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ABSTRACT 

The subjects of virtual machines and emulators have been 
treated as entirely separate. The purpose of this paper 
is to show that they have much in common. Not only do 
the usual implementations have many shared characteristics, 
but this commonality extends to the theoretical concepts 
on which they are based; the concepts of memory mapping 
and I/0 operation simulation are discussed to emphasize 
this. The paper then discusses structural issues, and 
points out why the question of instruction set is becoming 
less valid as a point of distinction between the concepts. 
Possible combinations of virtual machines and emulators 
are discussed. In conclusion, it is recommended that 
workers in both fields keep the relationship between the 
two in mind. 
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Historically, the subjects of virtual machines and emulators have been 

treated as entirely unrelated. Authors have addressed one or the other, but 

not both. Work has taken place with little or no interaction. Emulator 

developers have not taken advantage of theoretical advances in the field of 

virtual machines, and virtual machine developers have not utilized the 

wealth of practical experience that exists for emulators. 

This paper is intended to show that these two concepts share much com- 

mon ground. While the initial objectives and ultimate uses of the two 

types of systems may be quite different, many concepts are shared. Regard- 

ing both virtual machines and emulators as manifestations of a single notion 

can provide valuable insight. Workers in either area can benefit from 

greater awareness of developments in the other. Our purpose in pointing 

this out is to initiate a dialogue from which both groups can profit. 

We begin with typical definitions of the two terms: 

i. Emulation, from Lichstein [I]: "...a process whereby one computer 

is set up to permit the execution of programs written for another 

computer. This is done with...hardware features...and software..." 

. Virtual machines, from Goldberg [2]: "A system...whieh...is a 

hardware-software duplicate of a real existing machine, in which 

a non-trlvial subset of the virtual machine's instructions execute 

directly on the host machine..." 

These definitions appear to have little in common. Definitions of emula- 

tion normally focus on the difference between the machine for which some 

programs were written and the one on which they are to be executed. Defini- 

tions of virtual machines, on the other hand, concentrate on the concept of 

a level of software control between the program and the hardware, and on the 

mapping of computational entities seen by a program into corresponding entities 

actually used to support a computation. 

Progressing onward from these very different definitions, we consider 
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how systems of these types have typically been implemented; similarities 

will soon become apparent. The typical virtual machine, be it "family- 

virtualizing" or "self-virtualizing" in Goldberg's terminology [2], uses 

hardware-firmware instruction execution facilities for the bulk of its 

activity. When a "sensitive instruction" (defined by Goldberg [3]) is 

encountered, supervisory software* is invoked. This software maps the 

request for input/output services, for changes in the system state, or 

whatever, into a corresponding (but not necessarily precisely parallel) 

function, in a manner that is invisible to the program being executed. 

This approach is unable to execute programs having time dependencies, 

programs requiring the physical capabilities of devices not present, and 

so on, but is useful for many programs in practice. 

We now consider a typical emulator**. It uses hardware-firmware 

instruction execution facilities for the bulk of its activity. When a 

"sensitive instruction" is encountered, emulator software* is invoked. 

This software maps the request for input/output services, for changes in 

the system state, or whatever, into a corresponding (but not necessarily 

precisely parallel) function, in a manner that is invisible to the program 

being executed. This approach is unable to execute programs having time 

dependencies, programs requiring the physical capabilities of devices not 

present, and so on, but is useful for many programs in practice. 

The parallelism between the preceding two paragraphs is far from 

accidental. It is a fact that the implementation of emulators and the 

implementation of virtual machines have many meaningful similarities. The 

* Though software has usually been used here, there is no reason in principle 
why it must be; a system could support some or all of these mappings in 
h~rdware or firmware. 

**Emulators can be classified as firmware-controlled, software-controlled, or 
auxiliary processor. Auxiliary processors are seldom used today, though 
Honeywell and NCR have been successful with them. Software-controlled 
emulators, used largely at the upper end of IBM's System/360 and System/370, 
resemble software simulators helped by special extensions to the host 
system's instruction set. In this paper we deal specifically with the more 
common firmware-controlled emulators, though much of the discussion is 
applicable to the other types. Further clarification and examples can be 
found in Mallach [4]. Also, we deal here only with integrated emulators, 
which have largely superseded the stand-alone variety; the distinction 
is discussed more fully by Allred [5]. 
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concept of trapping input/output instructions, and other instructions that 

can affect or inspect the state of the system, is common to both. More 

importantly, the theoretical basis for these concepts is the same ~or both, 

as are the specific mapping methods used to support them. To verify this 

assertion, let us consider two mappings: memory mapping and input/output 

operation mapping. 

Memory mapping is associated with virtual memory. The central concept 

of virtual memory is the distinction between the address supplied by a 

program, known as a "logical address", and the memory location which 

actually supports the reference, known as a "physical address". It is this 

distinction which permits emulated or virtual machines to operate as if 

they have full access to physical memory, while in fact they share it with 

other programs. It is essential that we distinguish between this essence 

of virtual memory and the many specific implementations of the concept for 

various purposes. In particular, we must recognize that paging, mapping a 

continuous logical address space into a discontinuous physical address 

space, is not essential for virtual memory to exist; neither is segmenta- 

tion, which supports a discontinuous logical address space. Furthermore, 

the use of a backing store to hold unneeded portions of a program is not 

essential to the concept, and it is certainly not essential that the 

logical address space of a program be much larger than the physical memory 

of the computer on which it runs. All these are specific implementations 

of virtual memory, useful in practice, but not conceptually necessary in 

distilling the essence of virtual memory. 

The second and last theoretical requirement that both emulators and 

virtual machines impose on a virtual memory scheme is that the logical 

address space supported by the implementation be indistinguishable from 

the physical address space of the emulated or virtualized machine. This 

requirement can he met in a number of ways. The fact that virtual machines 

typically do use backing store management systems and emulators typically 

don't is not a fundamental distinction. Both emulators and virtual 

machines require virtual memory, and both impose similar requirements on 

it. 
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As for input/output operations, neither current virtual machines nor 

current emulators can send input/output commands as issued by the program 

directly to the hardware. (The ability to do so in principle is the same 

for both.) Virtual machines and emulators are both faced with programs 

that behave as if they had full control over the hardware. They both 

must intercept a command with no knowledge of the larger logical context 

in which it was issued, must determine what real device corresponds to the 

device called for, and must construct commands that will accomplish the 

desired objective on that real device. They must both, in many cases, map 

operations onto devices having meaningful physical differences from the 

virtual device: for example, a disk file might be used instead of a t~pe 

unit, a remote terminal instead of a line printer, and so on. In one 

special case, virtual machines have an advantage: where the virtual device 

is similar to the real device, command translation may be trivial. In 

general, however, the problem faced by the two classes of system is the 

same: to provide a virtual I/O environment indistinguishable from the real 

one which the emulated or virtualized programs were designed to deal with. 

A distinction is often made between virtual machines and emulators on 

the basis of the instruction set they support. It might be said, for 

example, that the instruction set of a virtual machine must be substantially 

the same as that of the host machine, while that of an emulated machine must 

be substantially different. (Goldberg, in the definition of "virtual 

machine" cited incompletely earlier, continues in this vein.) We assert 

that this is no longer a meaningful distinction. First, the execution of 

user mode instructions is widely recognized to be the easiest part of 

building either a virtual machine or an emulator. Also, with microprogram- 

ming, it is possible for one machine to support many instruction sets. If 

appropriate consideration is given to all of them in the hardware, it is 

possible to support very different instruction sets with comparable 

efficiency, which makes the question of "native mode" somewhat moot. Another 

consideration is that machines such as Nanodata's QM-i [6] provide a means 

for effectively reconfiguring the microprogrammed base to support new data 

types, instruction formats, and the like at any time, and thus truly have 

no "native" instruction set. Finally, the existence of commercial systems 

such as the Burroughs 1700, which has many "native" instruction sets, makes 

it impossible to rely on this concept as a rigorous dividing line. 
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Having considered the similarities between virtual machines and emula- 

tors, let us consider the total software stmucture of a system. The struc- 

ture of a typical virtual machine system such as CP/67 is shown in Figure i, 

ignoring virtual machine recursion for the moment. A typical operating 

system running a~number of integrated emulators is shown in Figure 2. 

The major difference between the two figures is that the emulators 

operate under emulator software packages, while the virtual machines 

operate directly under the virtual machine monitor. It is sometimes felt 

that this difference somehow makes virtual machines a "cleaner" concept, 

while emulators are a bit "messy" by comparison. The importance of this 

difference is often greatly exaggerated, since at a deeper level the func- 

tions performed by the total software in both figures are quite comparable. 

The difference between the two structures is one of developer choice, and 

comes about because of the typical development environments and anticipated 

usage environments to the two types of system. However, the division of 

functions in Figure 2 into operating system functions and emulator software 

functions is not inherent in the problem to be solved, and an emulator 

could easily be structured as shown in Fig. 1 to run many emulated systems 

under one software package. Conversely, it is quite practical to split 

virtual machine monitor functions along the lines of Fig. 2, and this has 

been done in at least three instances [7, 8, 9]. We thus see that similar 

architectures are quite feasible for virtual machines and emulators. Fur- 

thermore, increasing acceptance of shared code and of distributed operating 

system functions may blur the structural differences between the two figures 

still more. 

We now remedy our earlier omission, and consider multiple levels of 

virtual machines and emulators. There are four possible cases: 

i. Virtual machine under virtual machine. This has been done by IBM. 

2. Emulator under virtual machine. 

. Virtual machine under emulator. 

pie to emulate, say, a 360/67. 

to run CP/67 on the emulator. 

This has been done by IBM. 

It is clearly possible in princi- 

Having done so, it would be possible 
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. Emulator under emulator. This has never been done because it is 

usually more practical to implement two separate emulators. How- 

ever, there is no theoretical impediment. 

The point we wish to emphasize here is that it is conceptually quite 

feasible to have a multi-level system, in which some levels are considered 

virtual machines and some are considered emulators in the traditional sense. 

Once this is done, the distinction between virtual machines and emulators 

will become quite blurred. We will have a computing system in which various 

program exeuction environments, supporting different machine languages, are 

in turn supported by lower-level software structures implemented in different 

machine languages. The matter of whether the lower-level structure happens 

to use the same instruction set as the execution environment it 

supports will cease to be an issue. Such a situation may well become common 

in fourth-generation systems. 

We may conclude that the distinction between virtual machines and 

emulators is largely a semantic and a historical one. An emulator might 

well be defined as "a virtual machine, the instruction set of which is not 

the one in which the virtual machine software is implemented." Perhaps 

the class of "foreigner-virtualizing" systems should be added to Goldberg's 

two classes that were alluded to earlier. Whatever words are used to express 

the close relationship between emulators and virtual machines, the relation- 

ship itself must always be kept in mind. 
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VIRTUAL MACHINE MONITOR 

VM: VIRTUAL MACHINE 

FIGURE 1 

STRUCTURE OF AN ENVIRONMENT SUPPORTING MANY VIRTUAL MACHINES 
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ESP: EMULATOR SOFTWARE PACKAGE 

EM: EMULATED MACHINE 

FIGURE 2 

STRUCTURE OF AN ENVIRONMENT SUPPORTING MANY EMULATED MACHINES 
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