
Reducing the Cost of Persistence for Nonvolatile Heaps in End User Devices

Sudarsun Kannan, Ada Gavrilovska, Karsten Schwan

Georgia Institute of Technology

College of Computing, Atlanta

{sudarsun.kannan, ada, schwan} @cc.gatech.edu

Abstract

This paper explores the performance implications of us­

ing future byte addressable non-volatile memory (NVM)

like PCM in end client devices. We explore how to ob­

tain dual benefits - increased capacity and faster persis­

tence - with low overhead and cost. Specifically, while in­

creasing memory capacity can be gained by treating NVM

as virtual memory, its use of persistent data storage in­

curs high consistency (frequent cache flushes) and dura­

bility (logging for failure) overheads, referred to as 'per­

sistence cost'. These not only affect the applications caus­

ing them, but also other applications relying on the same

cache and/or memory hierarchy. This paper analyzes and

quantifies in detail the performance overheads of persis­

tence, which include (1) the aforementioned cache inteJfer­

ence as well as (2) memory allocator overheads, and finally,

(3) durability costs due to logging. Novel solutions to over­

come such overheads include (1) a page contiguity algo­

rithm that reduces inteJference-related cache misses, (2) a

cache efficient NVM write aware memory allocator that re­

duces cache line flushes of allocator state by 8X, and (3)
hybrid logging that reduces durability overheads substan­

tially. With these solutions, experimental evaluations with

different end user applications and SPEC2006 benchmarks

show up to 12% reductions in cache misses, thereby reduc­

ing the total number of NVM writes.

1 Introduction

Future byte addressable non-volatile memory technolo­

gies (NVM) like phase change memory promise the benefits

of faster persistent storage than SSDs coupled with larger

capacity with less power, compared to DRAM. Prior re­

search has typically either used NVM as an additional vir­

tual memory to increase total memory capacity, or placed

it behind the I/O stack for fast access to persistent stor­

age. Those methods are beneficial for high end servers,

with NVM placed into select memory sockets along with

its additional use as a block cache, but for resource- and

cost-constrained end devices like smartphones and tablets,

it is preferable to use the device's NVM both for increased

memory capacity and for fast access to persistent storage.

This paper addresses the challenge of how to efficiently

978-1-4799-3097-5/14/$31.00 ©2014 IEEE

use NVM's byte addressability, in terms of bypassing soft­

ware stack overheads, while at the same time, enabling per­

sistence for such memory when and if desired. Referring to

the use of NVM for additional heap capacity without persis­

tence as NVMCap vs. its use of persistence as NVMPersist,

we contribute (1) detailed studies of the performance over­

heads of simultaneously exploiting these two capabilities of

NVM, followed by (2) the creation and evaluation of tech­

niques that mitigate these performance overheads. Specifi­

cally, concerning (1), NVM's high write latency compared

to DRAM (5x-lOx) [3] makes it difficult to use it for ex­

tended capacity - NVMCap. Obtaining comparably high

performance requires the efficient use of system caches by

the end client applications being run. Yet these same caches

are also in the path of accesses to NVMPersist, where to

guarantee consistency, durability, and failure recovery, the

application data as well as its metadata must be frequently

serialized and flushed from cache. Cache line flushes in­

volve writebacks of dirty data (if any) and cache lines in­

validation broadcasts across all cores. Further, since evic­

tions from the cache can be in any order, the updates from

cache must be serialized, by fencing memory write oper­

ations [26, 10]. An expected outcome of such actions is

increased cache misses and higher NVM access latency for

NVMPersist-based applications. A perhaps less obvious,

yet quite undesirable outcome is that such cache flushes can

also substantially impact the NVMCap applications using

the same last level cache.

We present experimental evidence documenting these

facts. Concerning (2) above - the mitigation of performance

overheads - key to attaining high performance when using

NVM is to reduce the number of direct NVM writes and to

reduce the last level cache misses suffered by NVMpersist

and by NVMCap. We find that to deal with NVMPersist's

cache usage (i.e., frequent cache flushes) requires a mul­

tistep, end-to-end solution that includes (i) OSlhardware

techniques that provide efficient cache sharing between

NVMPersist and NVMCap applications, coupled with (ii)

user level techniques that reduce cache misses due to NVM

writes for maintaining the ACID (atomicity, consistency, in­

tegrity, and durability) requirements of NVMPersist appli­

cations. For (i), we identify and evaluate appropriate cache

sharing mechanisms. For (ii), we redesign traditional mem­

ory allocation methods and develop a cache efficient data

versioningllogging method.

This paper makes the following specific technical con­

tributions toward efficiently using NVM for both NVMCap

and NVMPersist in end client devices with focus on reduc­

ing the cache misses:

1. Persistence Impact: we analyze end client device

workloads to better understand the impact of NVM­

Persist applications on NVMCap applications sharing

the same cache.

2. OS-level Cache Sharing: to reduce cache misses due

to sharing, we propose a novel but simple page color­

ing mechanism that exploits as a metric 'physical page

contiguity misses'. The approach is implemented in

the Linux kernel memory management layer and re­

duces cache misses by 4% on a average, validated

through hardware performance counters.

3. Library-level Optimizations: the metadata structures

needed for persistence cause overheads in terms of in­

creased cache misses. We analyze persistent memory

allocators and their durability-related data structures

across the system stack, and propose a novel cache­

efficient allocator and an efficient hybrid (word-object)

logging approach that significantly reduces the number

of writes to NVM.

All solutions are evaluated with standard benchmarks and

with the realistic end user device workloads.

2 Background and Related Work

NVM as virtual memory. NVMs like PCM are byte ad­

dressable persistent devices and are expected to be 100x

faster (read-write performance) compared to current SSDs.

Compared to DRAM, these devices have higher density

scaling as they can store multiple bits per cell with no re­

fresh power, with known limitations imposed by an en­

durance of a few million writes per cell. These attributes

make NVM a suitable candidate for replacing SSDs, but in

addition, NVM can also be used as memory, placed in paral­

lel with DRAM, connected via the memory bus. In contrast

to SSDs, NVM can be accessed via processor loadlstores

(read/write), with read speed comparable to that of DRAM,

but writes around lOx slower due [3] to high SET and PRE­

SET times. NVM therefore, presents one way forward to

solving memory capacity problems as well as fast persis­

tent data access for end clients.

Role of cache. For NVMPersist, NVM's high write la­

tency can be mitigated by using a fast intermediate cache

and DRAM, as shown in [23, 15, 11]. For a write-back

cache, writes that are evicted from the cache are then moved

to the DRAM cache that behaves like a disk buffer cache.

This model works well when there is sufficient buffer space

(e.g., on high end servers), but when DRAM is scarce (e.g.,

on mobile devices), forcefully reserving pages for buffering

can reduce overall system throughput. The Android OS, for

instance, avoids DRAM use for page buffering by disabling

swapping. A better alternative is to simply use the proces­

sor cache [26, 9]. The unfortunate consequence, however,

is that, consistency and durability guarantees require it to be

frequently flushed from the cache. We adopt this approach,

contributing a thorough study of its performance implica­

tions.

Software support for NVM. The usage model for NVM -

capacity extension, persistent storage, or dual-use - deter­

mines the systems software support needed for NVM man­

agement.

(1) Application involvement. For NVMCap, the system can

treat NVMs as a swap device [11, 18, 15], not involving ap­

plications. This is not the case for NVMPersist, which re­

quires applications to explicitly identify specific data struc­

tures to be saved. A recent work [14] proposes using PCM

by intercepting the memory access to specific ranges, and

a modified memory(SCM) controller to redirect access to

PCM. The key contribution of this work, is to provide atom­

icity and durability guarantees with efficient use of cache.

(2) Implementation approaches. (i) Using existing block

110 interfaces for NVMPersist provides backwards com­

patibility to legacy applications. (ii) Providing a mem­

ory mapped (mmap) interface loses backward compatibil­

ity but offers byte-addressability via a system's 1/0 stack,

and requires application level changes for applications us­

ing POSIX 110. (iii) Treating it as managed nonvolatile heap

(i.e., via NVM allocation calls) results in byte-addressable

NVMPersist, but entirely avoids using the 110 software

stack. For (i) and (ii), previous work has shown the impor­

tance to redesign the system's 1/0 stack, as unlike for flash

or disk, current 110 software stack is the bottleneck dom­

inating total memory access cost [10, 6]. J.Condit [10] et

al. propose shadow buffering for NVM-based files, with

epoch-based cache flush methods, but shadow buffering

performs poorly for large 110 volumes [10]. Moneta [6]

proposes a user level file system to reduce frequent 110

call overheads and consequent large aggregate kernel switch

times. File-based 1/0 accesses are software controlled,

however, meaning that read and write will be controlled

by the OS, thus not exploiting NVM's byte addressability.

Instead, using a mmapO interface leverages NVM's byte

addressability, but frequent mmapO system calls (and con­

sequent overheads) force applications to statically reserve

large regions of memory and then self-manage their mapped

memories. The resulting inefficiencies in memory use are

not desirable for memory-limited end user devices.

The issues raised for (1) and (2) above prompt us to treat

NVM as nonvolatile heap managed by user level and ker­

nel allocators. Further, and in contrast to prior work [9, 26]

using NVM only for persistence, we design interfaces for

using NVM both for persistence - NVMPersist - and as

hash *table = PersistAlloc(entries, "tableroot");
for each new entry:

entry _s *entry = PersistAlloc (size, NULL);
table = entry;
count++;
temp_buff = CapAlloc(size);

Figure 1. Using NVM for Capacity and Persis­
tence: An Application's View.

slow memory - NVMCap, the latter addressing memory

capacity issues. Figure 1 shows an example of a persis­

tent hash table using the NVMPersist persistent allocation

interface, as well as creating a temporary volatile buffer us­

ing the NVMCap capacity interface. Figure 2 shows a high

level design model. The example presents a persistent al­

location interface similar to prior work, with the additional

offering of the NVMCap option, to use NVM as volatile

memory. The allocations made via these APIs are internally

managed by user level and kernel level memory managers

supporting them. This is similar to a recent work [17] for

OS support for treating NVM as virtual memory, using ef­

ficient persistent and non persistent memory managers. In

comparison, complementing such work, this paper evalu­

ates and then addresses the overheads of NVM's dual-use

as both NVMCap and NVMPersist. Detailed studies of the

overheads of managing nonvolatile heap and methods for

mitigating them include issues with user level allocators,

and overheads related to simultaneously providing strong

consistency and durability guarantees.

Applications use of NVMcap and NVMpersist. The num­

ber of cores and application threads in end clients is increas­

ing along with the increasing DRAM capacity and stor­

age requirement. For instance, take the case of a multi­

threaded memory hungry web browser, where the front end

browser tab uses NVMCap for additional memory buffer,

and the backend browser thread caches user data to trans­

actional database. Similarly, in a multi-threaded game en­

gine, the GUI thread can use NVMCap as graphics buffer,

and the game I/O thread can access NVMPersist for stor­

age (load/store user state to the database). For NVMCap­

based allocation, the OS NVM manager does not track ap­

plication (user level allocator) and kernel data structures,

but simply allocates pages (like DRAM). But for NVMPer­

sist, both user and kernel data structures are tracked. Hence,

for NVMPersist, applications use explicit NVM allocation

interface, whereas for NVMCap use of NVM is transpar­

ent (by linking to NVM library) and no application level

changes is required.

Durability and consistency. NVM hardware-software

must support required consistency and durability across ap­

plication sessions. When using the processor cache to hide

write latencies, since cache data can be evicted in any order,

to maintain ACID properties, prior efforts have used write-

through caches [26], or epoch-based cache eviction meth­

ods [10] using memory barriers to order NVM writes. Fur­

ther, durability can be affected during power failures or de­

vice crashes, leaving the application in a non-deterministic

state, e.g., due to partial updates (note that both data and

metadata must be saved consistently). A common approach

to deal with this relies on application commits, which in

turn trigger cache flushes. Although sufficiently frequent

flushes can reduce the possibility of non-recoverable fail­

ures, additional transactional mechanisms are needed for

atomicity, accompanied with logging (e.g., undo/redo) sup­

port for durability. A recent work [29] proposed hardware­

based nonvolatile cache and nonvolatile memory to enable

multi-version support with in-place updates (avoids the log­

ging cost). The cache contains the dirty version and the

memory contains the cleaner version. While such micro­

architectural changes can reduce the cost of logging, we

focus on the software optimizations for existing hardware

(volatile cache).

Other approaches. Prior work like whole system per­

sistence (WSP) [21] proposed a hardware power monitor

to detect power failures and flush cache, processor regis­

ters, interrupt signals etc., to the persistent storage. During

the restart, the OS and application states are restored like a

transparent checkpoint. Two issues with such proposals are

(i) they require additional hardware, like a microcontroller­

based power monitor dedicated to detecting power failures,

and (ii) WSP works for whole system persistence, but when

both DRAM and NVMs are used, it is unclear how to distin­

guish volatile from nonvolatile cache lines, and support for

flushing only nonvolatile cache lines may require modifica­

tions to the hardware cache. Furthermore, they do not help

harden durability guarantees in the event of system crashes.

Other nonvolatile heap-based research [9, 26] used strong

transactional semantics with word [26] or object-based [9]

logging. We discuss these logging methods, and demon­

strate the benefits of our proposed novel hybrid (word + ob­

ject) approach developed in our research.

3 The Costs of Persistence

This section motivates the need for cache efficient, end­

to-end solutions when using NVM both for extended ca­

pacity and for persistent storage. We analyze the impact

of cache sharing between persistent and non persistent ap­

plications, and establish that a key factor contributing to

increased cache misses is the use of cache inefficient data

structures to obtain ACID requirements for data persis­

tence. These inefficiencies arise in both the memory allo­

cator and the logging mechanisms. To analyze the over­

heads, we implemented a complete NVM software stack

(OS/Application library). In keeping with the end client

focus of this research, all experimental evaluations use a

dual core 1.66 GHz 64 bit D510 Atom-based develop­

ment kit running a 2.6.39 Linux kernel with our OS-based

AddHashEntryO {
Fence & Flush word

BEGIN_OBJTRANS((void *)table.O). to log (in peM). �35
� 30
:E 25

++(table->entrycount); ./
COMMIT_OBJTRANS«void *)&table->entrycount);

e = (strutt entry *)nvalloc(sizeof(struct entry»; w
---... Fl ush user & '520

BEGIN OBJTRANS«void *)e,O); kernel a1loc
BEGIN = OBJTRANS«void *)table,O); Slruc(Ures (to log)

to
u 15 ,=

e->h = hash(h,k);
e->k = k;

w 10 III to
e->v = v;
table->tablc[index] = e;

Flush entry to log (PCM)

/'
� 5
u

E 0

gg��:�-g:�������:�:: :�;��ie 0)'-' Flush table index

} - " to log (m PCM).

?;'<..e
I>-�\�

Figure 2. Dual-use NVM:
high level model

Finally, if the log is full, then commit the log data to actual data

Figure 4. Impact of co­
running NVMCap apps with
NVMPersist (hashtable) Figure 3. Transactional persis­

tent hashtable
:: 100

�.� 80

.�] 60

"2 g: 40
�=

-Cache miss

·Writeback

� * 20 ;q "§ § 8. 0 t--'-------'------------. _ _ ----

.s -20 ;:..rJ<

Figure 5. Simulator Analysis

Arena 0 Arena 1 Arena 2 { . / � Bitmap info I
Bins

4504B numavail ------. Bin 0 Bin N }
numfree 152B
Spare "runtrec

�UltiPle
pages/run

.---Run
multiple runs/chunk

chunk1 chunk2
run header page

chunks list (updated for new chunks)

Figure 6. Jemalloc- Rectangular blocks rep­
resent C structures. Fields in bold are fre­
quently flushed when metadata is in NVM.

NVM support, with 2GB DDR2 DRAM, Intel 520 120GB

SSD, 32KB Ll and 8 ways 1MB L2 writeback cache [1].

Out of the total 2GB system RAM, 1 GB is used towards

NVM. MSR-based performance counters are used to mea­

sure cache misses, and the VTune analyzer is employed

for function level miss estimation, for both user and ker­

nel code. Applications are run in ways that maintain simi­

lar execution times, to better capture the effects of resource

sharing.

3.1 Impact of Unmanaged Cache Sharing

Representative end client workloads are used to verify

the performance penalties of sharing last level cache across

NVMCap and NVMPersist applications, the former using

NVM for additional capacity but co-running with a single

additional NVMPersist workload - a persistent hashtable

(e.g., like those used in key-value stores), labeled as PHT

(Persistent Hash Table). Again, the NVMCap applications

do not require data persistence and thus, do not flush state of

the cache, whereas the PHT NVMPersist-type application

frequently flushes cache to obtain consistency and durabil-

ity guarantees. Figure 3 shows the pseudocode of the PHT

with strict transactional guarantees, which we implement

using a transactional heap library that guarantees consis­

tency and durability for applications. The pseudocode lines

in bold indicate needed cache flush actions. The X axis in

Figure 4 shows representative end client NVMCap applica­

tions. X264 is a video conversion application converting a

50MB '. avi' to a mobile compatible '. mp4' file. B-tree is

a cache efficient data structure commonly used for clients'

in-memory databases. Animate provides animation for im­

age files. Each such NVMCap application is co-run with

the PHT with random puts and gets for 500K keys (this size

is based on our experimental device's available memory re­

sources). The Y axis shows the cache miss (%) increase of

co-running these NVMCap applications with the NVMPer­

sist hash table relative to running NVMCap application with

a version of the hashtable that is not persistent - NVMCap.

Results obtained from reading MSR perfonnance counters

demonstrate that while cache efficient NVMCap workloads

like B-tree are not heavily impacted by the presence of the

PHT NVMPersist application, codes like X264 and animate

suffer substantial increase in cache miss rates. Also of in­

terest is the high variability of cache miss rates for NVM­

Cap, an unintended side effect of co-running NVMCap with

NVMPersist applications.

We also validate our previous analysis using a cycle

accurate instruction level architectural MACSim simula­

tor [2]. We use CPU intensive workloads for this study

and replace the I/O intensive animate use case with the end

user benchmark WebShootbench [4], a popular workload

now used by Google for Chrome OS tablet benchmarking.

Also used are some memory intensive and CPU intensive

SPEC workloads, since our goal is to investigate the im­

pact of dual-use NVM. To model cache impact, the simu­

lator is modified to identify all cache flush instructions in

the trace generated by the PIN tool, invalidate those cache

lines and writeback the cache lines if they are dirty. We

use writeback cache as prior work [19, 26] have evaluated

the performance impact due to write-through cache. As

seen in Figure 5, most of the memory intensive benchmarks

show substantially increased cache misses and writebacks

when co-running with the PHT. Simulation results report

only the cache misses incurred by applications, whereas

the hardware counter-based measurements using the Intel

VTune analyzer in Figure 4 also report cache misses due

to OS functions (kernel mode execution of the application),

constituting about 11-16% of the overall cache misses ob­

served. The clear conclusion from these experimental eval­

uations is the need for effective ways to reduce the impact of

NVMPersist applications on co-running NVMCap applica­

tions, particularly given the ever increasing number of con­

current applications being run on today's end user devices.

One way forward is described in Section 4.

3.2 Library Overheads

Preventing NVMPersist applications from impacting the

performance of NVMCap applications requires end-to-end

solution that begin at user level, for two important compo­

nents: (1) the memory allocator used by all NVM applica­

tions and (2) the logging manager guaranteeing durability

for NVMPersist codes. They are each discussed below.

3.2.1 Cache Inefficient Persistent Memory Allocators

The allocator strongly influences application performance,

particularly for data structures requiring frequent alloca­

tions (e.g., tree structures, linked lists, key-value stores us­

ing hash tables, etc.). Modern allocators, however, maintain

complex hierarchical metadata structures for fast free space

lookup, object (malloc'd memory) deletion, and more im­

portantly, for reducing fragmentation. lemalloc (see Fig­

ure. 6), for instance, is a multithreaded cache efficient allo­

cator that allocates large regions of memory, called chunks

(1024 pages per chunk), where each chunk is further di­

vided into page runs. Each page run maintains a class of

uniformly sized objects that vary from 8 bytes to 512 KB.

Every pagerun has a fixed number of equally sized objects.

The page run has one header with a bitmap to indicate used

and freed objects. When an application allocates memory,

based on the requested size, a corresponding page run is se­

lected and checks for free objects, and the corresponding

bitmap and page run header are updated. For a group of

objects in a page run, one header and a bitmap are suffi­

cient. The allocator data structure and application data are

placed separately, to keep the application data contiguous

and reduce cache misses on application data. For efficient

memory usage and to reduce fragmentation, the allocator's

metadata is frequently updated.

Most prior proposals, to the best of our knowledge,

maintain all allocator metadata in NVM [19, 9, 26]. Yet

keeping such frequently updated data on NVM results in a

large number of writes to NVM, with consequent numbers

of cache flushes [19], thus impacting performance. Further,

compared to volatile object allocations, additional metadata

is required for each persistent object. This is because for

volatile objects, the current virtual address is sufficient to

locate an object in a pagerun and update its metadata and per

object additional properties are required, but for persistent

objects, the virtual address is invalid across restarts. Hence,

objects contain additional information to locate them and

identify their commit status (some prior work [19] even

maintains CRC with each object). Furthermore, every up­

date to the allocator data must be logged and flushed from

cache. Such cache flushing writes dirty lines if inconsistent

with memory, followed by an invalidation broadcast across

cores. This can result in a large number of cache misses

experienced by applications, resulting in direct writes to the

NVM and consequent application slowdown. In summary,

frequent allocator metadata updates will result in substan­

tial 'persistence cost' (e.g., consider a PHT with millions of

new entry addition and deletion). Section 4.2 shows solu­

tions that improve upon metadata structures and updates to

mitigate these problems.

3.2.2 Durability-based Write Latencies

To provide ACID properties to applications, the NVM stack

must support transactional semantics, coupled with a fail­

safe mechanism where every change to application memory

is also logged. Logging mechanisms are used for recovering

from failure to a consistent state, and can be broadly clas­

sified into 1.) UNDO and REDO methods, 2.) and based

on the logging granularity, as word- vs. object-based. For

UNDO logging, before every write to a log, the stable ver­

sion is first copied to a log, whereupon the application can

continue writing to the original data location. If a transac­

tion fails, recovery actions copy the stable data from the log

back to the original memory location. For REDO logging,

all writes are appended to a log, and when a log fills up, the

log entries are copied to original memory locations. With

respect to logging granularity, prior NVM works uses ei­

ther (i) word-based logging [8, 24, 26], where every word

is logged along with log metadata (described shortly) or (ii)

an object-based log for NVMs [9], where the entire object

is copied to log. We next discuss problems with this current

state of the art.

Each log entry is a record consisting of a metadata and

the actual data stored in different locations. The record con­

tains the actual word address, a pointer to the data in a log,

and a pointer to next log record. To log a word of data

(8 bytes), 24 bytes of data must be written to NVM, thus

drastically increasing the overall writes to NVM. Further,

word-based logging requires substantial rollback time (scan

word by word and apply updates). Recent work avoids re­

peated updates by logging at object granularity [5,9]. While

this scales well for large objects, updates involving smaller

member variables or counters of an object (e.g., updating

a counter in a hash table structure when new entries are

added), the object copy cost from its actual address to the

log (in case of UNDO) or back from a modified object to

an actual data address (in case of REDO) can be substan­

tial. Further, cache misses increase with increasing object

copy sizes, resulting in slower NVM access. Section 4.3

describes a novel hybrid logging approach that combines

word-based and object-based logging to provide an adap­

tive approach to reduce NVM write latency issues. The ap­

proach does not require substantial developer effort to clas­

sify word- and object-based logging.

4 NVM-Efficient End-to-End Software

This section describes solutions to the cache inefficien­

cies identified in the previous section. It first describes a

physical page contiguity-based page allocation mechanism

that seeks to partition the cache entries used by NVMPersist

vs. NVMCap applications. This simple but effective solu­

tion avoids the complexity of using traditional page coloring

methods for this purpose. Second, allocator metadata man­

agement is improved to reduce allocator overheads, the key

idea being to maintain complex allocator metadata struc­

tures in DRAM and logging their updates in NVM. Third,

we reduce the cost of transaction logging via a hybrid log­

ging mechanism that automatically adapts to the appropri­

ate logging granularity (word vs. object). While our cache

partitioning mechanism reduces the cache impact of NVM­

Persist apps on NVMCap apps, the allocator and logging

optimizations reduce the cache misses suffered by NVM­

Persist applications and hence improves the overall cache

misses. Experimental evaluations for the effects of each

such NVM write-aware optimization are run on the same

Atom-based development platform described in Section 3,

using the same methods to gather experimental results via

the MSR performance counters. All evaluations use re­

alistic end user NVMCap applications that include 'ani­

mate' used for image animation, 'x264' used for 64 MB

file mp4 conversion, 'convert' used for converting images

from .jpeg to .png. We also use SPEC 2006 benchmark

applications that are more representative client-side appli­

cations, like 'astar' which is a portable 2D path-finding li­

brary, 'povray', a ray tracing application, and other mem­

ory intensive benchmarks like 'omnetpp', 'mef', 'soplex'

and computation intensive benchmarks like 'sjeng', and

'libquantum'. Details about these benchmarks concerning

their cache and memory intensity can be found in [16].

4.1 Reducing the Cache Sharing Impact

Cache sharing between NVMCap and NVMPersist ap­

plications can result in increased conflicts, false sharing,

higher NVM writes, and reduction in memory bandwidth

due to increased NVM traffic. We hypothesize that in­

creased cache misses experienced by NVMCap applica­

tions, caused by co-running NVMPersist application, can

be avoided by partitioning the shared cache across these ap­

plications. Hardware and software cache partitioning strate­

gies for multiprocessor systems have been extensively stud-

ied in the past. Hardware mechanisms [20, 7, 22, 25] in­

clude simple static as well as dynamic partitioning methods,

the latter monitoring the cache miss suffered by applica­

tions, and then adjusting the number of cache ways between

NVMCap and NVMPersist applications. Software-based

partitioning approaches [28] typically use page coloring

mechanisms, which we describe shortly. Generally, hard­

ware approaches have shown higher benefits [27] compared

to software partitioning, but software partitioning provides

the flexibility to easily enable/disable page coloring, and of­

fers scope for various application-specific optimizations.

We study the effectiveness of cache partitioning using

the cycle accurate MACSim simulator, by statically parti­

tioning one 1MB LLC cache to use 3/4 of the cache sets

dedicated to NVMCap application, and 1/4 for the NVM­

Persist applications. The analysis uses 500 million instruc­

tions of the same applications as those used in Figure 5.

Note that most memory-intensive applications show up to

12% improvement in performance, gained from cache par­

titioning, while there is no or little impact on other bench­

marks like bzip, and MCF.

Page Coloring. OS-based cache partitioning between ap­

plications using software page coloring has been studied

extensively. Implementing page coloring perfectly requires

substantial changes to the memory management layer of the

as [12]. Further, even when such changes are present, due

to increasing cache associativity, operating systems often

disable the page coloring feature. For end client devices

with their few way caches (4-8 ways) and given our diagno­

sis of high conflict misses with NVMCap and NVMPersist

applications, however, we posit the need to revisit page col­

oring. We therefore, prioritize two goals for suitable OS­

based cache partitioning methods: (1) to reduce the com­

plexity of page allocation (i.e., to avoid looking for specific

pages at the time of page allocation) of existing, low over­

head page coloring mechanisms [12, 27], and (2) to make it

easy to disable OS-based partitioning when only NVMCap

applications are currently running (i.e., no co-running per­

sistent applications), or when there is little or no impact of

persistent on non-persistent applications.

Page Contiguity Based Partitioning. We propose a novel

adaptive method for cache partitioning that leverages the

high probability with which current caches map contigu­

ous physical pages to contiguous cache lines. The key idea

is to increase the physical contiguity of pages allocated to

an application. Intuitively, the more contiguous an applica­

tion page, the more contiguous its cache lines, and the less

likely the cache interference with other applications sharing

the same cache. This is in contrast to non-contiguous al­

locations in which different applications' random pages are

mapped to various cache lines, thus increasing the chances

of cache conflicts.

Allocating a single page during first touch and page fault

NVMPersisl, Pg 4

NVMPersisl, Pg 4

Figure 7. Cache conflicts
due to JIT allocation. NVM­
Cap & NVMPersist page
maps to same set.

Figure 8. Reducing conflicts
with CAA

NVMPerslst app's bucket
Figure 9. CAA bucket-based
design. PX - physical page
no. X

can result in high page contiguity misses. We call this pol­

icy JIT (just in time) allocation. For instance, let N be the

number of applications simultaneously accessing/allocating

NVM pages. With JIT allocation, the probability of an ap­

plication receiving a physically contiguous page reduces to

(lIN). Hence, with an increasing number of co-running ap­

plications, cache conflicts increase (see Figure 7). Reduc­

ing the number of physical page (physical frame) contiguity

miss can substantially reduce cache misses. T he key idea

to increase the contiguous pages allocated to application is

that, for page faults (minor faults on first touch), instead of

allocating one page, a batch of physically contiguous pages

is reserved per application, and on subsequent page faults,

specific contiguous pages are added to the page table. We

refer this approach as contiguity aware allocation (CAA).

Implementation of CAA. As a first step, to avoid conti­

guity misses, we create two types of lists in the kernel: 1)

a contiguous list, and 2) a non-contiguous list. Each list

contains one or more buckets. Each bucket in the contigu­

ous list contains an array of physically contiguous pages.

For instance, Figure 9 shows a contiguous list with three

buckets and each bucket contains 4 physically contiguous

pages. A list here refers to linked list of buckets. Buckets in

the non-contiguous list (the list at the bottom of the figure),

contain pages that are ordered but not contiguous.

For adding contiguous pages to the bucket, when there

is a page fault, a batch of contiguous physical pages is allo­

cated and added to an application specific bucket in the con­

tiguous bucket list. While only the page corresponding to

faulting address is added to page table, the other contiguous

pages are used during subsequent page faults thereby using

physically contiguous pages as shown in the Figure 8. Our

design creates a separate bucket for each application, and

as the pages of the buckets are exhausted, new batch allo­

cations refill the bucket. It is not always possible, that con­

tiguous batch allocations succeed (and depends on memory

availability). In the event that batch allocations return non­

contiguous pages, such pages are moved to a bucket in the

non-contiguous list. We avoid creating multiple buckets so

as to increase the locality of the bucket data structure in the

cache, but can easily support multiple buckets per applica­

tion thread.

Our approach divides the applications into cache friendly

and non cache friendly applications. All applications are al­

located from contiguous buckets initially. We maintain two

memory watermarks (higher: less critical, lower: highly

critical). As the free available memory reaches less than

the 'higher water mark', we start using the non-contiguous

pages for NVMPersist applications, and when the mem­

ory limit reaches less than the low water mark, we disable

page contiguity aware allocation. Our approach substan­

tially reduces the page contiguity misses and reduce the

cache misses due to conflicts as shown in our evaluation.

Evaluation Baseline. In all evaluations, as a baseline, we

use the PHT (persistent hash table) as the NVMPersist ap­

plication. The PHT uses the current JIT-based OS page allo­

cation combined with a naive allocator that stores/access all

its complex allocator metadata in NVM, and uses a word­

based logging as proposed by prior 'NVM as a heap' re­

search [26]. We also report average (across all workloads)

cache miss reduction after applying each optimization.

Page Contiguity Miss Analysis. We next evaluate the

effect of bucket size (the number of contiguous pages) on

the page contiguity misses. In Figure 10, the X-axis shows

several client and SPEC benchmarks, and the Y-axis show

the percentage of reduction in physical page contiguity miss

compared to JIT allocation. We evaluate our experiments

for two different bucket sizes - CAA-4, CAA-16, where 4

and 16 indicates the number of contiguous pages allocated

in a batch and added to a bucket in the contiguous list when

handling a page fault. As seen from the results, we are able

to reduce the physical contiguous page misses for applica­

tions by up to 75% for CAA-4, and 91 % for CAA-16, for

both client and SPEC workloads, compared to JIT-based

method. Table 1 shows the actual number of page contiguity

misses for some of the applications using all the three (JIT,

CAA-4, CAA-16) methods. Applications like x264, ani­

mate, sjeng, show a higher reduction in miss counts, how­

ever, their expected benefits due to physical contiguity can

be small since the total contiguity miss for these applica­

tions are substantially low even when using JIT-based al­

location. In comparison, for memory-hungry applications

like to convert, soplex, astar, the benefits due to page con­

tiguity is higher. We next evaluate whether page contiguity

miss reductions results in reduced cache misses of NVM­

Cap applications.

10

baseaddr* m' C2 C3

length*
-h,��---- -----"'�"'-'-J'- dataptr* �

-2 compart ID*
-4 _# "$>� # i> :<Sl,"l.t>"'. ��.,. *+ .----=====------,

.,. � #� <f �') �o"l Chunk log - sequential

�� '" Insert - 0(1)
Lookup- O(log n) + C

End CI,ent Apps.
End Client Apps. SPEC Benchmark

Spec Bench

Figure 10. Page contiguity
miss analysis

Figure 11. Overall cache
miss analysis.

Figure 12. Two level log­
based PCM allocator

App .liT CAA-4 CAA- 16 Expec.

Benefits

x264 4890 1720 990 Low

convert 177340 135080 118360 High

animate 4860 1520 710 Low

povray 8160 7950 7640 Low

soplex 989560 828080 801090 High

aSlar.BigCf 107360 38310 20120 High

Table 1. Page contiguity miss count

Reduction in overall cache misses. Figure 11 shows the

relative reduction (in percent) in cache misses for the same

set of benchmarks compared to the baseline_ We use two

different contiguity-aware allocation bucket sizes, CAA-4,

and CAA-16. We observe that, with CAA-4, the benefits in

cache miss reduction vary from 1 % to 8%. While improve­

ments are observed in most applications, for some applica­

tions like x264 and soplex, the misses increase compared to

the baseline. Maximum gains are seen for memory inten­

sive astar, and for the moderately intensive povray. Also,

when varying the bucket size from CAA-4 to CAA-16, for

applications with smaller memory footprint, like animate,

sjeng, cache misses increase. Page contiguity for these ap­

plications does not provide much benefit, as the number of

pages allocated by these applications is relatively small, the

impact due to cache sharing is relatively less and the work­

ing set of these applications fits well into cache. When using

CAA-16 during page fault for these applications, the kernel

tries to allocate contiguous pages in a batch and then add

them to the bucket linked list. The traversal across linked

lists to add new pages or remove free pages adds cache over­

head, but with no benefits due to physical page contiguity.

Such effects would be higher when the bucket size is further

increased, outweighing the benefits of page contiguity. For

applications with larger memory footprint (soplex, Iibquan­

tum, omnetpp), CAA-16 based allocation provides more re­

duction in cache misses compared to CAA-4. These results

emphasize the fact that physical page contiguity-aware al­

locations reduce the cache sharing impact of NVMCap and

NVMPersist applications and that using the right granular­

ity of bucket sizes (i.e., CAA-4 vs. CAA-16), based on appli­

cations' memory usage, can lead to higher cache miss re­

duction. The average reduction in cache misses due to CAA

is around 1 %. We do not run the animate benchmark due to

its high memory requirements of the Atom platform. For

further improvements, we next focus on NVM write-aware

allocators.

4.2 Addressing Allocator Overheads

Cache misses and writebacks due to application alloca­

tors can be reduced with an NVM write-aware allocator

(NVWA). The key idea is to keep the complex hierarchical

allocator metadata in DRAM, and maintain only an alloca­

tor data structure-independent log in NVM. The log of all

NVM allocations, deletions, or reallocations by application

threads is sufficient for restarting and rebuilding the allo­

cator state. The allocator log is always kept strongly con­

sistent with the actual DRAM metadata state by flushing to

NVM. The log data structure in NVM is written sequen­

tially and writes are aligned with cache boundaries.

Figure 12 shows a two-level allocator log. For every

memory allocation by an application, the first log level con­

tains information about allocated chunks, and the second

level contain information about the physical page to lo­

cate the corresponding chunk. For deletion of a memory

chunk, there are two possibilities based on available stor­

age space: (1) the log can be parsed sequentially, and the

corresponding entry is invalidated (by marking a exclude

bit for garbage collection), or (2) one can just 'append'

chunk deletion information to the log. For (1), when there

is insufficient NVM space, to avoid sequential log parsing,

we maintain an in-memory (DRAM) red-black tree with

chunk pointers, which makes it possible to locate and up­

date chunk status in O(log n) time. For example, just ap­

pending a log entry for a new chunk and for deleting a new

chunk (say a million entries hashtable) can consume twice

the allocated data size. Further, these updates can cause an

additional cache miss overhead. When NVM space is not

a constraint, method (2) above can be used. For deletion,

only a single bit is modified to indicate whether the chunk

is still useful, and for reallocation, only the length field is

updated. The benefits of such a log-based approach are:
• During most metadata updates, no more than two

cache line flushes are required, unlike with prior re­

search [19] in which a hierarchy of allocator data is

maintained and flushed to NVM.

• Updates to NVM logs are mostly sequential, cache

aligned, and hence, no more than two cache line

flushes are required.

• Maintaining simple persistent restart metadata inde­

pendent of allocator metadata provides the flexibility

of using different allocators.
• A final benefit is a reduction in the total amount of

persistent data kept in NVM, because only the log is
persistent.

Allocator Overheads. We next analyze the implications
of the allocator optimizations using microbenchmarks and
representative client applications.

Microbenchmark analysis. We run only the persistent hash
table (PHT) benchmark using the default persistent lemal­
loc allocator referred as a 'naive allocator' that keeps all

of its complex allocator structures in NVM. This is com­
pared to the cache misses seen with the PHT using the
NVM write-aware allocator (NVWA). We vary the number

of PHT operations that include random hash table puts and
gets. Along the x-axis in Figure 13, we vary the number
of elements in a hash from 600K to 1.5Million, each with

key and value of 64 bytes. The Y axis shows the increase
in cache miss percentage compared to a baseline ideal PHT
that does not flush the allocator metadata. As can be ob­
served, in all cases, the NVWA approach outperforms the

naive allocator by around 3%. This is mainly because of the

reduced number of cache line flushes by NVWA compared
to the naive allocator, with only 2 flushes per every newly
allocated memory chunk and a single cache line flush for
deletion or resize operations. Table 2 compares the total
number of allocator-specific cache line flushes of both ap­
proaches. Observe that the NVWA allocator reduces flushes
as high as 8x compared to the naive allocator, thus substan­
tially reducing allocator-specific misses.

Application benchmarks. Next, we compare the impact of
the NVWA allocator on all of the application benchmarks
used in Section 4.1. Figure 14 compares the cache misses
under different allocator designs. For memory intensive

client benchmarks like ' animate', we observe close to a 2%
improvement when using NVWA, whereas 'convert' shows
less than a 1 % improvement. Surprisingly, the lesser mem­
ory intensive x264 also experience substantial benefits from

using NVWA. This is because x264 processes target files
in frame size (192 bytes) granularity. Hence, for a 62MB
file, the number of allocation-related flushes are substan­
tial for the naive vs. the NVWA allocator. The 'convert'
application, in comparison, experiences a relatively smaller
number of allocations. Similar trends are observed in mem­
ory intensive benchmarks, where the benefits are higher for
memory capacity intensive applications like sop lex (4%)
and libquantum (2%), but other benchmarks show less than
a 1 % improvement.

An interesting difference between our representative
client applications and the SPEC benchmarks is that with re­
alistic client applications, the total number of allocations is
larger, and are done throughout the applications' lifetimes,
whereas the SPEC benchmarks (including memory inten­

sive benchmarks), have fewer allocations, mostly grouped

Hash Elements(millions) Naive NVWA
.5 2500036 500032
I 5000044 1000043
1.5 7500052 1500054

Table 2. Cache line flush comparison

� 10
'! 9
�.S 8
- - 7
E � 6
]:.D 5
�.9 4 u." 3

�
...

······NVMA(%)
-Nalve(%)

.5 e 2
� a I
no -'-----------­G U

.s 0.60 0.80 LOO 1.50
No. of Hash Operations (In Millions)

Figure 13. Allocator metadata persistence
cost analysis.

in their initiar execution stages. This abnormal behavior
of the SPEC benchmark means that the impact of inter­

ference on NVMCap applications due to persistent alloca­
tions is relatively smaller. We conclude that gains from Us­
ing an NVWA depends both on the total number of alloca­
tions/deletions made by the applications and on when such
operations are performed. Figure 15 quantifies the total re­
duction in cache misses from using the NVWA allocator
compared to the ideal baseline.

4.3 Hybrid Logging

The purpose of the hybrid logging method introduced

in this paper is to reduce NVM writes due to application
logging, while still providing with failsafe durability guar­
antees. Specifically, hybrid logging (i) reduces the meta­
data writes for the word-based log (every word data logged

requires three words of metadata), and (ii) reduces the
data writes of object-based logs in which entire object is

copied even when only a single word in an object has been
changed. Hybrid logging provides developers with a flex­
ible object- and word-based logging interface that permits
them to pass hints to the write aware NVM log manager
concerning the granularity of changes. In Figure 17, for
hash table data structure changes, incrementing the entry

count in the hash table or dereferencing to key/value pairs,
are word size updates, and the developer can commit these
by passing the word logging hint. For changes larger than
the word size, e.g., when modifying the key/value object,
object-based logging makes it unnecessary to maintain a log

record for every word of an object.
Implementation details in Figure 16 show how hybrid

logging is used with redo logs (undo logging is supported,
as well). The object and word logs for an application are
maintained independently. Further, for each log (word and
object), the log metadata and actual log data are maintained

in separate locations, by mapping a fixed contiguous size

of NVM. Further, the log truncation frequency is set to
LLC size (1MB in our case). Separating the log metadata
from the log data enable easier traversal of log metadata for
retrieval or clean up. W hen an application developer de­

cides to commit persistent data to NVM, a virtual address

12 -NVMWA%
-Naive %

End CI ien! A pps

Figure 14. Allocator cache miss reduction{%}
compared to naive approach.

n'll

�

1
2

1
·CAA+NVWA

" " 0 .S .:=: -2 "T u� 1.0

.g1i ';:I
�

• I
1: ta 8 " - � > � -"
0 u

End Client Apps.

I I
8 't Q. '" OJ) >(

� E Q. '" C "
" " -> .� §" " 0 '" E Q. en "

C- O
:§ Spec Bench

I
oil
�

Figure 15. CAA + NVWA performance

is passed, along with a hint of the log granularity. The log

record has a transaction ID (TID), the address/offset that

points to log data, a pointer to the original data address

(not the log data address). The monotonically increasing

TID helps with data version conflicts, i.e., conflicts of the

log records with the same virtual address are solved using

the TID (higher ID number indicates newer log data). For

word-based logging, log data and log metadata are similar

in size. For object-based logging, the log metadata con­

tains additional fields indicating the size of of the objects

logged. Again, key benefits of this hybrid logging approach

are that by providing a flexible hybrid interface, (i) the high

ratio of log metadataldata is reduced, by avoiding logging

every word change, and (ii) high log data costs are reduced,

by avoiding logging the entire object even when the data

change is less than a word.

Hybrid Logging - Experimental Evaluation. Similar to

the allocator evaluation, we run the same PHT benchmark

enabled with two different logg ing methods: 1.) word­

based logging and 2.) the proposed hybrid logging. The X
axis in Figure 18 shows increasing numbers of hash oper­

ations that would consequently lead to increasing numbers

of logging operations. The Y axis, shows the percentage

reduction in relative cache misses using the hybrid logging

approach. We use the same hash table implementation code

as in prior work [26] with a similar transaction interface.

For every hashtable key insert, in the case of hybrid log­

ging, 5 word level transactions are replaced by one object

transaction, and for a delete operation, 3 word transactions

are replaced by one object transaction. This reduces the to­

tal NVM writes of 120 bytes (5 log entries with 24 bytes

each entry) to 28 bytes (three 8 byte record pointers (see

Figure 16) plus a 4 byte object size field) when adding a

new key and value to a hash. The outcome is a reduction of

an average of two cache line flushes to one cache line flush.

Obj log
record hdr

Word data log I Otj l Obj2 I Ob]3111
<E--i> � 64 B 4K B Obj data log

Figure 16. Hybrid logging design
AddHashEntryO {

ID = begin_trolls("word'?,* word logging for

++(table·>entrycnt); hash entry count

commiUrans(lD. &table·> entrycnt);

key = (char *)nvalloc(64);
val= (char *)nvalloc(4096);

ID1 = heg;IUralls("ohjecl'J;
memcpy(val. page. 4096);
commiurans(IDI, value);

ID2 = heg;IUralls();
table·>k = key;
table·>v = val;
commiCtrans(ID2,table);

object logging; value

larger than word size

when no hints,

default; object logging

Figure 17. Hybrid logaing interface
Additional optimizations like fluSh batching can combine

multiple object record updates (approx. 3 log records) to

one flush. The data written to log would be the same for

both word-based or hybrid logging, as it is application de­

pendent. We observe that irrespective of the number of hash

operations, the relative reduction in cache misses with hy­

brid log is almost constant, as expected. Additional benefits

of hybrid logging can be expected when batching the log

metadata flushed. Further, the impact of our optimizations

on NVMPersist application was less than 0.7%.

4.4 Discussion
With the goal of enabling dual use of NVMs in end

clients, we discussed three optimizations that include page

contiguity-based cache partitioning implemented at the OS

level, an NVM write aware allocator for reducing the allo­

cator NVM updates, thereby reducing the cache impact on

NVMCap applications, and finally, we show the benefits of

the hybrid logging mechanism. Each mechanism incremen­

tally improves the average reduction in cache misses (up to

3.6-4%) and up to 12% in some end client applications.

Figure 19 shows the overall effectiveness of combining

all three optimizations: page contiguity, write aware alloca­

tor, and finally hybrid logging. In most application bench­

marks our proposed mechanisms provide 1-6% benefits and

in some benchmarks like x264, the benefits are more than

12%. While in the case of x264, the benefits primarily are

from allocator optimizations, in case of other workloads, the

benefits add up from all the three optimizations discussed.

In some workloads like 'mef' we noticed less than 1 % im­

provement. In case of 'povray', we found the working set

of application to be comparatively less, and also most mem­

ory allocations are by these applications are done towards

the initial stages and our optimizations are not effective.

Figure 20 shows the total number of misses reduced with

40000000 ,-, " 14
� 012
';"� 10 -CAA + NVWA +Hybrid
� g 8

35000000 -CAA + NVWA +Hybrid Miss
30000000 Reduction (Millions)

-Cache miss
reduction

.� � 6
25000000
10000000 � t: 4

.� � 2 .g ';; 0 +" --- ------- -'-"'-,.-''-''-��

� .� -2 !1'?' 4.1fJ� _# �� .# �t;.. &.'Y.40-�.IfJ���(}r- �OO

15000000
10000000
5000000

o � __ L-_L- __ JL JL -I __ ��
·5000000 0.6 0.8 1.0 1.5

Hash ops (in Millions) "'" 1-" o� '.... �<;i A<;i ,,0 "�"o" , � � (j � 00/ " or ,§' .� �� ,# J>' .<>'� "'� "�" it �
Figure 18. Logging
micro bench - PHT

End Client Apps. Spec Bench
"'.0" .. / i'<f " f'

End Client A 5. � Spec Bench
Figure 20. 'otal miss reduction Figure 19. CAA+NWAA+Hybrid

log gains CAA+NWAA+Hybrid

CAA+NWAA+Hybrid methods compared to baseline.

To understand the effectiveness of our mechanisms on

other cache efficient applications, we used the persistent

B-tree described earlier in section 4 with 1.5M operations

(same as PHT). Figure 21 shows the performance gains of

B-tree using all our optimizations. As expected, gains for

cache efficient B-tree was restricted to less than 3.5%, and

the average gain was around l.2%. Most benefits (73%) for

B-tree was due to the allocator optimizations and the rest

from the page contiguity method with no logging related

gains. This is because, each B-tree node was aligned to a

word size (we used 8 byte ints as node values), and hence,

use of a hybrid approach instead of default word logging

was not required. W hile our current optimizations show less

benefits for cache efficient B-tree, our future work would

explore more such optimizations.

Simple Execution Time Estimation. Our design op­

timizations and evaluations specifically focus on methods

to reduce the cache misses of NVMCap and NVMPer­

sist applications. Reducing cache misses reduces the need

for direct access to NVM, thus avoiding execution time

overheads due to poor NVM write latencies compared to

DRAM. Our evaluation shows that for some applications

our approach leads to up to 12% reduction is cache misses,

where for others the reductions are more modest. Based on

prior studies, however, we believe that even 1 % decrease in

the total cache misses suffered by an application can have

a substantial performance impact on the end client applica­

tions [l3].

Performing an accurate and direct assessment of the im­

pact of our methods on execution time is challenging, how­

ever. Currently, PCM devices are not commercially avail­

able, and emulating varying NVM read/write latencies us­

ing DRAM is not possible or accurate. Further, hardware

performance counters for end client devices (Atom) do not

classify cache misses due reads vs. writes. Hence, to pro­

vide a simple back of the envelope estimation, we use

PIN-based instrumentation similar to several other prior ef­

forts [9, 26, 19] to capture total the NVM read/write and

estimate the runtime impact of our optimizations. We use

three models 'Half-Half' - half of the misses reduced by

our methods is NVM writes, 'Full writes' - all the reduction

End Client Apps. Spec Bench

'" 40
.§ g 35
,,:.: 30
.g � 25
" .J:i 20 �.8 15 � "'>

Figure 21. 8-tree gains
o Half and Half Writes

Full Writes

.One third writes

10 ::.�
5 .�""§ 0 +-�£I...._ -LIo.JILUL.II..J u... Lc:El--U"'"- _ _ "-u�

�]'
-5

.fy� 4.1fJ� �..$> �� .# �t;.. §I.'Y. k�· 1fJ<;i� it �� o<;i �<;i #'Y.0 "�,,o
(j .';!;)� °

End Client Apps. � Spec Bench

Figure 22. Runtime estimation
is for NVM writes, and finally, one-third of misses are re­

duced for NVM writes. Using the write latency projections

of 1 microsecond from [3] and assuming DRAM read la­

tency for NVM reads, Figure 22 shows a simple projection

of the execution time reduction. We stress the fact that, our

current scope of work is limited to reducing NVM writes

(i.e., cache misses) by software optimization. Also, our es­

timation does not consider features like out of order exe­

cution, parallel issue of read/writes to memory in modern

processors and should be viewed as a worst case analysis.

As expected, when the number of cache misses due to NVM

writes increases (Full writes), our optimizations can provide

substantial performance gains for memory intensive bench­

marks. Even when the write misses are substantially less

(one third due to writes), our optimizations can improve the

application execution time by around 6%-8%. Our future

work will focus on a more detailed investigation of the exe­

cution time impact of our techniques.

5 Conclusions
This paper analyzes the dual-use of NVM, for mem­

ory capacity and for persistent storage, in end client de­

vices. Analyzing NVM writes, we find that effective dual-

use NVM requires new methods that address cache sharing

between persistent and non-persistent applications, in addi­

tion to optimizations to the memory subsystem's software

stack, including allocators and logging. Cache sharing so­

lutions use a novel contiguity-based approach to memory

allocation, which reduces by up to 8% the overall cache

sharing impact experienced by non-persistent applications

and caused by persistent co-runners. Further improvements

are obtained with an efficient write aware persistent allo­

cator, leading to reductions in the overall cache misses of

up to 12% for client applications and around 4% for SPEC

benchmark. Finally, an NVM write-aware hybrid logging

approach substantially reduces the NVM writes. An in­

teresting outcome of this research is that for efficient use

of NVM, there is an experimentally demonstrated need for

end-end solutions that include optimizing the ways caches

are handled, changing the memory allocators used by the

operating system and by application libraries, and consid­

ering carefully the manner in which persistence guarantees

are made, e.g., through logging.

W hile this paper's contribution specifically focuses on

reducing NVM writes, by avoiding cache misses, an inter­

esting and important future work is to accurately assess the

performance and power benefits from such reductions in

NVM access. Also of interest is an analysis of additional

persistent and non-persistent applications, coupled with a

careful look at how such applications and the library and

OS functionalities described in this paper would be imple­

mented in the popular Android OS for end client devices.

6 Acknowledgments

This research is supported in part by the Intel URO

program on software for persistent memories and by NSF

award CCF-1161969. We would like to thank our shepherd

Dr. Yuan Xie for the feedback and comments to improve

the paper.

References

[1] Intel Atom -Xolo. http://www.xolo.in/.

[2] MacSim: A CPU-GPU Heterogeneous Simulation Frame­

work https://code.google.com/p/macsim/.

[3] Numonyx pcm characteristics. http://bit .ly /

e48Gdh.

[4] WebShootOut browser benchmark. bit. ly /19qkSnr.

[5] C. S. Ananian and M. Rinard. Efficient object-based soft­

ware transactions. In SCOOL '05.

[6] A. M. Caulfield, A. De, J. Coburn, T. I. Mollow, R. K. Gupta,

and S. Swanson. Moneta: A high-performance storage array

architecture for next-generation, non-volatile memories. In

MICRO '43,2010.
[7] J. Chang and G. S. Sohi. Cooperative cache partitioning for

chip multiprocessors. In SC 07.

[S] J. Coburn, T. Bunker, R. K. Gupta, and S. Swanson. From

aries to mars: Reengineering transaction management for

next-generation, solid-state drives. In UCSD CSE Technical

Report, 2012.

[9] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K.

Gupta, R. Jhala, and S. Swanson. Nv-heaps: making persis­

tent objects fast and safe with next-generation, non-volatile

memories. In ASPLOS XVI.

[10] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee,

D. Burger, and D. Coetzee. Better i/o through byte-

addressable, persistent memory. In SOSP '09.

[11] G. Dhiman, R. Ayoub, and T. Rosing. P dram: a hybrid pram

and dram main memory system. In DAC '09.

[12] M. Dillon. Design elements of the freebsd vm system.

http://tinyurl.com/kftjzqy.

[13] R. Duan, M. Bi, and C. Gniady. Exploring memory energy

optimizations in smartphones. In IGCC '11.

[14] E. Giles, K. Doshi, and P. Varman. Bridging the program­

ming gap between persistent and volatile memory using

wrap. In CF '13.

[15] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and

T. Moscibroda. Dynamically replicated memory: build­

ing reliable systems from nanoscale resistive memories.

SIGARCH Comput. Archit. News, 3S(1), Mar. 2010.
[16] A. Jaleel. Memory Characterization of Workloads Using

Instrumentation-Driven Simulation. http://bi t . ly /

15zntbv.

[17] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic.

Optimizing checkpoints using nvm as virtual memory. In

IPDPS 12.

[IS] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architect­

ing phase change memory as a scalable dram alternative. In

ISCA09.

[19] I. Moraru, D. G. Andersen, M. Kaminsky, N. Binkert, N. To­

lia, R. Munz, and P. Ranganathan. P ersistent, protected and

cached: Building blocks for main memory data store. In

CM U tech report, 2011.
[20] F. Mueller. Compiler support for software-based cache par­

titioning. In LCT-RTS 95.

[21] D. Narayanan and O. Hodson. Whole-system persistence.

In ASPLOS XVlJ, 2012.
[22] M. K. Qureshi and Y. N. P att. Utility-based cache parti­

tioning: A low-overhead, high-performance, runtime mech­

anism to partition shared caches. In MICRO 39, 2006.
[23] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. Scalable

high performance main memory system using phase-change

memory technology. In ISCA '09.

[24] T. Riegel, C. Fetzer, and P. Felber. Time-based transactional

memory with scalable time bases. In SPAA '07.

[25] G. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning

of shared cache memory. In SC 04.

[26] H. Volos, A. J. Tack, and M. M. Swift. Mnemosyne:

lightweight persistent memory. In ASPLOS XVI.

[27] X. Zhang, S. Dwarkadas, and K. Shen. Hardware execution

throttling for multi-core resource management. In USENIX

ATC '09.

[2S] X. Zhang, S. Dwarkadas, and K. Shen. Towards practical

page coloring-based multicore cache management. In Eu­

roSys '09.

[29] J. Zhao, S. Li, D. H. Yoon, Y. Xie, and N. P. Jouppi. Kiln:

Closing the performance gap between systems with and

without persistence support. In MICRO '46,2013.

