
Image Colorization
Srinivas Tunuguntla (​stunuguntla@wisc.edu​)

Adithya Bhat (​bhat5@wisc.edu​)

Introduction
We intend to build a system to solve the problem of artificially colorizing grayscale images, in a
completely automated mechanism. We plan to use supervised Machine Learning techniques to
build a model that learns local and global features corresponding to each pixel, and the colors
that correspond to those features, from the training set. Our objective over the course of this
project is to build the best image colorization system that we can, and to this end we will both
reuse / re-implement ideas we find interesting, and perform experiments to help us make design
choices.

Related Work
Image colorization has historically been an area of interest, but most successful techniques
traditionally involved user-input in the form of ‘color seeds’, or similar reference images.
However, the resurgence of Neural Networks has resulted in significant gains in completely
automated colorization systems too, especially in the last couple of years.

Fully Automated Colorization
1. ML Techniques with image features created via pre-processing. This corresponds to

standard ML applications, where feature engineering plays the major role.
2. Convolutional Neural Networks are the current state of the art for automated colorization.

The features themselves are learnt via the Neural Network’s mechanism, as opposed to
created via pre-processing.
This is the segment we plan to work on.

User-assisted Colorization
1. Scribble based Techniques

A user manually provides color scribbles (also known as seeds or hints) that give a
reference color for various parts of the image. The system learns to extend the colors to
rest of the image via image segmentation, etc, but the colors themselves are not learnt.

2. Reference Image Techniques
Image features are used to find similar regions in the grayscale image and the reference
image, and color transfer takes place between the two images. However, finding suitable
reference images is vital to this method.

mailto:stunuguntla@wisc.edu
mailto:bhat5@wisc.edu

Our Project
In our project, we intend to build the best colorization system that we can, given time,
experience, and computational power limitations. For this, we will re-implement / reuse existing
work, as well try to mix and match learnings from different sources.

Datasets
We plan to use two different datasets to train our model: CIFAR-100 and ImageNet. We are
currently using CIFAR-100 which has 100 classes of images each containing 600 images of
size 32x32. We use 500 images from each class as the training set and the rest 100 images
from each class as the testing set. The small size of the images results in faster convergence of
models and hence allows us to experiment with various techniques.
We plan to use the ImageNet dataset to train the final model. ImageNet contains 21,338
categories with a total of 14,197,122 images of various sizes. ImageNet is larger in scale and
diversity than the other image classification datasets.

Frameworks
Working in Python seemed to be the best option for our project, due to to maximal support for
ML. All the below have libraries for Python.

● Caffe
○ Very commonly used.
○ Has a Model Zoo - repository of trained models with weights, which can be used

out of box.
○ Con - has many dependencies, and is harder to get started with.

● Lasagne
○ Lightweight library to build and train neural networks in Theano.
○ Only works on Theano.
○ More flexibility and transparency, but more complicated for beginners.

● Keras
○ Easiest to get started with.
○ Can work with TensorFlow or Theano.
○ Abstracts away a bunch of details (trade-off : control vs ease of use)

● We intend to go with Keras, due to ease of use, and change if we have a pressing need
to.

Color Space Models
● RGB, CMY - luma (image intensity), and chroma (color information) are tightly coupled
● YUV

○ Y - Luminance
○ U,V - Chrominance
○ Reduces bandwidth for chrominance components, taking human perception into

account.
● HSV - Hue Saturation Value - cylindrical system

○ H : 0-360 degrees
○ S : 0-100%
○ L/B : 0-100%

● CIE Lab, CIE Luv
○ L : 0-100
○ a,b : -100 to +100, or, -128 to 127

● We are currently using the CIE Lab color space, as euclidean distance between points in
this color space apparently correspond better to visually perceived differences.

● That said, we might experiment with other types, for a given error function.

Approach
Our approach is based on deep convolutional neural networks. We derive a set of global
features that act as a prior to indicate the type of the image and to decide the macro colors of
the image. For example, if the global features indicate that it is an outdoor image, the model will
be biased to adding colors of sky, grass, water etc. We use a pre-trained neural network that is
trained for an image classification task to obtain this information. Since the network is trained for
a classification task, the last few layers capture the global context of the image and hence can
be used as global features. We will use the VGG-16 network, and experiment with others, in this
project.

We then derive a set of local features on the image using a convolutional neural network. We
are still experimenting with the architecture of this network. The current model has 3
convolutional layers, each with 3x3 kernels and 1x1 strides. The first layer has 64 filters while
the second and third layers have 128 filters each. We use batch normalization and max pooling
to regularize the parameters at each layer. All the activation units are rectified linear units.

We then combine the global and the local features obtained as described above and feed them
to the final colorization network. This network consists of two convolutional layers each with 64
filters of size 3x3 and stride 1x1. The final layer is densely connected with ‘tanh’ activation units.
The final layer acts as the output and predicts both the color components a, b simultaneously.

Current Results
Converted the VGG-16 caffe model to Keras for Transfer Learning.
The hope is that the features learnt in this model will turn out to be relevant to colorization too.

(u'n02504458', u'African_elephant', 0.98831379) (u'n03967562', u'plow', 0.74705422)

(u'n02504013', u'Indian_elephant', 0.011305372) (u'n03868242', u'oxcart', 0.1379173)

(u'n01871265', u'tusker', 0.00030840875) (u'n02403003', u'ox', 0.10923596)

As an initial model, we built a network that has two convolutional layers followed by a dense
layer. The first convolutional layer has 64 filters while the second layer has 128 filters. Each filter
is of size 3x3 and stride 1x1. The network takes as input a grayscale image and returns the
color components as output. Note that we are have not yet incorporated the global features
discussed above and the network is only 2 layers deep. A sample of test grayscale images and
their corresponding outputs from this model are shown below.

Possible Experiments
● Classification vs Regression
● Attempt to Re-use various models for image classification / other related areas

○ VGGNet vs ResNet, etc
○ Need to handle the fact that input will be a grayscale image somehow.

● Various Error Functions
○ CNN based colorization systems typically produce washed-out or sepia toned

colors for objects that could have multiple valid colors.
○ When the model sees similar objects with almost identical features, but different

colors, it is penalized depending upon the loss function, and hence tends to
predict the average of the values it has seen.

○ Hence, the loss function used also plays a major role.
● Various color space models.
● Hypercolumns vs different networks for local features and global features.
● Activation functions for the final layer.

Issues
One of the issues with deep neural networks is that they take very long times for training. To
train networks on millions of images with high resolution, clusters of CPUs or GPUs are
generally used. Since we do not have access to such resources, we plan to restrict our datasets
to a reasonable size with a limited set of categories. Another potential solution is to initialize the
network using weights from networks that are trained for other tasks (similar to the transfer

learning approach to derive global features described above) and then start the training
process.

