
HeteroOS - OS Design for Heterogeneous Memory Management
in Datacenter

Sudarsun Kannan1 Ada Gavrilovska2 Vishal Gupta3 Karsten Schwan2

1Department of Computer Sciences, University of Wisconsin-Madison
2School of Computer Science, Georgia Tech,

3VMWare
{sudarsun@cs.wisc.edu},{ada@cc.gatech.edu},{vishalg@vmware.com}

ABSTRACT

Heterogeneous memory management combined with server virtual-

ization in datacenters is expected to increase the software and OS

management complexity. State-of-the-art solutions rely exclusively

on the hypervisor (VMM) for expensive page hotness tracking and

migrations, limiting the benefits from heterogeneity. To address this,

we design HeteroOS, a novel application-transparent OS-level so-

lution for managing memory heterogeneity in virtualized system.

The HeteroOS design first makes the guest-OSes heterogeneity-

aware and then extracts rich OS-level information about applica-

tions’ memory usage to place data in the ‘right’ memory avoiding

page migrations. When such pro-active placements are not possi-

ble, HeteroOS combines the power of the guest-OSes’ informa-

tion about applications with the VMM’s hardware control to track

for hotness and migrate only performance-critical pages. Finally,

HeteroOS also designs an efficient heterogeneous memory sharing

across multiple guest-VMs. Evaluation of HeteroOS with memory,

storage, and network-intensive datacenter applications shows up

to 2x performance improvement compared to the state-of-the-art

VMM-exclusive approach.

CCS CONCEPTS

• Software and its engineering → Virtual machines; Virtual mem-

ory; Main memory; • Computer systems organization → Proces-

sors and memory architectures; • Hardware → Non-volatile mem-

ory;

KEYWORDS

Heterogeneous Memory, Operating Systems, Virtual Memory, Virtu-

alization, Hypervisor, 3D-stacked DRAM, Non-volatile memory

ACM Reference format:

Sudarsun Kannan1 Ada Gavrilovska2 Vishal Gupta3 Karsten Schwan2

1Department of Computer Sciences, University of Wisconsin-Madison 2School

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-4892-8/17/06. . . $15.00
https://doi.org/10.1145/3079856.3080245

Property Stacked-3D DRAM NVM (PCM)

Density 1x 4x-16x 16x-64x

Load latency (ns) 30-50 60 150

Store latency (ns) 30-50 60 300-600

BW (GB/sec) 120-200 15-25 2

Table 1: Heterogeneous memory characteristics [7, 15, 50].

of Computer Science, Georgia Tech, 3VMWare . 2017. HeteroOS - OS De-

sign for Heterogeneous Memory Management in Datacenter. In Proceedings

of ISCA ’17, Toronto, ON, Canada, June 24-28, 2017, 14 pages.

https://doi.org/10.1145/3079856.3080245

1 INTRODUCTION

To address the DRAM capacity scalability bottlenecks [42, 63] and

the need for lower access latency and higher bandwidth, researchers

and commercial vendors are exploring alternative memory technolo-

gies such as 3D-stacked DRAM and non-volatile memory (NVM).

As shown in Table 1, the technologies differ significantly in latency,

bandwidth, endurance. For instance, as shown in Table 1, byte-

addressable non-volatile memories (NVMs) such as phase change

memory (PCM), are expected to offer higher capacity than DRAM,

but with higher read (2x) and write (up to 5x) latency, and lower

bandwidth (5x-10x) [15, 36, 49]. Conversely, on-chip stacked 3D-

DRAM [6, 7, 21, 29, 41] is expected to increase memory bandwidth

by 8x-14x, but with a 2x-4x lower capacity than DRAM. These

differences indicate that a single memory technology will not solve

all memory-related bottlenecks for an application and future sys-

tems will embrace memory heterogeneity [4, 50], thus increasing

the software-level management complexity. In this paper, we study

the software-level challenges in supporting memory heterogeneity

for datacenter systems.

At a high-level, structuring heterogeneous memories as OS-level

NUMA nodes is a natural fit and provides an opportunity to reuse

existing OS and application-level abstractions [15, 43]. However,

several fundamental differences exist in the homogeneous NUMA

and heterogeneous memory systems. First, heterogeneous memory

technologies have significantly different latency and bandwidth, un-

like DRAM-based NUMA. Second, for homogeneous NUMA, the

OS-level management aims to increase data locality by increasing

CPU access to the data in the local memory socket. In contrast, for

heterogeneous memory, the challenge is (a) to identify performance-

critical data and place them in the fastest memory, and (b) to maxi-

mize the utilization of the fast memory with limited capacity [45].

For heterogeneous memory systems, the performance impact due

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Kannan et al.

to incorrect memory placement of critical data can be substantial

compared to the traditional NUMA systems with less than 50%

overheads.

Prior heterogeneous memory research either relies on significant

hardware changes to the memory subsystem such as the memory con-

troller, TLB, and cache [7, 43] or to the applications [3, 15, 32, 37].

While the hardware changes can be time-consuming, the application-

level changes require developers to add explicit memory placement

or migration logic. Furthermore, application-level techniques also

lack a holistic view of the system in multi-tenant or virtualized

datacenter systems. Even today, most guest-OSes in virtualized en-

vironments lack fine-grained NUMA topology awareness or data

placement control, requiring methods like HeteroVisor [24] to hide

heterogeneity from the guest-OSes and manage heterogeneity in

the hypervisor (VMM). Such approaches solely rely on the hyper-

visor (VMM) for expensive hotness tracking of the VMs’ memory

and sub-optimal page migration (moving hot pages to the faster

memory). All of the above approaches fail to exploit the rich guest-

OS-level information about the applications and their memory use.

To address these problems, we design and implement HeteroOS

– a performance-efficient OS design for an application-transparent

heterogeneous memory management in virtualized systems. The key

design ideas and contributions are as follows.

Guest-OS heterogeneity awareness and memory placement. First,

in HeteroOS, we make the guest-OSes memory heterogeneity-aware

and then extract the rich information from guest-OS about how ap-

plications use different memory pages (e.g., heap, IO buffer caches).

We combine this information with guest-OS heterogeneity awareness

to provide an application-transparent OS-level memory placement

avoiding expensive page migrations.

Against the conventional OS memory management methods that

always prioritize heap to the faster memory (e.g., DRAM) [9] when

its capacity is constrained, we show that for heterogeneous memory

systems, it is critical to equally prioritize heap and I/O pages to the

faster memory for accelerating in-memory, storage, and network-

intensive applications. We also design HeteroOS-LRU, a fast memory

contention resolution method.

Coordination with VMM. Guests-OSes in virtualized systems

lack a holistic view of other guest-VMs and direct hardware control

required for privileged operations such as hot page tracking. We

address this by designing a VMM-guest coordinated management

where the VMM performs hotness tracking, and the guest-OSes

guide the VMM with their deeper view of application-specific infor-

mation.

Heterogeneous memory sharing and fairness. Efficient and fair

sharing of heterogeneous memory across multiple guest-VMs is

important. Hence, we design a novel multi-resource sharing by ex-

tending Dominant Resource Fairness (DRF) [19]. DRF provides

Strategy-proofness and Pareto efficiency. We also extend the tradi-

tional memory ballooning with heterogeneous memory support [62]

for enabling memory overcommit.

Extensive evaluation. We evaluate HeteroOS with a wide range of

memory, storage, and network-intensive datacenter applications. The

guest-OS level management combined with VMM-guest coordinated

approach shows up to 3x improvement in performance compared to

Application Description Perf. metric

GraphChi [34] Pagerank using Orkut social

graph, 8 million nodes, 500

million edges [16]

time(sec)

X-

Stream [56]

Edge-centric graph process-

ing and uses same input as

GraphChi

time(sec)

Metis [5] Shared memory mapreduce

that optimizes Phoenix [53],

4GB crime dataset, 8 mapper-

reducer threads

time(sec)

LevelDB [18] Google’s DB for bigtable,

SQlite bench with 1M keys

throughput

(MB/s)

Redis [57] Popular key-value store with

support for persistence, ana-

lyzed with Redis benchmark

4 millions ops., 80% get

requests per

sec

NGinx [28] State of the art webserver, 1

million static, dynamic, im-

ages webpages

requests per

sec

Table 2: Datacenter applications.

Factor L:1,

B:1

L:2,

B:2

L:5,

B:5

L:5,

B:12

Latency (ns) 60 128 354 960

BW (GB/s) 24 12.4 5.1 1.38

Table 3: L:x, B:y indicates the latency increase factor x, and

bandwidth reduction factor y respectively.

always using slow memory, and up to 2x compared to the state-of-

the-art VMM-exclusive management.

In the remainder of this paper, in Section 2, we first briefly pro-

vide a background on heterogeneous memory technologies and our

emulation method. In Section 2, we provide an empirical evidence

motivating the need for an OS-level design for memory heterogene-

ity management. In Section 3, we discuss the principles of HeteroOS,

followed by the design and implementation of the guest-OS level

management. In Section 4, we discuss the coordinated management

approach, followed by the resource sharing and fairness mechanism.

In Section 5, we evaluate HeteroOS, and finally, present the related

work and conclusions in Section 6 and Section 7 respectively.

2 BACKGROUND AND MOTIVATION

Technologies such as PCM and spin-torque transfer (STTRAM)

are expected to provide 4x-8x higher capacity and lower cost per

gigabyte [14, 15] compared to DRAM. However, recent indus-

trial projections, and prior research (see Table 1) show up to 2x

higher read latency, 5x-8x higher write latency, and up to 10x

lower bandwidth [15, 59, 65]. When using NVM as main mem-

ory [1, 35, 40, 49], the processor cache is expected to play a signifi-

cant role in reducing the write latency cost. Next, the endurance – the

lifetime of these technologies – is expected to be significantly lower

compared to DRAM, which can be critical when using them as main

HeteroOS ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

1.0

2.0

3.0

4.0

5.0

6.0

L:2, B:2 L:5, B:5 L:5, B:7 L:5, B:9 L:5, B:12 Remote

NUMA

S
lo

w
d

o
w

n
 f

a
c
to

r
re

la
ti

v
e
 t

o

L
1

:B
1

 (
F

a
st

M
e
m

-o
n

ly
)

Bandwidth slowdown factor

Graphchi X-Stream Metis
LevelDB Redis Nginx

Figure 1: Bandwidth and latency sensitivity: Bars show slow-

down factor relative to FastMem(L:1,B:1). Remote NUMA bars

represent FastMem on a remote socket. Analysis using Intel(R)

Xeon(R) CPU, 16 cores X5560 with 16MB cache.

1

1.5

2

2.5

3

3.5

L:2,B:2 L:5,B:5 L:5,B:7 L:5,B:9 L:5, B:12S
lo

w
d

o
w

n
 f

a
c
to

r
re

la
ti

v
e
 t

o

L
1

:B
1

 (
F

a
st

M
e
m

-o
n

ly
)

Bandwidth slowdown factor

Graphchi X-stream Metis

LevelDB Redis Nginx

Figure 2: Intel NVM emulator bandwidth and latency sensitiv-

ity. System has Intel(R) Xeon(R) CPU, 16 cores, E5-4620 v2 with

48MB cache.

1

1.5

2

2.5

3

3.5

4

1/2 1/4 1/8 1/16 1/32

S
lo

w
do

w
n

re
la

ti
ve

 t
o

F
as

tM
em

 1
:1

 r
at

io

Graphchi Xstream
Metis LevelDB
Redis Nginx

Figure 3: FastMem capacity impact.

0.94 3.34 5.04 1.75 0.53

0%

20%

40%

60%

80%

100%

Redis X-Stream Graphchi Metis LevelDB

heap/anon I/O cache/mapped
NW-buff Slab
Pagetable Total pages (millions)

Figure 4: Application memory page distribution.

memory. Prior work has proposed wear-levelling solutions rang-

ing from device-level FTL-like mechanisms [38, 39], or memory-

controller enhancements [47, 55] such as introducing large SRAM

cache [31] or DRAM write buffers. Application-level techniques

aim to reduce hot page placement in the NVM [27, 61].

In contrast to NVM, on-chip memory such as stacked 3D-DRAM,

Hybrid Memory Cube (HMC) and High Bandwidth Memory (HBM) [7,

43] are expected to provide 10x higher bandwidth and 1.5x lower

latency, but with 2x-4x lower capacity compared to DRAM. Hence,

heterogeneous memory is bound to increase the memory manage-

ment complexity of the software stack.

2.1 Assumptions and emulation

Lack of commercially available heterogeneous memory technolo-

gies and a wide range of performance parameters and endurance

characteristics quoted by different sources presents a methodological

challenge for a meaningful study to understand the impact of hetero-

geneity. Using cycle-accurate instruction-level simulators [7, 13, 43]

in both user and the OS stack for long-running applications is not

practical. Hence, in this paper, we consider two generic types of

memory (1) FastMem - high bandwidth and low latency, and lim-

ited capacity memory, and (2) SlowMem - a low bandwidth, high

latency, but a large capacity memory.

Emulation. To emulate FastMem and SlowMem, we modify the

PCI-based thermal registers to throttle the per-socket DRAM band-

width and latency as listed in Table 3, where the columns (L:x, B:y)

represent the factor of increase in latency, and a factor of reduction

in bandwidth relative to the DRAM. In this paper, we use the DRAM

(L:1, B:1) as the FastMem baseline, and reduce its bandwidth by up

to 12x and increase the latency by up to 5x to emulate SlowMem.

Prior studies [24, 26, 32] have also shown that throttling does not

have side effects other than the bandwidth and latency impact based

on the application’s memory intensity. We also verify our analysis

using Intel’s persistent memory emulator [14] that emulates NVM’s

read-write latency using a microcode patch and bandwidth emulation

via throttling. Due to restricted (user-level) access to this emulator,

we only use this platform for analysis. We consider generic FastMem

and SlowMem in our study, but even for technologies such as NVM,

when used as a heap for non-persistent writes, store operations are

posted to write-back cacheable memory. Hence, the size of the cache,

NVM bandwidth, and both read-write latency can become critical as

shown by Dulloor et al. [15].

2.2 Applications and analysis

To understand the implications of memory heterogeneity on appli-

cations, we next analyze several real-world datacenter applications

listed in Table 2 by emulating heterogeneity. Unlike prior research

that mainly targets in-memory applications; we study applications

with high variability in their memory, storage, and network. This

includes graph analytics, in-memory data stores, map-reduce com-

putations, popular databases, and a web server [16].

Memory latency and bandwidth sensitivity. Figure 1 shows the

sensitivity of applications when the SlowMem bandwidth and la-

tency factors (L:x, B:y) are varied in the x-axis. The y-axis shows the

slowdown factor of applications compared to when running exclu-

sively in FastMem (L:1, B:1). Table 4 shows the memory intensity

of the applications in MPKI (misses per kilo instructions).

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Kannan et al.

App. Graphchi X-

Stream

Metis LevelDB Redis Nginx

MPKI 27.4 24.8 14.9 4.7 11.1 2.1

Table 4: Memory intensity of applications in MPKI.

Observation 1. Applications show higher sensitivity to latency

variations compared to bandwidth.

Memory-intensive applications such as Graphchi, X-Stream, and

Metis (see Table 4) show higher sensitivity (slowdown) towards

latency increase and bandwidth reduction. In contrast, the storage-

intensive LevelDB and network-intensive Redis with relatively smaller

working set size show lower impact. Nginx, a popular web-server,

is both storage and network-intensive with a less than 60MB active

working set. Hence, even exclusively placing it in a 9x SlowMem

has less than 10% impact. Next, except Graphchi and X-Stream,

other applications have a lower impact from bandwidth reduction

compared to latency increase. This is because multi-threaded graph-

compute applications process and move data in batches, thereby

increasing memory traffic. However, other applications lack paral-

lelism and memory intensity to saturate the bandwidth. For instance,

when the bandwidth is reduced from (L:5, B:5) to (L:5, B:12) with

latency as a constant, Metis, Redis and LevelDB show a relatively

lower slowdown. Hence, timely allocation of FastMem pages even

without page migrations can be critical.

In Figure 2, we analyze the same set of applications on Intel’s

NVM emulator that varies the write latency on a cache miss and

the bandwidth. The bandwidth and latency sensitivity trends of the

applications match the analysis with our emulation mechanism. The

Intel emulator platform has a 3x larger LLC (48 MB) compared

to our emulator (16MB) with newer generation (Intel IvyBridge)

processors. As a result, the application slowdown factor is lower for

the same workloads. Increasing the workload size showed higher

application slowdown.

Observation 2. Incorrect memory placement cost in heteroge-

neous memory is significant compared to traditional NUMA sys-

tems.

In Figure 1, we show the impact of incorrect memory placement

in a NUMA system by making applications access a remote NUMA

socket FastMem for all the access. We observe that even for the most

memory-intensive (Graphchi, X-stream) or in-memory applications

(Redis), the slowdown is less than 30% compared to significantly

higher slowdowns in heterogeneous memory.

Impact of FastMem capacity. Figure 3 shows the sensitivity to-

wards FastMem capacity for an L:5, B:9 configuration. The x-axis

represents the ratio of FastMem to SlowMem capacity. For 1/2 ratio,

we use 4GB of FastMem and 8GB of SlowMem. Figure 4 shows the

memory page distribution and the total memory pages used for the

same set of applications.

Observation 3. On-demand page allocation is not only useful

for the heap but also for other OS subsystems.

Providing support for direct on-demand memory allocation to a

faster memory can significantly benefit large scale capacity-intensive

applications as they frequently allocate and release memory. For ex-

ample, as shown in Figure 3, the capacity-intensive Graphchi and

X-Stream suffer less than 2x slowdown even with a 1/2 FastMem-

SlowMem ratio. But importantly, apart from the heap use, I/O- (stor-

age and network) intensive applications frequently allocate and re-

lease memory via their OS subsystem for the filesystem page cache,

network, and storage kernel buffers (slab cache). On-demand alloca-

tion of these pages to FastMem can significantly improve application

performance. For example, as shown in Figure 4, a significant num-

ber of OS pages are allocated for the filesystem-intensive LevelDB,

the page-cache intensive X-Stream (as it maps input graph to page

cache), and the network kernel buffer-intensive Redis. Note that most

OS pages are short-lived and have high reuse, as they are released

once an I/O is complete. These applications show significantly lower

impact even as the FastMem capacity ratio is reduced from 1/2 to

1/16. Prior studies only target heap-intensive applications and miss

the opportunity for a fine-grained OS-level placement.

2.3 State-of-the-art and limitations

Recent studies on heterogeneous memory management [7, 13, 24,

36, 43, 49] have extensively used page hotness-tracking and mi-

gration. The earliest hotness-tracking mechanism was proposed by

P.Denning [12] for disk swapping. More recently, Gupta et al. [24]

proposed HeteroVisor, an approach for managing heterogeneous

memory in virtualized systems. HeteroVisor is a guest-OS trans-

parent and VMM-exclusive solution that completely relies on page

hotness-tracking and migration without any proactive memory place-

ment. Briefly, HeteroVisor and most software methods capture page

hotness by counting the number of references to a page table entry

in the hardware page table. Each entry has an ‘access bit’ that is set

when a page is accessed. The hotness-tracking mechanism period-

ically scans the page table, records the value of the access bit (set

to ‘1’ if a page is referenced), and resets the bit. HeteroVisor also

implements several optimizations such as batched hotness-tracking

and a VMM-level page reverse map for quick page table walk, simi-

lar to non-virtualized OSes [10]. Pages that are identified as hot are

promoted to FastMem, whereas least recently used hot pages are

evicted to a slower memory.

Observation 4. Reactive hotness-tracking and migration approaches

induce significant software overhead.

Although software-level hotness-tracking and migration provide

application- and guest-OS transparency (when done in the VMM),

they are expensive. First, the page table should be frequently scanned

for collecting correct hotness information. Second, the hardware

TLB entries should be periodically flushed even for tracking to en-

able a TLB translation miss and force page table reference. Third,

in OSes such as Linux, during a page walk, several validity checks

(discussed in Section 4) must be performed before a page is mi-

grated. Finally, moving pages from one memory to another requires

allocation of new pages, data copy, and a TLB flush, all performed

by stalling a core. We evaluate these overheads in Section 5.

Observation 5. The VMM-exclusive approach lacks information

and scope of an application.

HeteroOS ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

The VMM’s memory management data structures are coarse

grained and treat the entire guest-VM as an application. Conse-

quently, this forces the VMM to rely solely on tracking the entire

guest-VM’s memory and migrating hot pages, thereby adding signif-

icant software cost. In contrast, the guest-OS has rich application-

specific information such as its virtual memory page usage infor-

mation (e.g., anonymous, I/O, cache, and DMA), and their current

state (actively used, inactive, or swapped). Guiding the VMM with

the guest-OS information can reduce the monitoring scope and the

associated cost.

3 HETEROOS PRINCIPLES AND DESIGN

Using the observations and the limitations of the state-of-the-art

VMM-exclusive solutions, we next formulate the design principles

for an efficient and application-transparent memory heterogeneity

management which are both critical for faster commercial adapta-

tion [20].

Principle 1: Providing memory heterogeneity awareness to the

guest-OS is important.

Guest-OS heterogeneity awareness enables fine-grained data place-

ment and avoids frequent migrations. We first enable the NUMA

abstraction at the guest-OS, and then redesign and extend the OS-

level data structures, page allocators, NUMA-related data structures

and drivers for memory-type specific allocation.

Principle 2: Capturing subsystem-level page usage information

enables smart memory placement.

HeteroOS exploits guest-OS heterogeneity-awareness to capture

information about how memory pages are allocated and used by

the application and the OS-subsystems. Using the information, Het-

eroOS prioritizes page placement across memories without relying

on the support for VMM-level management. To reduce contention

between applications and OS subsystems for FastMem pages, we

design a novel guest-OS level LRU-based page replacement.

Principle 3: Supporting a coordinated guestOS-VMM management

exploits the VMM’s holistic view of the system.

The VMM has a holistic view and control of the system resources

and the hardware. Hence, we design HeteroOS-coordinated, a coor-

dinated management approach between the guest-OS and VMM that

enables the guest-OS to delegate and guide how the VMM performs

privileged operations such as hardware page table scans for tracking

hotness information. The VMM also provides heterogeneous mem-

ory sharing across VMs with a novel mechanism based on Dominant

Resource Fairness.

3.1 HeteroOS guest-OS design

We first discuss the design and implementation details of guest-OS

virtual memory support for heterogeneity-awareness, followed by

the smart memory placement mechanism and the HeteroOS’s LRU

page replacement. In Section 4, we discuss the VMM-guest coordi-

nated management and the DRF-based resource sharing algorithm

and implementation.

Heterogeneous memory abstraction. We design HeteroOS to pro-

vide an application-transparent heterogeneity support that leverages

the existing OS abstractions and memory management functional-

ities without throwing away decades of research. We believe this

is important for faster real-world adaptation. Therefore, we use the

generic NUMA abstraction but extend it internally. First, we ex-

pose the memory types (e.g., FastMem and SlowMem) as NUMA

nodes by enabling the typically disabled NUMA support for guest-

VMs. We achieve this by using the Linux fake NUMA patch [54].

In Figure 5, the guest-OS layer shows a SlowMem and FastMem

manager and the related heterogeneous memory components which

we discuss shortly. The initial capacities of the different memory

types are added to the guest’s boot configuration. For distinguish-

ing among the memory node types, a special flag is added to the

node structure. Guest-VM applications also have the flexibility to

map memory explicitly to the FastMem or the SlowMem with an

additional mmap() flag, but HeteroOS is not dependent on such

application-level changes.

On-demand allocation driver. In virtualized systems, during the

VM boot, the boot manager initializes a guest-VM’s memory and

adds the VM pages under the control of the OS allocator (Buddy

allocator in Linux). When the reserved pages are insufficient, the

guest-OS uses an on-demand allocation balloon driver to request the

VMM to increase the reservation [62]. For heterogeneous memory,

HeteroOS first extends the boot allocator to initialize one NUMA

node and its related data structures for each memory type. Next, for

supporting overcommit and dynamically increasing the reservation

of a memory type on-demand, as shown in steps 1 and 2 in Figure 5,

we design a new on-demand allocation driver that provides multi-

dimensional data structures required for memory-type-specific page

allocation. The back-end in the VMM handles the node-specific re-

quests and also maintains the per-node (memory type) machine page

number (MFN) mapping for each of the guests. The front-end can

also specify a fallback strategy when pages from a particular mem-

ory type cannot be provided. Note that in both homogeneous and

heterogeneous memory systems, pages allocated by the on-demand

balloon drivers are identified with a special flag, and are returned to

the VMM when the system memory pressure is high.

Extending page allocators and per-CPU free list. Limiting the

FastMem use only for performance-critical data is important due

to its limited capacity. Hence, we make several extensions to the

OS allocators. Currently, the OS statically partitions each NUMA

node into three zones – a high memory zone for user-level allocation,

a normal zone for kernel allocation (currently unused in 64-bit),

and a DMA zone. In HeteroOS, FastMem nodes are partitioned

with just one zone where both the application and OS related pages

can be allocated to conserve pages. Second, FastMem pages can

be allocated only using the HeteroOS page allocator to avoid other

general purpose allocation by the default OS allocators (Buddy

allocator in Linux). Automatic NUMA memory placement policies

that are designed for increasing the CPU affinity in homogeneous

systems are disabled for FastMem. Next, pages are identified with

an additional 1-bit (FASTMEM, SLOWMEM) flag for specialized

allocation and replacement based on the memory type. Finally, the

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Kannan et al.

Unmodified application

Migration back-end

7. Add H/W counter

Fair-share management &

ballooning

Xen
Hotpage

component

Shared

Mem

On-demand back-end

Guest OS

memory

management

3. Reserve &

update pageable

Migration front-end

1. Try on-demand On-demand front-end

FastMem

Manager

6. Add hot pages

2. Get FastMem pages

SlowMem

Manager
 8. Get FastMem pages

5. Track hot pages

9. Perform migration

4. Enable hotness

detection

Figure 5: HeteroOS on-demand allocation, and coordinated

management. In the figure, steps 1-3 show on-demand alloca-

tion, steps 4-9 show hotness-tracking and migration after the

on-demand allocation fails.

Linux OS maintains a per-CPU free page list for fast allocation of

pages that bypasses the fragmentation-efficient but complex Buddy

allocator. However, the free CPU lists are designed for a single

memory type. In HeteroOS, we redesign the per-CPU lists with

a multi-dimensional (arrays of lists) support for different memory

types which significantly boosts the allocation performance.

3.2 Memory placement and management

We next discuss application-transparent smart memory placement

mechanism at the guest-OS level that extracts the subsystem-level

page use information to prioritize FastMem allocation.

Key idea. In homogeneous memory systems, when memory is

scarce, the heap page allocation requests are prioritized over alloca-

tion requests from other I/O subsystems [30] such as I/O page cache

pages. Using the same model for heterogeneous memory systems

with limited FastMem capacity will always force the I/O cache pages

to be allocated from SlowMem resulting in a significant slowdown

for I/O-intensive application. In contrast, mapping the I/O pages

also, can significantly hide the bottlenecks of slower disks and net-

work. Hence, HeteroOS uses demand-based prioritization across

subsystems.

Demand-based FastMem prioritization. We implement a Het-

eroOS allocator that extends the Linux page allocator and provides

OS-level heterogeneous memory allocations for the heap, I/O page

cache, and the OS slab allocations. During an application execution,

the allocator periodically (we use 100ms but it is configurable) ex-

tracts information such as total page allocation requests, FastMem

allocation hits, and misses, for allocation requests from different

subsystems for page types such as heap (anonymous), page cache,

buffer cache, and kernel slab pages. When the FastMem capacity is

saturated, to resolve contention across subsystems, HeteroOS em-

ploys a novel HeteroOS-LRU (discussed shortly) to evict inactive

pages of any subsystem (including the heap) to prioritize alloca-

tion of page types with maximum miss ratio. Unlike the heap-only

approach used in traditional homogeneous memory systems, Het-

eroOS’s demand-based prioritization provides the following benefits.

In-memory applications (Heap-OD). For in-memory applications,

most memory allocations and references (∼90%) are from the heap [15].

As a result, the demand for the heap page types is high leading to

an increase in the FastMem heap miss ratio. Consequently, with our

on-demand allocation, the heap page types dominate the FastMem

allocation. Our results for Heap-OD show up to 180% gains com-

pared to using only the SlowMem pages.

Storage-intensive application (Heap-IO-OD). For most storage-

intensive applications such as databases and graph analytics [18,

34, 56], the I/O page cache plays a crucial role in improving the I/O

throughput and application performance by leveraging the spatial

and temporal locality by reading ahead I/O pages and buffering dirty

blocks. During the I/O phase of an application, the page cache allo-

cation requests are high. Using the allocation miss ratio to prioritize

the page cache to FastMem can significantly improve application

performance.

OS kernel buffers (Heap-IO-Slab-OD). Storage and network-intensive

applications spend a significant time allocating and accessing the

OS kernel buffers (slab pages). Network-intensive applications ex-

tensively use slab pages for OS-level network buffers ’skbuff’ (see

Redis in Figure 4), whereas storage-intensive applications allocate

slab pages for the filesystem metadata which are crucial for storage

performance. Prioritizing slab pages to FastMem accelerates I/O-

intensive applications. Regarding prioritizing the page table pages to

FastMem, as shown in Figure 4, the number of page table pages and

the time spent on accessing these pages is just a small fraction of the

overall application and other OS-level pages for the applications we

analyzed. Placing page table pages to FastMem or SlowMem shows

negligible (less than 0.5%) performance impact. We plan to explore

more applications in the future.

3.3 Resolving contention with HeteroOS-LRU

The limited capacity of faster memories and prioritizing page alloca-

tion from all the subsystem leads to contention. Contention exists

for homogeneous memory systems too when DRAM capacity is

limited, and OSes such as Linux employ LRU techniques. Briefly,

Linux uses an approximate split LRU that maintains an active list of

hot or recently used pages, and an inactive list with cold pages for

each memory zone. Although at a high-level, the same mechanism

can be adapted for heterogeneous memory, several limitations must

be addressed. First, current swap-based LRUs mainly target the I/O

pages [9]. Second, they use the whole system memory pressure and

not the memory pressure of individual memory types as a trigger for

eviction. Finally, they use a lazy approach of LRU scan and eviction

only after a usage threshold is reached which can trigger a storm of

allocation misses and evictions for a limited capacity FastMem. To

address these issues, we design HeteroOS-LRU.

HeteroOS-LRU. First, HeteroOS extends the existing Linux page-

replacement with support for memory type-specific thresholds for

HeteroOS ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

triggering replacement. Second, unlike the lazy approach, HeteroOS-

LRU actively monitors the active to an inactive state change of heap,

I/O page cache, and slab pages and immediately evicts them from

FastMem. To further reduce FastMem allocation misses, HeteroOS-

LRU implements the following memory type-specific threshold. (1)

During an unmap operation, several continuous pages in a VMA

region are released. HeteroOS-LRU marks these pages inactive and

aggressively migrates them to SlowMem. (2) I/O page and buffer

cache pages are released after an I/O request, are marked inactive

and immediately evicted from FastMem.

4 COORDINATED MANAGEMENT

When the on-demand allocation and LRU mechanism is not suffi-

cient to locate free FastMem pages, the guest-OS delegates the page

hotness-tracking to the VMM and also guides it to track only relevant

pages. This limits the overheads of the hotness-tracking operations.

However, the actual migrations are performed in the guest-OS – a

fundamental difference compared to the VMM-exclusive Hetero-

Visor approach described in Section 2. The VMM also performs

system-wide heterogeneous memory resource sharing across guest-

VMs.

4.1 HeteroOS-coordinated design

HeteroOS’s coordinated management (HeteroOS-coordinated) reuses

HeteroVisor’s hotness-tracking implementation but modifies it sub-

stantially to support a new guest-OS interface for coordination with

the VMM via a split guest-OS front-end and VMM back-end model,

as shown in the steps 4 to 9 in Figure 5.

OS-guided VMM-level hotness-tracking. Tracking the entire guest-

VM’s memory for hotness is expensive. Hence, our coordinated

management reduces the scope and cost by using the guest-OS in-

formation to guide the VMM about which pages to track, and when

to track.

Guiding what to track using OS-level information. The guest-

OS exports a tracking list and an exception list to the VMM using a

shared memory channel. The tracking list contains address ranges of

contiguous memory regions that the VMM should track for hotness.

We extract it using the virtual memory area (VMA) structure [22].

Next, tracking the short-lived I/O page cache and buffer cache pages

for hotness is not useful and only adds additional overhead. Hence

such pages are added to the exception list, and HeteroOS-LRU

aggressively evicts them after the I/O request. Page migration of

linearly mapped physically addressed page table and DMA pages is

complicated and not supported by OSes such as Linux. Hence they

are also added to the exception list.

Guiding when to track using architectural hints. Current systems

lack the hardware for page-level hotness-tracking. The software-

based methods of forcefully setting and resetting the PTE and scan-

ning the page table can detect the number of page accesses, but

lack the information about how many accesses to a page are cache

hits or misses. This information is critical because migrating hot

pages during an application phase with high page reuse and low

processor cache miss will have limited gains from FastMem given

the cost of migration. Without the additional hardware support for

Algorithm 1 HeteroOS DRF algorithm

1: R = {r1, ...,rm} ⊲ total memory capacities

2: C = {c1, ...,cm} ⊲ used memory capacities initially 0

3: si (i = 1..n) ⊲ guest i dominant shares, initially 0

4: V Mi = {vmi,1, ...,vmi,m}(i = 1...n)⊲ memory resources given to

guest i

5: pick guest i with lowest dominant share si in queue

6: Di - guest i’s memory allocation request

7: if C+Di ! R then

8: C =C+Di ⊲ update consumed vector

9: V Mi =V Mi +Di ⊲ update i′s allocation vector

10: si = maxm
j=1{vmi, j/r j}

11: else

12: reclaim guest i’s overcommit pages for V Mi

tracking cache hits and misses, HeteroOS monitors the LLC misses

exported by the VMM in each epoch and dynamically varies the

hotness-tracking and migration interval. When the LLC misses are

high, the migration and tracking intervals are shorter, and when low,

the interval is longer. Equation 1 shows a simple but an effective

model where i and i−1 represent the current and previous intervals.

∆LLCMiss = (LLCMissi −LLCMissi−1)/LLCMissi−1

Interval = Interval − (∆LLCMiss∗ Interval)
(1)

Guest-OS-controlled migration. In HeteroOS, the VMM’s hotness-

tracking is exported to the guest-OS, and the guest-OS performs the

page migrations for the following reasons.

Page state: Before a page is migrated, the OS during a page walk

validates if the page is mapped to a process, and not marked for

deletion or dirty (for I/O page caches). Specifically, these checks are

important for most capacity-intensive applications (e.g., Graphchi)

that frequently allocate (map) and de-allocate (unmap) pages. The

VMM without application information can migrate pages marked

for deletion only polluting FastMem. Further, it does not distinguish

short-lived dirty I/O, buffer and page cache pages and migrates them

only adding migration-related performance overhead.

Scalability via adaptive migration: With an increasing number

of guest-VMs on a single host and the increasing application work-

ing set size, we observed that performing both hotness-tracking and

migration induces significant VMM-level data structure synchroniza-

tion bottlenecks even for two guest-VMs. In contrast, the guest-level

migration provides the flexibility to use the application information

at the OS-level to selectively migrate performance critical pages

only.

4.2 Resource management with DRF

Effective resource sharing across multiple VMs is one of the primary

responsibilities of the VMM. Most VMMs today employ simple

but effective max-min fairness-based resource management. With

max-min, the resources are first allocated based on the demands

of the VMs to guarantee that each VM receives its basic share (or

what it paid for). Any unused memory is evenly distributed among

VMs demanding more than the fair share (overcommit). Finally, the

additional memory allocated to a guest-VM is reclaimed using well-

known memory ballooning [62]. However, the current mechanisms

have two major limitations, (1) single resource max-min cannot

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Kannan et al.

guarantee fairness for multiple memory types, and (2) the ballooning

mechanisms are designed for homogeneous memory.

To address the limitations of single resource min-max fairness,

we treat each memory type as a resource and extend the ‘Dominant

Resource Fairness’ proposed by Ghodsi et al. [19] for addressing

max-min fairness across multiple resources. DRF first computes the

share of each resource allocated to a guest-VM. Then, as shown

in Algorithm 1, a resource with a maximum share of all resources

for a guest-VM is its dominant resource with a dominant share.

When one or more allocation requests are made for the same re-

source by different VMs, DRF prioritizes allocation to a VM in the

order of smallest dominant share value. Each guest-VM specifies

a resource allocation vector <FastMem.pages, SlowMem.pages>

during the boot. A problem with this basic model is that, when

the FastMem capacity ratio is small, most VMs will always have

SlowMem as the dominant resource. To address this problem, we as-

sign weights for calculating the dominant share with resource vector

specified as <FastMem.weight * FastMem.pages, SlowMem.Weight

* SlowMem.pages>. For our evaluation, we use static weights (‘1’

for SlowMem, and ‘2’ for FastMem). Dynamic weights can be used

based on the cost($) of the resource in the datacenter. When the de-

mand for one resource is high, then DRF reduces to a single resource

max-min fairness.

Extending ballooning. For extending the ballooning mechanism

and supporting memory overcommit for memory types, we provide

support for guest-VMs to specify a memory type-specific minimum

capacity that is reserved during the boot, and a maximum capacity

that can be dynamically allocated by extracting (ballooning) from

other VMs, if not over-committed. Cloud providers can directly tie a

cost model to the minimum and maximum value which is beyond

the paper’s scope. Next, we extend the balloon drivers to support a

memory type-specific balloon to inflate or shrink memory from each

type. In HeteroOS, balloon drivers first use HeteroOS-LRU to find

inactive pages, and if not, swap pages to the disk.

4.3 Limitations and design discussion

In HeteroOS, rather than completely reinventing the OS, we aim

to utilize the virtues of existing OS memory management and ex-

tend it to support an application-transparent memory heterogeneity

management.

First, HeteroOS is designed for a generic fast and slow memory

type devices. Although our current OS and VMM data structures

support multiple memory types, additional data placement policies,

and technology specific extensions are required. For example, our

OS support can be extended to provide different page allocation

policies based on the latency, bandwidth, endurance and capacity

of memory types. Further, we currently support only aggressive

FastMem eviction policy. For multi-level memories, enabling page-

type specific promotion/demotion policies can be important. For

example, inactive heap pages can be demoted one level at a time

(e.g., FastMem− >MediumMem− >SlowMem) because of high

reuse, whereas IO buffers are mostly unused after IO completion,

and can be demoted to large-but-slowest memory. We plan to focus

on these extensions in our future work.

Mechanisms Description

Heap-OD On-demand heap allocation

Heap-IO-Slab-

OD

Heap-OD + IO page cache allocation +

slab allocation

HeteroOS-LRU Heap-IO-Slab-OD + HeteroOS-LRU

HeteroOS-

cordinated

HeteroOS-LRU + OS guided hotness-

tracking + architecure hints

Table 5: HeteroOS incremental mechanisms.

Second, HeteroOS can only manage memory devices that are

exposed to the software. Therefore, for memory technologies such

as MCDRAM [58], HeteroOS can manage the software-exposed

‘flat’ or ‘hybrid’ mode, with the hardware managing the ‘cache’

mode. Further, the technology specific management can be added to

HeteroOS by extending the NUMA policy.

Third, memory technologies such as NVM have substantial read-

write latency imbalance. Our page placement and the migration

policies can be extended to migrate hot and write-heavy SlowMem

(NVM) pages to FastMem retaining the read-heavy pages in SlowMem.

One software approach for tracking the write activity of a page is by

periodically setting and resetting the write bit (PAGE_RW) of page

table entries and maintaining the history similar to hotness-tracking

discussed in this paper. However, this approach is approximate and

can add significant software overhead. Tracking such information

in the hardware and exposing it to the software (e.g., at the memory

controller level [43]) can significantly reduce such overheads.

Fourth, we use DRF because it is proven to guarantee strategy-

proofness (no benefits from lying) and Pareto efficiency. For guest-

VMs lying about FastMem (or SlowMem) requirement, its dominant

ratio increases forcing HeteroOS’s ballooning to reclaim pages. For

stronger security model against a malicious guest-VM, DRF can be

complemented with other cloud resource security models [17, 64].

Finally, although HeteroOS is currently implemented targeting

virtualized datacenters, most of the placement and management is

done at the OS. Hence it can be easily applied to non-virtualized sys-

tems with bare-metal OS by just moving the page hotness-tracking

and DRF into the OS.

5 EVALUATION

We evaluate HeteroOS using micro-benchmarks and real-world

cloud applications and aim to answer the following questions.

• What are the implications of guest-OS heterogeneous mem-

ory awareness?

• How effective is the HeteroOS’s application-transparent

memory placement?

• What are the performance benefits of the coordinated guest-

OS-VMM management?

• How effective is HeteroOS’s DRF-based resource sharing

mechanisms?

5.1 Methodology and baselines

We use a 16-core Intel Xeon 2.67 GHz dual socket system, with

16GB memory per socket. As discussed earlier in Section 2, we

consider generic FastMem and SlowMem types. For FastMem, we

use DRAM, and for SlowMem, we apply DRAM thermal throttling

to decrease the bandwidth by ~9x and increase the latency by ~5x

HeteroOS ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

200

400

600

800

1000

1200

0.1 0.25 0.5 1 1.5 2

L
at

en
cy

 (
cy

cl
es

)

WSS (GB)

Random Heap-OD
FastMem-only VMM-exclusive
SlowMem-only

Figure 6: Memory latency benchmark.

0

5

10

0.5 1.5

B
an

d
w

id
th

 (
G

B
/s

ec
)

Working set size (GB)

SlowMem-only Random
Heap-OD FastMem-only
VMM-exclusive

Figure 7: Stream bandwidth benchmark.

0

20

40

60

R
u
n
ti

m
e

o
v
er

h
ea

d
 (

%
) Hotpage Migration

3.1 M
0.8 M

0.3 M
2.2 M

1.4 M

1.3 M

Figure 8: VMM-exclusive [24] hotness-tracking and migration

cost for Graphchi (values in bars show millions of pages).

Batch size Tpage_move (in µs) Tpage_walk (in µs)

8K 25.5 43.21

64K 15.7 26.32

128K 11.12 10.25

Table 6: Per-page migration (page walk + page copy cost).

based on the industrial projections [4, 59]. A similar approach has

been used by prior heterogeneous memory research [11, 24]. Each

guest-VM in our evaluation has 8GB SlowMem, and we vary the

FastMem capacity from 256MB to 4GB. For our evaluation, we

use popular cloud applications listed in Table 2 with varying CPU,

memory, storage, and network intensity. We use two baselines, (1)

SlowMem-only – a naive approach always using SlowMem memory,

and (2) FastMem-only – an ideal approach in which application

memory requirements are always satisfied by FastMem with un-

limited capacity. Table 5, summarizes the incremental HeteroOS

approaches.

5.2 Micro benchmark analysis

We next evaluate the implications of different heterogeneous mem-

ory placement and management methods using microbenchmarks.

Memory latency and bandwidth. We first perform analysis using

the memory latency microbenchmark – ‘memlat’ [60] in Figure 6,

and a well-known memory bandwidth Stream benchmark in Figure 7.

We limit the FastMem capacity to 0.5GB and SlowMem to 3.5GB.

We compare (1) HeteroOS’s simple heap-only allocation (Heap-OD)

against (2) the VMM-exclusive migration-only approach, (3) Ran-

dom - an approach that randomly allocates and places pages in the

FastMem reserved at the boot time without heterogeneity-awareness,

and the baselines (4) SlowMem-only and (5) FastMem-only. The

benchmarks allocate only heap pages. For the latency benchmark,

we vary the working set size from 0.25GB to 2GB in the x-axis with

average latency in the y-axis. For the bandwidth (Stream) bench-

mark, we show results for 0.5GB and 1.GB, and the y-axis shows

the corresponding memory bandwidth.

Observations. First, the Random approach shows a non-deterministic

behavior for both the latency and the bandwidth benchmarks. When

the working set is smaller (0.25GB) than the available FastMem, the

latency is high. However, increasing the working set (0.5 and 1 GB)

increases memory pressure forcing frequent FastMem allocations

resulting in a lower latency. Increasing the working set further shows

significant degradation. Next, with Heap-OD, for working set smaller

than FastMem, on-demand allocation shows ideal latency and band-

width comparable to the FastMem-only approach. Increasing the

working set beyond 0.5GB results in a gradual increase in latency

and reduction in the bandwidth. In contrast, the VMM-exclusive

approach, by relying upon migration for even a smaller working set

shows the highest latency and the lowest bandwidth. However, it

is important to note that when the working set is increased beyond

the capacity of FastMem (0.5GB), the VMM-exclusive method, by

hotness-tracking and evicting least used FastMem pages, always

achieves a zero FastMem allocation miss ratio. The results highlight

that First, On-demand allocation is important when the working

set is less than FastMem capacity. Second, for a larger working set,

hotness-tracking and migration are essential.

Hotness tracking and migration cost. Next, to understand the

cost of hotness-tracking and page migration, we use the state-of-

the-art VMM-exclusive implementation, HeteroVisor, and enable

hotness-tracking and migration for Graphchi [34] application. Our

goal is to understand the software overheads; hence we do not em-

ulate NVM bandwidth and latency. We vary the tracking hotness-

tracking intervals from 100ms-500ms for every 32K pages similar

to HeteroVisor [24]. The x-axis shows the hotness-tracking intervals

(100ms-500ms) for scanning 32K pages of a VM and the y-axis

shows the runtime overhead (in %). Clearly, even with a 500ms in-

terval, the migration, and hotness-tracking adds up to 32% overhead

on the application, and for 100ms, the overheads increase by up

to 60%. Hot page scan requires frequent TLB invalidation to force

the hardware to set a page table access bit upon reference. Hence,

hotness-tracking is even more expensive compared to the migrations.

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Kannan et al.

Regarding the actual page migration cost, Table 6 shows the av-

erage per-page page copy cost (Tpage_move) and the page table walk

cost (Tpage_walk). We vary the batch size of such page movement. It

is interesting to note that cost of page walk is even more expensive

than actual migration. Batching the page walks and copy opera-

tions reduces the average cost by reducing the page tree traversal

cost of higher memory bandwidth usage. Overall, the results show

that relying exclusively on migrations for heterogeneous memory

management is highly suboptimal.

5.3 Guest-OS memory placement

We next evaluate the effectiveness of HeteroOS in leveraging appli-

cation page use information for right memory placement inside the

guest-OS. Figure 9 shows the results for all applications listed in

Table 2. We compare the following approaches summarized in Ta-

ble 5: (1) Heap-OD, (2) Heap-IO-Slab-OD, (3) HeteroOS-LRU, (4)

NUMA-preferred – the existing Linux’s preferred NUMA node [33]

policy by enabling our guest-OS heterogeneity awareness, and fi-

nally, (5) FastMem-only - shown with the dashed line. We do not

discuss NGinx [44] because it has less than 10% impact from het-

erogeneous memory, as discussed in Section 2.The y-axis shows the

performance gain percentage compared to the naive SlowMem-only

approach. To measure the effectiveness of each of the approaches in

allocating FastMem pages, Figure 10 shows the miss ratio of total

FastMem page allocation misses to the total allocation requests.

Observations. First, making the guest-OS heterogeneity-aware and

providing on-demand memory allocation provides significant ben-

efits. When prioritizing only the heap pages with Heap-OD (solid

gray bars in the figure), the heap-intensive Graphchi and Metis show

121% and 84% gains even with 1/2 FastMem capacity ratio. Appli-

cations such as Graphchi that frequently allocate-deallocate memory

and show up to 2x gains even with 1/4 ratio. This is in contrast to

Metis’s 45% gains as it seldom releases memory and has a large

5GB working set size. X-Stream, LevelDB, and Redis show limited

gains with Heap-only prioritization. Both LevelDB and X-Stream

are highly page-cache intensive and prioritizing the I/O page cache

along with the heap is of key importance. For LevelDB, placing

buffer cache pages in FastMem speeds up logging and read opera-

tions via a memory-mapped database. This results in a 2x increase in

the overall throughput. X-Stream computes over a memory mapped

I/O data, and FastMem-based page-cache alone reduces the runtime

by 50% with an overall 2x reduction with Heap-IO-Slab-OD for 1/2

capacity ratio and ~80% for 1/4 ratio. For Redis, prioritizing the slab

allocations pages used for the network send and receive buffers in

FastMem significantly improves throughput.

Finally, NUMA-preferred bars represent the implications of just

using the existing NUMA management for dealing with heteroge-

neous memories by setting FastMem as preferred node. Applica-

tions CPUs first use FastMem, and when free pages are exhausted,

SlowMem is used. We use NUMA-preferred placement for compar-

ison because we notice a significant slowdown with other policies

such as ‘local node first’ or the Linux automatic NUMA balanc-

ing [23] policy because some cores are bounded to SlowMem even

when FastMem is available, resulting in a significant slowdown. The

results in the figure demonstrate that existing NUMA policies can

0

50

100

150

200

250

300

1/21/41/8 1/21/41/8 1/21/41/8 1/21/41/8 1/21/41/8

Graphchi X-Stream Metis LevelDB Redis

%
 g

ai
n

s
re

la
ti

v
e

to

S
lo

w
M

em
-o

n
ly

FastMem to SlowMem capacity ratio

Heap-OD

Heap-IO-SLAB-OD

Hetero-LRU

NUMA-preferred

FastMem-only

Figure 9: Impact of OS heterogeneity awareness. Y-axis shows

gains (%) relative to using only SlowMem.

0.72

0.96
0.92

1.00

0.57

0.40

0.60

0.80

1.00

1.20

Graphchi X-Stream Metis LevelDB Redis

M
is

s
ra

ti
o

Heap-OD Heap-IO-Slab-OD
HeteroOS-LRU NUMA-preferred

Figure 10: FastMem allocation miss ratio for 1/8 FastMem ca-

pacity ratio.

extract some benefits when FastMem capacity is high (e.g., 82%

for Graphchi with 1/2 capacity ratio compared to SlowMem only

approach). But for lower FastMem capacity, the benefits signifi-

cantly degrade compared to all the HeteroOS approaches, and for

all applications and configurations. This is because existing NUMA

mechanisms (a) fail to differentiate the significant latency and band-

width differences, (b) always prioritize heap and lack smart memory

placement, (c) lack active contention resolution, and finally, (d) lack

guest-OS-VMM coordinated management discussed shortly.

The results validate the importance of guest-OS heterogeneity-

awareness, smart memory placement, and HeteroOS-LRU principles

for in-memory, storage, and network-intensive applications.

5.4 Impact of coordinated management

We next evaluate the impact of HeteroOS’s VMM-guest coordinated

management using the same applications as before for 1/4 and 1/8

capacity configurations. In Figure 11, the y-axis shows the speedup

relative to the SlowMem-only baseline, and the dotted lines repre-

sents the best case FastMem-only approach. Figure 12 compares the

gains only from migrations and the total pages migrated (in millions)

for three applications (for brevity) relative to the Heap-IO-Slab-OD

which completely relies on smart page placement without any migra-

tion. In Figure 11, we compare the following approaches described

in Table 5 – (1) VMM-exclusive with hot page scan of 16K guest-

VM pages in a 100msec interval, (2) HeteroOS-LRU - the best case

approach analyzed in Figure 9, and (3) the HeteroOS-coordinated

where the guest guides the VMM to scan only relevant application

HeteroOS ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

0

50

100

150

200

250

1/4 1/8 1/4 1/8 1/4 1/8 1/4 1/8 1/4 1/8

Graphchi X-Stream LevelDB Redis Metis

G
a
in

s(
%

)
re

la
ti

v
e
 t

o

S
lo

w
M

e
m

-o
n
ly

FastMem to SlowMem capacity ratio

HeteroOS-LRU

VMM-exclusive

HeteroOS-coordinated

FastMem-only

Figure 11: Impact of HeteroOS-coordinated.

Apps. VMM-

exclusive

HeteroOS-

LRU

HeteroOS-

Coordinated

Graphchi -30.0 (0.69) 10.0 (0.10) 40.0 (0.33)

Redis -20.0 (0.51) 2.1 (0.11) 19.0 (0.26)

LevelDB -10.0 (0.14) 20.0 (0.01) 20.0 (0.08)

Figure 12: Gains exclusively from page migrations

relative to Heap-IO-Slab-OD. Values in brackets

shows total migration in millions.

pages instead of the entire guest-VM, and to dynamically vary the

hotness scanning interval from 50ms to 1 second based on the in-

crease in cache misses using Equation 1 in Section 4.

VMM-exclusive vs. HeteroOS-LRU. The VMM-exclusive migration-

only approach performs poorly due to lazy FastMem page allocation

even when FastMem pages are free, and lack of information about

FastMem pages that are already released by application for OS

garbage collection resulting in a ~40-45% lower page reuse com-

pared to HeteroOS-LRU. Additionally, applications such as LevelDB

with a small working set size that fits in FastMem show less than

10% gains with the VMM-exclusive approach. The VMM-exclusive

is useful for long-running and heap-intensive applications such as

Metis where its gains are comparable with HeteroOS-LRU.

HeteroOS-LRU vs. HeteroOS-coordinated. The coordinated ap-

proach combines HeteroOS-LRU and VMM’s hotness-tracking and

also reduces hotness-tracking overheads with guest-OS hints and

the migration overheads by monitoring cache miss counters. As a

result, the HeteroOS-coordinated approach outperforms the guestOS-

only HeteroOS-LRU management approach for both memory capac-

ity and cache-intensive applications. For Graphchi and X-Stream,

HeteroOS-coordinated approach improves the gains by 28%, and

16% compared to HeteroOS-LRU for 1/4 capacity ratio. For Lev-

elDB, with a small working set size, VMM-level hotness-tracking

with HeteroOS-coordinated does not add much to the HeteroOS-

LRU’s gains. As shown in Table 12, while the page migrations

with HeteroOS-coordinated increase relative to the eviction and mi-

grations by HeteroOS-LRU, HeteroOS-coordinated also improves

application performance validating the need for a coordinated ap-

proach.

91.20
110.96

39.2

158

52.04

0

50

100

150

200

Graphchi VM Metis VM

G
ai

n
s(

%
)

re
la

ti
v

e
to

S
lo

w
M

em
-o

n
ly

VMM-exclusive
HeteroOS-coordinated
DRF-HeteroOS-coordinated
Single-VM HeteroOS-coordinated

Figure 13: Impact of multi-VM resource sharing.

5.5 Weighted DRF-based resource sharing

To understand the impact of HeteroOS’s DRF-based heterogeneous

memory sharing across VMs, we compare DRF-based HeteroOS-

coordinated with the single resource max-min fairness-based HeteroOS-

coordinated and the VMM-exclusive approach. We run a Graphchi

VM and Metis VM on a system with total 4GB FastMem and 8GB

SlowMem. For Graphchi, we use a Twitter dataset that requires 6GB

of total heap capacity with an active working set size of just 1.5GB.

Hence, the Graphchi VM is reserved with a 1GB FastMem, and

4GB SlowMem with a resource vector < 2∗1GB,1∗4GB > where

2 and 1 represent the weight of FastMem and SlowMem resource

respectively. For Metis, our dataset uses 8GB of the heap and has a

working set size of 5.4GB. Hence, we use a < 2∗3GB,1∗4GB >

configuration. When using DRF, for the Graphchi VM, SlowMem

(1*4GB) is the dominant resource, and for the Metis VM, FastMem

(2*3GB) is dominant. Note that the existing max-min mechanisms

can guarantee fairness for only one memory type. In Figure 13, the

bars represent the multi-VM execution time, whereas the stars in-

dicate the single-VM HeteroOS-coordinated time (best case in the

earlier evaluation).

Max-min VMM-exclusive vs. HeteroOS-coordinated. First, as

expected, resource contention across multiple VMs (Graphchi and

Metis) slows down the performance compared to a single VM

HeteroOS-coordinated approach. Next, although the simple max-

min fairness-based HeteroOS-coordinated outperforms the VMM-

exclusive approach by reducing migrations, however, the Graphchi

VM suffers ~73% slowdown relative to the single-VM execution

baseline due to resource contention with Metis VM which only

suffers 36% slowdown. The memory-hungry Metis first exhausts

the reserved FastMem and then starts exhausting SlowMem by bal-

looning out the Graphchi VM’s SlowMem pages too. This happens

because a single resource max-min can guarantee fairness of only

one resource (FastMem in this case).

Max-min vs. Weighted DRF HeteroOS-coordinated. Unlike the

single resource max-min fairness, DRF by defining a dominant re-

source – FastMem for Metis VM, SlowMem for Graphchi VM,

guarantees the 4GB SlowMem availability for Graphchi VM. As

a result, DRF-based HeteroOS-coordinated improves the Graphchi

VM’s performance by 42%, and 87% compared to a simple max-min

fairness-based HeteroOS-coordinated and VMM-exclusive approach,

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Kannan et al.

respectively. The overall system performance also improves.

Summary. First, by making guest-VMs heterogeneous memory-

aware, and extracting the heap, IO, and network page use information

for smart memory placement, HeteroOS provides up to 180% gains

over the naive SlowMem-only approach. HeteroOS-LRU reduces

contention and increases FastMem use to improve the gains by

194% (~3x). Next, the HeteroOS-coordinated exploits the OS-level

information to guide the VMM’s hotness-tracking and provides up

to 2x gains over the VMM-exclusive approach. Finally, the DRF’s

multi-resource fairness-based sharing provides up to 87% gains

compared to the VMM-exclusive approach.

6 RELATED WORK

Prior research has dealt with heterogeneous memory at the hardware,

systems software, or the application-level.

Hardware support. Several hardware efforts have explored the use

of byte addressable NVMs such as phase change memory (PCM)

and on-chip 3D-DRAM. Some have focussed specifically on the

persistence aspect of NVM [36, 40, 49, 51] and others have mainly

explored the benefits of using NVM for additional capacity. For

stacked 3D-DRAMs, some researchers have considered using them

as a large last level (L4) cache [6, 29, 41, 48, 66]. In contrast, other

research [2, 7, 13, 25, 43, 46] use them as a high bandwidth DRAM

due to significant hardware changes (cache controller and tag space

changes), and lack of application flexibility.

Hardware-based management. Batman [7] modifies the memory

controller to randomize data placement for increasing the cumulative

DRAM and stacked 3D-DRAM bandwidth. Meswani et al. [43] dis-

cuss extending the TLB and the memory controller with additional

logic for identifying page hotness. To reduce page migration cost,

X.Dong et al. [13] propose SSD FTL-like mapping [8] that can map

FastMem slots with a physical address dynamically. M.Oskin et

al. [45] propose an architectural mechanism to selectively invali-

date entries in the TLB for reducing the TLB shoot-downs during

migrations. Ramos et al. [52] propose a hybrid design with hardware-

driven page placement policy and the OS periodically updating its

page tables using the information from the memory controller. In

contrast to all these solutions, HeteroOS is an OS-level solution

without hardware changes but can complement prior hardware-level

proposals.

OS and software-level management. Prior software solutions

mostly rely on application-level extensions with new interfaces [37]

and offline memory classification [15]. Phadke et al. [46] categorize

application data structures into latency, bandwidth or CPU-intensive

to guide the OS-level page allocation. Dulloor et al. [15] propose

X-mem that uses static analysis information to guide the user-level

library allocator. HeteroOS does not require any static analysis or

application-level changes. Most prior studies target in-memory ap-

plications only [15, 43, 46], whereas the HeteroOS design addresses

in memory, storage, and network-intensive applications. HetroOS

is the first system to manage memory heterogeneity for both non-

virtualized and virtualized systems. Unlike prior solutions that only

discuss the differences between homogeneous and heterogeneous

NUMA systems, HeteroOS also shows how to extend NUMA-based

abstraction for efficient management of heterogeneous memory.

7 CONCLUSION

In this paper, we study the impact of memory heterogeneity on data-

center applications and address the inefficiency of existing homoge-

neous memory management and page migration-based techniques.

We design an application-transparent OS- and VMM-level solution,

HeteroOS, which provides guest-OS with heterogeneity awareness

and extracts rich OS-level information to provide smart memory

placement reducing page migrations. Furthermore, it combines the

guest-OS information with the VMM’s privileged hardware con-

trol to coordinate placement of performance-critical pages to the

right memory and resource fairness across VMs using a novel DRF

mechanism. Overall results show up to 2x benefits over state-of-

the-art approaches. We believe our analysis of software overheads

such as hotness-tracking, page movement cost, and design methods

will benefit hardware architects and OS developers to design more

optimal methods and technology-specific solutions for managing

heterogeneous memory.

ACKNOWLEDGMENTS

We would like to thank all of the anonymous reviewers for their

valuable feedback. Dr. Greg Eisenhauer from Georgia Tech provided

valuable suggestions on earlier drafts of this paper. We would also

like to thank the U.S. Department of Energy and Intel Labs for their

funding and access to the Intel NVM emulator platform.

REFERENCES
[1] Ameen Akel, Adrian M. Caulfield, Todor I. Mollov, Rajesh K. Gupta, and Steven

Swanson. Onyx: a protoype phase change memory storage array. In HotStorage

’11.

[2] Berkin Akin, Franz Franchetti, and James C. Hoe. 2015. Data Reorganization in

Memory Using 3D-stacked DRAM. In Proceedings of the 42Nd Annual Interna-

tional Symposium on Computer Architecture (ISCA ’15). ACM, New York, NY,

USA, 131–143. https://doi.org/10.1145/2749469.2750397

[3] Oren Avissar, Rajeev Barua, and Dave Stewart. 2002. An Optimal Memory Allo-

cation Scheme for Scratch-pad-based Embedded Systems. ACM Trans. Embed.

Comput. Syst. 1, 1 (Nov. 2002), 6–26. https://doi.org/10.1145/581888.581891

[4] Bryan Black, Murali Annavaram, Ned Brekelbaum, John DeVale, Lei Jiang,

Gabriel H. Loh, Don McCaule, Pat Morrow, Donald W. Nelson, Daniel Pantuso,

Paul Reed, Jeff Rupley, Sadasivan Shankar, John Shen, and Clair Webb. 2006. Die

Stacking (3D) Microarchitecture. In Proceedings of the 39th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO 39). IEEE Computer

Society, Washington, DC, USA, 469–479. https://doi.org/10.1109/MICRO.2006.

18

[5] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans Kaashoek,

Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang,

and Zheng Zhang. 2008. Corey: An Operating System for Many Cores. In

Proceedings of the 8th USENIX Conference on Operating Systems Design and

Implementation (OSDI’08). USENIX Association, Berkeley, CA, USA, 43–57.

http://dl.acm.org/citation.cfm?id=1855741.1855745

[6] Chiachen Chou, Aamer Jaleel, and Moinuddin K. Qureshi. 2014. CAMEO: A

Two-Level Memory Organization with Capacity of Main Memory and Flexibility

of Hardware-Managed Cache. In Proceedings of the 47th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-47). IEEE Computer

Society, Washington, DC, USA, 1–12. https://doi.org/10.1109/MICRO.2014.63

[7] Chia-Chen Chou, Aamer Jaleel, and Moinuddin Qureshi. 2015. BATMAN:

Maximizing Bandwidth Utilization for Hybrid Memory Systems. In Technical

Report, TR-CARET-2015-01 (March 9, 2015).

[8] Tae-Sun Chung, Dong-Joo Park, Sangwon Park, Dong-Ho Lee, Sang-Won Lee,

and Ha-Joo Song. 2009. A Survey of Flash Translation Layer. J. Syst. Archit. 55,

5-6 (May 2009), 332–343. https://doi.org/10.1016/j.sysarc.2009.03.005

[9] Jonathan Corbet. 2016. Linux Swap priority. https://lwn.net/Articles/690079.

(2016).

HeteroOS ISCA ’17, June 24-28, 2017, Toronto, ON, Canada

[10] Jonathan Crobett. 2003. Linux object-based reverse-mapping. https://lwn.net/

Articles/23732/. (2003).

[11] Qingyuan Deng, David Meisner, Luiz Ramos, Thomas F. Wenisch, and Ricardo

Bianchini. 2011. MemScale: Active Low-power Modes for Main Memory. In

Proceedings of the Sixteenth International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS XVI). ACM, New

York, NY, USA, 225–238. https://doi.org/10.1145/1950365.1950392

[12] Peter J. Denning. 1968. The Working Set Model for Program Behavior. Commun.

ACM 11, 5 (May 1968), 323–333. https://doi.org/10.1145/363095.363141

[13] Xiangyu Dong, Yuan Xie, Naveen Muralimanohar, and Norman P. Jouppi.

2010. Simple but Effective Heterogeneous Main Memory with On-Chip Mem-

ory Controller Support. In Proceedings of the 2010 ACM/IEEE International

Conference for High Performance Computing, Networking, Storage and Anal-

ysis (SC ’10). IEEE Computer Society, Washington, DC, USA, 1–11. https:

//doi.org/10.1109/SC.2010.50

[14] Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,

Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System Software

for Persistent Memory. In Proceedings of the Ninth European Conference on Com-

puter Systems (EuroSys ’14). ACM, New York, NY, USA, Article 15, 15 pages.

https://doi.org/10.1145/2592798.2592814

[15] Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram,

Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. 2016.

Data Tiering in Heterogeneous Memory Systems. In Proceedings of the Eleventh

European Conference on Computer Systems (EuroSys ’16). ACM, New York, NY,

USA, Article 15, 16 pages. https://doi.org/10.1145/2901318.2901344

[16] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad

Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia

Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerging

scale-out workloads on modern hardware. In Proceedings of the seventeenth

international conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’12). ACM, New York, NY, USA, 37–48. https:

//doi.org/10.1145/2150976.2150982

[17] Tal Garfinkel and Mendel Rosenblum. 2005. When Virtual is Harder Than

Real: Security Challenges in Virtual Machine Based Computing Environments.

In Proceedings of the 10th Conference on Hot Topics in Operating Systems

- Volume 10 (HOTOS’05). USENIX Association, Berkeley, CA, USA, 20–20.

http://dl.acm.org/citation.cfm?id=1251123.1251143

[18] Sanjay Ghemawat and Jeff Dean. 2011. Google LevelDB . http://tinyurl.com/

osqd7c8. (2011).

[19] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker,

and Ion Stoica. 2011. Dominant Resource Fairness: Fair Allocation of Multiple

Resource Types. In Proceedings of the 8th USENIX Conference on Networked

Systems Design and Implementation (NSDI’11). USENIX Association, Berkeley,

CA, USA, 323–336. http://dl.acm.org/citation.cfm?id=1972457.1972490

[20] Jerome Glisse. 2016. Linux heterogeneous memory management. https://lwn.net/

Articles/679300/. (2016).

[21] Maya Gokhale, Scott Lloyd, and Chris Macaraeg. 2015. Hybrid Memory Cube

Performance Characterization on Data-centric Workloads. In Proceedings of the

5th Workshop on Irregular Applications: Architectures and Algorithms (IA3 ’15).

ACM, New York, NY, USA, Article 7, 8 pages. https://doi.org/10.1145/2833179.

2833184

[22] Mel Gorman. 2004. Understanding the Linux Virtual Memory Manager. Prentice

Hall PTR, Upper Saddle River, NJ, USA.

[23] Mel Gorman. 2012. Foundation for automatic NUMA balancing. https://lwn.net/

Articles/523065. (2012).

[24] Vishal Gupta, Min Lee, and Karsten Schwan. 2015. HeteroVisor: Exploiting

Resource Heterogeneity to Enhance the Elasticity of Cloud Platforms. In Pro-

ceedings of the 11th ACM SIGPLAN/SIGOPS International Conference on Vir-

tual Execution Environments (VEE ’15). ACM, New York, NY, USA, 79–92.

https://doi.org/10.1145/2731186.2731191

[25] Anthony Gutierrez, Michael Cieslak, Bharan Giridhar, Ronald G. Dreslinski,

Luis Ceze, and Trevor Mudge. 2014. Integrated 3D-stacked Server Designs for

Increasing Physical Density of Key-value Stores. In Proceedings of the 19th

International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’14). ACM, New York, NY, USA, 485–498.

https://doi.org/10.1145/2541940.2541951

[26] Heather Hanson and Karthick Rajamani. 2012. What Computer Architects Need

to Know About Memory Throttling. In Proceedings of the 2010 International Con-

ference on Computer Architecture (ISCA’10). Springer-Verlag, Berlin, Heidelberg,

233–242. https://doi.org/10.1007/978-3-642-24322-6_20

[27] Jingtong Hu, Qingfeng Zhuge, Chun Jason Xue, Wei-Che Tseng, and Edwin H.-M.

Sha. 2013. Software Enabled Wear-leveling for Hybrid PCM Main Memory on

Embedded Systems. In Proceedings of the Conference on Design, Automation

and Test in Europe (DATE ’13). EDA Consortium, San Jose, CA, USA, 599–602.

http://dl.acm.org/citation.cfm?id=2485288.2485434

[28] Sysoev Igor. 2004. NGinx Webserver. http://nginx.org. (2004).

[29] Xiaowei Jiang, N. Madan, Li Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell,

D. Solihin, and R. Balasubramonian. 2010. CHOP: Adaptive filter-based DRAM

caching for CMP server platforms. In High Performance Computer Architecture

(HPCA), 2010 IEEE 16th International Symposium on. 1–12. https://doi.org/10.

1109/HPCA.2010.5416642

[30] Crobett Jonathan. 2012. Linux Swapping. https://lwn.net/Articles/495543.

(2012).

[31] Yongsoo Joo, Dimin Niu, Xiangyu Dong, Guangyu Sun, Naehyuck Chang, and

Yuan Xie. 2010. Energy- and Endurance-aware Design of Phase Change Memory

Caches. In Proceedings of the Conference on Design, Automation and Test in

Europe (DATE ’10). European Design and Automation Association, 3001 Leuven,

Belgium, Belgium, 136–141. http://dl.acm.org/citation.cfm?id=1870926.1870961

[32] Sudarsun Kannan, Ada Gavrilovska, and Karsten Schwan. 2016. pVM: Persistent

Virtual Memory for Efficient Capacity Scaling and Object Storage. In Proceedings

of the Eleventh European Conference on Computer Systems (EuroSys ’16). ACM,

New York, NY, USA, Article 13, 16 pages. https://doi.org/10.1145/2901318.

2901325

[33] Michael Kerrisk. 2007. Linux NUMA policies. http://man7.org/linux/man-pages/

man3/numa.3.html. (2007).

[34] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-scale

Graph Computation on Just a PC. In Proceedings of the 10th USENIX Conference

on Operating Systems Design and Implementation (OSDI’12). USENIX Associ-

ation, Berkeley, CA, USA, 31–46. http://dl.acm.org/citation.cfm?id=2387880.

2387884

[35] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and others. Architecting phase change

memory as a scalable dram alternative. In ISCA ’09.

[36] Benjamin C. Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting

phase change memory as a scalable dram alternative. In ISCA. ACM.

[37] Felix Xiaozhu Lin and Xu Liu. 2016. Memif: Towards Programming Het-

erogeneous Memory Asynchronously. In Proceedings of the Twenty-First In-

ternational Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS ’16). ACM, New York, NY, USA, 369–383.

https://doi.org/10.1145/2872362.2872401

[38] Duo Liu, Tianzheng Wang, Yi Wang, Zhiwei Qin, and Zili Shao. 2011. PCM-FTL:

A Write-Activity-Aware NAND Flash Memory Management Scheme for PCM-

Based Embedded Systems. In Proceedings of the 2011 IEEE 32Nd Real-Time

Systems Symposium (RTSS ’11). IEEE Computer Society, Washington, DC, USA,

357–366. https://doi.org/10.1109/RTSS.2011.40

[39] Duo Liu, Tianzheng Wang, Yi Wang, Zhiwei Qin, and Zili Shao. 2012. A Block-

level Flash Memory Management Scheme for Reducing Write Activities in PCM-

based Embedded Systems. In Proceedings of the Conference on Design, Automa-

tion and Test in Europe (DATE ’12). EDA Consortium, San Jose, CA, USA,

1447–1450. http://dl.acm.org/citation.cfm?id=2492708.2493062

[40] Ren-Shuo Liu, De-Yu Shen, Chia-Lin Yang, Shun-Chih Yu, and Cheng-

Yuan Michael Wang. 2014. NVM Duet: Unified Working Memory and Persistent

Store Architecture. In Proceedings of the 19th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS

’14). ACM, New York, NY, USA, 455–470. https://doi.org/10.1145/2541940.

2541957

[41] Gabriel Loh and Mark D. Hill. 2012. Supporting Very Large DRAM Caches with

Compound-Access Scheduling and MissMap. IEEE Micro 32, 3 (May 2012),

70–78. https://doi.org/10.1109/MM.2012.25

[42] Sally A. McKee. 2004. Reflections on the Memory Wall. In Proceedings of the

1st Conference on Computing Frontiers (CF ’04). ACM, New York, NY, USA,

162–. https://doi.org/10.1145/977091.977115

[43] M.R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G.H. Loh.

2015. Heterogeneous memory architectures: A HW/SW approach for mixing die-

stacked and off-package memories. In High Performance Computer Architecture

(HPCA), 2015 IEEE 21st International Symposium on. 126–136. https://doi.org/

10.1109/HPCA.2015.7056027

[44] Rick Nelson. 2014. NGinx memory usage. https://www.nginx.com/blog/

nginx-websockets-performance/. (2014).

[45] Mark Oskin and Gabriel H. Loh. 2015. A Software-Managed Approach to Die-

Stacked DRAM. In Proceedings of the 2015 International Conference on Parallel

Architecture and Compilation (PACT) (PACT ’15). IEEE Computer Society, Wash-

ington, DC, USA, 188–200. https://doi.org/10.1109/PACT.2015.30

[46] Sujay Phadke and S. Narayanasamy. 2011. MLP aware heterogeneous memory

system. In Design, Automation Test in Europe Conference Exhibition (DATE),

2011. 1–6. https://doi.org/10.1109/DATE.2011.5763155

[47] Moinuddin K. Qureshi, John Karidis, Michele Franceschini, Vijayalakshmi Srini-

vasan, Luis Lastras, and Bulent Abali. 2009. Enhancing Lifetime and Security

of PCM-based Main Memory with Start-gap Wear Leveling. In Proceedings of

the 42Nd Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO 42). ACM, New York, NY, USA, 14–23. https://doi.org/10.1145/1669112.

1669117

[48] Moinuddin K. Qureshi and Gabe H. Loh. 2012. Fundamental Latency Trade-off

in Architecting DRAM Caches: Outperforming Impractical SRAM-Tags with a

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada S. Kannan et al.

Simple and Practical Design. In Proceedings of the 2012 45th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO-45). IEEE Computer

Society, Washington, DC, USA, 235–246. https://doi.org/10.1109/MICRO.2012.

30

[49] Moinuddin K. Qureshi, Vijayalakshmi Srinivasan, and Jude A. Rivers. 2009.

Scalable High Performance Main Memory System Using Phase-change Memory

Technology. SIGARCH Comput. Archit. News 37, 3 (June 2009), 24–33. https:

//doi.org/10.1145/1555815.1555760

[50] Milan Radulovic, Darko Zivanovic, Daniel Ruiz, Bronis R. de Supinski, Sally A.

McKee, Petar Radojković, and Eduard Ayguadé. 2015. Another Trip to the Wall:

How Much Will Stacked DRAM Benefit HPC?. In Proceedings of the 2015

International Symposium on Memory Systems (MEMSYS ’15). ACM, New York,

NY, USA, 31–36. https://doi.org/10.1145/2818950.2818955

[51] L. Ramos and R. Bianchini. 2012. Exploiting Phase-Change Memory in

Cooperative Caches. In Computer Architecture and High Performance Com-

puting (SBAC-PAD), 2012 IEEE 24th International Symposium on. 227–234.

https://doi.org/10.1109/SBAC-PAD.2012.11

[52] Luiz E. Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page Placement

in Hybrid Memory Systems. In Proceedings of the International Conference on

Supercomputing (ICS ’11). ACM, New York, NY, USA, 85–95. https://doi.org/

10.1145/1995896.1995911

[53] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis. 2007.

Evaluating MapReduce for Multi-core and Multiprocessor Systems. In High

Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th International

Symposium on. 13–24.

[54] David Rientjes. 2007. Linux Fake NUMA Patch. https://www.kernel.org/doc/

Documentation/x86/x86_64/fake-numa-for-cpusets. (2007).

[55] D.A. Roberts. 2016. Reliable wear-leveling for non-volatile memory and method

therefor. (May 26 2016). http://www.google.ch/patents/US20160147467 US

Patent App. 14/554,972.

[56] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-Stream: Edge-

centric Graph Processing Using Streaming Partitions. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles (SOSP ’13).

ACM, New York, NY, USA, 472–488. https://doi.org/10.1145/2517349.2522740

[57] Salvatore Sanfilippo. 2009. Redis. http://redis.io/. (2009).

[58] Avinash Sodani. 2015. Knights landing (KNL): 2nd Generation Intel Xeon

Phi processor. In 2015 IEEE Hot Chips 27 Symposium (HCS). 1–24. https:

//doi.org/10.1109/HOTCHIPS.2015.7477467

[59] Billy Tallis. 2017. Intel-Micron Memory 3D XPoint. goo.gl/wT4rQ6. (2017).

[60] Drepper Ulrich. 2007. "What every programmer should know about memory,".

www.akkadia.org/drepper/cpumemory.pdf. (2007).

[61] Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H.

Campbell. 2011. Consistent and Durable Data Structures for Non-volatile Byte-

addressable Memory. In Proceedings of the 9th USENIX Conference on File and

Stroage Technologies (FAST’11). USENIX Association, Berkeley, CA, USA, 5–5.

http://dl.acm.org/citation.cfm?id=1960475.1960480

[62] Carl A. Waldspurger. 2002. Memory Resource Management in VMware ESX

Server. SIGOPS Oper. Syst. Rev. 36, SI (Dec. 2002), 181–194. https://doi.org/10.

1145/844128.844146

[63] Wm. A. Wulf and Sally A. McKee. 1995. Hitting the Memory Wall: Implications

of the Obvious. SIGARCH Comput. Archit. News 23, 1 (March 1995), 20–24.

https://doi.org/10.1145/216585.216588

[64] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. 2011. CloudVisor:

Retrofitting Protection of Virtual Machines in Multi-tenant Cloud with Nested

Virtualization. In Proceedings of the Twenty-Third ACM Symposium on Operating

Systems Principles (SOSP ’11). ACM, New York, NY, USA, 203–216. https:

//doi.org/10.1145/2043556.2043576

[65] Jishen Zhao, Sheng Li, Doe Hyun Yoon, Yuan Xie, and Norman P. Jouppi. 2013.

Kiln: Closing the Performance Gap Between Systems with and Without Per-

sistence Support. In Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-46). ACM, New York, NY, USA, 421–

432. https://doi.org/10.1145/2540708.2540744

[66] Li Zhao, R. Iyer, R. Illikkal, and D. Newell. 2007. Exploring DRAM cache

architectures for CMP server platforms. In Computer Design, 2007. ICCD 2007.

25th International Conference on. 55–62. https://doi.org/10.1109/ICCD.2007.

4601880

