lm* qr.lm*

[29] residuals.lm rstandard.lm rstudent.lm simulate.lm*

[33] summary.lm variable.names.lm* vcov.lm*

Non-visible functions are asterisked

We have already seen several of these in use:

anova Return the (sequential) analysis of variance table for a single fitted model or a comparative
analysis of variance for multiple fitted models.

confint Return confidence intervals on the coefficients

deviance Return the residual sum of squares (RSS) for the model. (This is a misnomer because the RSS
is related to but not exactly the same as the deviance.)

formula Return the model formula.

kappa Return the condition number of the model matrix or an upper bound on its condition number.

logLik Return the value of the log-likelihood at the estimated parameter values.

model.frame Return the model frame to which the model was actually fit.

model.matrix Return the model matrix.

plot Produce some common residual plots for evaluating the model fit.

predict Returns evaluations of the fitted model, and optionally their standard errors, at the observed
or newly specified values of the covariates.

residuals Returns the residuals from the fit.

rstandard Returns the “standardized residuals” (to be described later).

rstandard Returns the “Studentized residuals” (to be described later).

simulate Return a matrix of simulated response vectors according to the model assuming that the fitted
values of the parameters are the true parameter values.
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summary Return a summary of the fitted model

vcov Return the (estimated) variance-covariance matrix of β̂ (i.e. the matrix that could be expressed as
s2(X ′X)−1).

Other extractor functions such as coef and fitted do not have specific methods for class "lm" but
instead apply the default method to objects of this class.

A model fit by aov has class

> class(av3)

[1] "aov" "lm"

"aov" and also class "lm". This means that methods for class "aov" will be chosen, if they exist, otherwise
methods for class "lm" and, finally, the default method.

Specific methods for class "aov" are

> methods(class="aov")

[1] coef.aov* extractAIC.aov* model.tables.aov* print.aov*

[5] proj.aov* se.contrast.aov* summary.aov TukeyHSD.aov

Non-visible functions are asterisked

from which we can see that specific methods for the coef, extractAIC, print, proj and summary generics
are available for this class and will be chosen in preference to the "lm" or default method. Furthermore
there are specific methods for the model.tables, se.contrast and TukeyHSD generics.

4 Simulating linear model fits

It is possible to simulate a large number of replications of linear model fits quite quickly, if you do it
carefully. The trick is to realize that, if the expression on the left-hand size of the model formula in lm()

or aov() is a matrix with n rows and N columns then the model is fit to all N of the response vectors
simultaneously.

As shown above, one of the methods that can be applied to a fitted model is called simulate and it
generates such a matrix using the parameter estimates (both the coefficients and the variance, σ2 of the
“random noise”) for the simulation. Consider again the model lm1 with coefficient table

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0050857 0.0078337 0.6492 0.5516

carb 0.8762857 0.0135345 64.7444 3.409e-07

To simulate 10,000 response vectors simulated from this model is fast

> set.seed(1234321)

> system.time(Ylst <- simulate(lm1, 10000))
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user system elapsed

0.15 0.00 0.16

> str(Ylst, 0)

'data.frame': 6 obs. of 10000 variables:

[list output truncated]

- attr(*, "seed")= int 403 624 264578493 -913911462 183580435 973607224 -22559901..

but, unfortunately, it is not a matrix, which is what we want. To get a matrix from a data frame we use

> str(Ymat <- data.matrix(unname(Ylst)))

num [1:6, 1:10000] 0.103 0.281 0.459 0.534 0.628 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:6] "1" "2" "3" "4" ...

..$ : NULL

(the reason for using unname() is to get rid of the 10,000 column names).
Finally, we fit the model to all 10,000 response vectors simultaneously.

> system.time(lm1sim <- lm(Ymat ~ 1 + carb, Formaldehyde))

user system elapsed

0.110 0.000 0.112

which is much faster than you could ever hope to do with a loop.
Now the coefficients are in the form of a 2 by 10,000 matrix

> str(simcoef <- coef(lm1sim))

num [1:2, 1:10000] 0.024168 0.85297 0.013392 0.868404 0.000351 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:2] "(Intercept)" "carb"

..$ : NULL

for which we could produce density plots, etc.
To obtain a density plot of the estimated intercepts we use

> intercepts <- simcoef[1,]

> slopes <- simcoef[2,]

from which we produce the plots in Fig.˜7
We can also check that the mean of the estimated intercept is close to the value used in the simulation

(i.e. the estimated intercept in model lm1) and standard deviation of the simulated intercepts is close to
the standard error of the that estimate.
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Figure 7: Estimated intercepts and slopes from data simulated according to model lm1

> c(mean=mean(intercepts), sd=sd(intercepts))

mean sd

0.005210419 0.007801148

> c(mean=mean(slopes), sd=sd(slopes))

mean sd

0.87606392 0.01350473

> printCoefmat(coef(summary(lm1)))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0050857 0.0078337 0.6492 0.5516

carb 0.8762857 0.0135345 64.7444 3.409e-07
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