
ON THE RELATIONSHIP BETWEEN VIRTUAL MACHINES AND EMULATORS

Efrem G. Mallach
Honeywell Information Systems

Billerica, Massachusetts

ABSTRACT

The subjects of virtual machines and emulators have been
treated as entirely separate. The purpose of this paper
is to show that they have much in common. Not only do
the usual implementations have many shared characteristics,
but this commonality extends to the theoretical concepts
on which they are based; the concepts of memory mapping
and I/0 operation simulation are discussed to emphasize
this. The paper then discusses structural issues, and
points out why the question of instruction set is becoming
less valid as a point of distinction between the concepts.
Possible combinations of virtual machines and emulators
are discussed. In conclusion, it is recommended that
workers in both fields keep the relationship between the
two in mind.

117

Historically, the subjects of virtual machines and emulators have been

treated as entirely unrelated. Authors have addressed one or the other, but

not both. Work has taken place with little or no interaction. Emulator

developers have not taken advantage of theoretical advances in the field of

virtual machines, and virtual machine developers have not utilized the

wealth of practical experience that exists for emulators.

This paper is intended to show that these two concepts share much com-

mon ground. While the initial objectives and ultimate uses of the two

types of systems may be quite different, many concepts are shared. Regard-

ing both virtual machines and emulators as manifestations of a single notion

can provide valuable insight. Workers in either area can benefit from

greater awareness of developments in the other. Our purpose in pointing

this out is to initiate a dialogue from which both groups can profit.

We begin with typical definitions of the two terms:

i. Emulation, from Lichstein [I]: "...a process whereby one computer

is set up to permit the execution of programs written for another

computer. This is done with...hardware features...and software..."

. Virtual machines, from Goldberg [2]: "A system...whieh...is a

hardware-software duplicate of a real existing machine, in which

a non-trlvial subset of the virtual machine's instructions execute

directly on the host machine..."

These definitions appear to have little in common. Definitions of emula-

tion normally focus on the difference between the machine for which some

programs were written and the one on which they are to be executed. Defini-

tions of virtual machines, on the other hand, concentrate on the concept of

a level of software control between the program and the hardware, and on the

mapping of computational entities seen by a program into corresponding entities

actually used to support a computation.

Progressing onward from these very different definitions, we consider

118

how systems of these types have typically been implemented; similarities

will soon become apparent. The typical virtual machine, be it "family-

virtualizing" or "self-virtualizing" in Goldberg's terminology [2], uses

hardware-firmware instruction execution facilities for the bulk of its

activity. When a "sensitive instruction" (defined by Goldberg [3]) is

encountered, supervisory software* is invoked. This software maps the

request for input/output services, for changes in the system state, or

whatever, into a corresponding (but not necessarily precisely parallel)

function, in a manner that is invisible to the program being executed.

This approach is unable to execute programs having time dependencies,

programs requiring the physical capabilities of devices not present, and

so on, but is useful for many programs in practice.

We now consider a typical emulator**. It uses hardware-firmware

instruction execution facilities for the bulk of its activity. When a

"sensitive instruction" is encountered, emulator software* is invoked.

This software maps the request for input/output services, for changes in

the system state, or whatever, into a corresponding (but not necessarily

precisely parallel) function, in a manner that is invisible to the program

being executed. This approach is unable to execute programs having time

dependencies, programs requiring the physical capabilities of devices not

present, and so on, but is useful for many programs in practice.

The parallelism between the preceding two paragraphs is far from

accidental. It is a fact that the implementation of emulators and the

implementation of virtual machines have many meaningful similarities. The

* Though software has usually been used here, there is no reason in principle
why it must be; a system could support some or all of these mappings in
h~rdware or firmware.

**Emulators can be classified as firmware-controlled, software-controlled, or
auxiliary processor. Auxiliary processors are seldom used today, though
Honeywell and NCR have been successful with them. Software-controlled
emulators, used largely at the upper end of IBM's System/360 and System/370,
resemble software simulators helped by special extensions to the host
system's instruction set. In this paper we deal specifically with the more
common firmware-controlled emulators, though much of the discussion is
applicable to the other types. Further clarification and examples can be
found in Mallach [4]. Also, we deal here only with integrated emulators,
which have largely superseded the stand-alone variety; the distinction
is discussed more fully by Allred [5].

119

concept of trapping input/output instructions, and other instructions that

can affect or inspect the state of the system, is common to both. More

importantly, the theoretical basis for these concepts is the same ~or both,

as are the specific mapping methods used to support them. To verify this

assertion, let us consider two mappings: memory mapping and input/output

operation mapping.

Memory mapping is associated with virtual memory. The central concept

of virtual memory is the distinction between the address supplied by a

program, known as a "logical address", and the memory location which

actually supports the reference, known as a "physical address". It is this

distinction which permits emulated or virtual machines to operate as if

they have full access to physical memory, while in fact they share it with

other programs. It is essential that we distinguish between this essence

of virtual memory and the many specific implementations of the concept for

various purposes. In particular, we must recognize that paging, mapping a

continuous logical address space into a discontinuous physical address

space, is not essential for virtual memory to exist; neither is segmenta-

tion, which supports a discontinuous logical address space. Furthermore,

the use of a backing store to hold unneeded portions of a program is not

essential to the concept, and it is certainly not essential that the

logical address space of a program be much larger than the physical memory

of the computer on which it runs. All these are specific implementations

of virtual memory, useful in practice, but not conceptually necessary in

distilling the essence of virtual memory.

The second and last theoretical requirement that both emulators and

virtual machines impose on a virtual memory scheme is that the logical

address space supported by the implementation be indistinguishable from

the physical address space of the emulated or virtualized machine. This

requirement can he met in a number of ways. The fact that virtual machines

typically do use backing store management systems and emulators typically

don't is not a fundamental distinction. Both emulators and virtual

machines require virtual memory, and both impose similar requirements on

it.

120

As for input/output operations, neither current virtual machines nor

current emulators can send input/output commands as issued by the program

directly to the hardware. (The ability to do so in principle is the same

for both.) Virtual machines and emulators are both faced with programs

that behave as if they had full control over the hardware. They both

must intercept a command with no knowledge of the larger logical context

in which it was issued, must determine what real device corresponds to the

device called for, and must construct commands that will accomplish the

desired objective on that real device. They must both, in many cases, map

operations onto devices having meaningful physical differences from the

virtual device: for example, a disk file might be used instead of a t~pe

unit, a remote terminal instead of a line printer, and so on. In one

special case, virtual machines have an advantage: where the virtual device

is similar to the real device, command translation may be trivial. In

general, however, the problem faced by the two classes of system is the

same: to provide a virtual I/O environment indistinguishable from the real

one which the emulated or virtualized programs were designed to deal with.

A distinction is often made between virtual machines and emulators on

the basis of the instruction set they support. It might be said, for

example, that the instruction set of a virtual machine must be substantially

the same as that of the host machine, while that of an emulated machine must

be substantially different. (Goldberg, in the definition of "virtual

machine" cited incompletely earlier, continues in this vein.) We assert

that this is no longer a meaningful distinction. First, the execution of

user mode instructions is widely recognized to be the easiest part of

building either a virtual machine or an emulator. Also, with microprogram-

ming, it is possible for one machine to support many instruction sets. If

appropriate consideration is given to all of them in the hardware, it is

possible to support very different instruction sets with comparable

efficiency, which makes the question of "native mode" somewhat moot. Another

consideration is that machines such as Nanodata's QM-i [6] provide a means

for effectively reconfiguring the microprogrammed base to support new data

types, instruction formats, and the like at any time, and thus truly have

no "native" instruction set. Finally, the existence of commercial systems

such as the Burroughs 1700, which has many "native" instruction sets, makes

it impossible to rely on this concept as a rigorous dividing line.

121

Having considered the similarities between virtual machines and emula-

tors, let us consider the total software stmucture of a system. The struc-

ture of a typical virtual machine system such as CP/67 is shown in Figure i,

ignoring virtual machine recursion for the moment. A typical operating

system running a~number of integrated emulators is shown in Figure 2.

The major difference between the two figures is that the emulators

operate under emulator software packages, while the virtual machines

operate directly under the virtual machine monitor. It is sometimes felt

that this difference somehow makes virtual machines a "cleaner" concept,

while emulators are a bit "messy" by comparison. The importance of this

difference is often greatly exaggerated, since at a deeper level the func-

tions performed by the total software in both figures are quite comparable.

The difference between the two structures is one of developer choice, and

comes about because of the typical development environments and anticipated

usage environments to the two types of system. However, the division of

functions in Figure 2 into operating system functions and emulator software

functions is not inherent in the problem to be solved, and an emulator

could easily be structured as shown in Fig. 1 to run many emulated systems

under one software package. Conversely, it is quite practical to split

virtual machine monitor functions along the lines of Fig. 2, and this has

been done in at least three instances [7, 8, 9]. We thus see that similar

architectures are quite feasible for virtual machines and emulators. Fur-

thermore, increasing acceptance of shared code and of distributed operating

system functions may blur the structural differences between the two figures

still more.

We now remedy our earlier omission, and consider multiple levels of

virtual machines and emulators. There are four possible cases:

i. Virtual machine under virtual machine. This has been done by IBM.

2. Emulator under virtual machine.

. Virtual machine under emulator.

pie to emulate, say, a 360/67.

to run CP/67 on the emulator.

This has been done by IBM.

It is clearly possible in princi-

Having done so, it would be possible

122

. Emulator under emulator. This has never been done because it is

usually more practical to implement two separate emulators. How-

ever, there is no theoretical impediment.

The point we wish to emphasize here is that it is conceptually quite

feasible to have a multi-level system, in which some levels are considered

virtual machines and some are considered emulators in the traditional sense.

Once this is done, the distinction between virtual machines and emulators

will become quite blurred. We will have a computing system in which various

program exeuction environments, supporting different machine languages, are

in turn supported by lower-level software structures implemented in different

machine languages. The matter of whether the lower-level structure happens

to use the same instruction set as the execution environment it

supports will cease to be an issue. Such a situation may well become common

in fourth-generation systems.

We may conclude that the distinction between virtual machines and

emulators is largely a semantic and a historical one. An emulator might

well be defined as "a virtual machine, the instruction set of which is not

the one in which the virtual machine software is implemented." Perhaps

the class of "foreigner-virtualizing" systems should be added to Goldberg's

two classes that were alluded to earlier. Whatever words are used to express

the close relationship between emulators and virtual machines, the relation-

ship itself must always be kept in mind.

123

BIBLIOGRAPHY

i. Lichstein, H. A. When should you emulate?, Datamatlon 15, ii (November
1969), 205-210.

2. Goldberg, R. P. Virtual machines - semantics and examples. IEEE Comput.
Soc. Conf., Boston, Mass. (September, 1971), 141-142.

. Goldberg, R. P. Hardware requirements for virtual machine systems.
HICSS-~, Hawaii International Conference o__n System Sciences. Honolulu,
Hawaii (January, 1971).

4. Mallach, E. G. Emulation: a survey. Honeywell Computer Journal 6, 4
(1972), 287-297.

5. Allred, G. System/370 integrated emulation under OS and DOS. Proc.
AFIPS 1971 Spring Joint Computer Conference, Vol. 39, 163-168.

. Rosin, R. F., Freider, G., and Eckhouse, R. H., Jr. An environment for
research in mlcroprogramming and emulation. Comm. ACM 15, 8 (August,
1972), 748-760.

.

.

.

Srodawa, R. J. and Bates, L. E. An efficient virtual machine implementation.
Proceedings of ACM SIGARCH-SIGOPS Workshop on Virtual Computer Systems,
Harvard Univ~'slt~, Cambrid~ ~ss? ~h--~6-~3).

Fuchi, K., Tanaka, H., Manago, Y., and Yuba, T. A program simulator by
partial interpretation. Second Symposium o_n ODeratin~ Systems Principles,
Princeton, N. J. (October 1969).

Galley, S. W. PDP-10 virtual machines. Proceedings o fAC__M SlGARCH-SlGOPS
Workshop on Virtual Computer Systems, Harvard University, Cambridge, Mass.
(March 26-27, 1973).

124

VIRTUAL MACHINE MONITOR

VM: VIRTUAL MACHINE

FIGURE 1

STRUCTURE OF AN ENVIRONMENT SUPPORTING MANY VIRTUAL MACHINES

125

HARDWARE j

MULTIPROGRAMMING OPER, SYSTEM

EsP1 i EsP21 ESP n

ESP: EMULATOR SOFTWARE PACKAGE

EM: EMULATED MACHINE

FIGURE 2

STRUCTURE OF AN ENVIRONMENT SUPPORTING MANY EMULATED MACHINES

126

