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Abstract 

This paper explores the performance implications of us­

ing future byte addressable non-volatile memory (NVM) 

like PCM in end client devices. We explore how to ob­

tain dual benefits - increased capacity and faster persis­

tence - with low overhead and cost. Specifically, while in­

creasing memory capacity can be gained by treating NVM 

as virtual memory, its use of persistent data storage in­

curs high consistency (frequent cache flushes) and dura­

bility (logging for failure) overheads, referred to as 'per­

sistence cost'. These not only affect the applications caus­

ing them, but also other applications relying on the same 

cache and/or memory hierarchy. This paper analyzes and 

quantifies in detail the performance overheads of persis­

tence, which include (1) the aforementioned cache inteJfer­

ence as well as (2) memory allocator overheads, and finally, 

(3) durability costs due to logging. Novel solutions to over­

come such overheads include (1) a page contiguity algo­

rithm that reduces inteJference-related cache misses, (2) a 

cache efficient NVM write aware memory allocator that re­

duces cache line flushes of allocator state by 8X, and (3) 
hybrid logging that reduces durability overheads substan­

tially. With these solutions, experimental evaluations with 

different end user applications and SPEC2006 benchmarks 

show up to 12% reductions in cache misses, thereby reduc­

ing the total number of NVM writes. 

1 Introduction 

Future byte addressable non-volatile memory technolo­

gies (NVM) like phase change memory promise the benefits 

of faster persistent storage than SSDs coupled with larger 

capacity with less power, compared to DRAM. Prior re­

search has typically either used NVM as an additional vir­

tual memory to increase total memory capacity, or placed 

it behind the I/O stack for fast access to persistent stor­

age. Those methods are beneficial for high end servers, 

with NVM placed into select memory sockets along with 

its additional use as a block cache, but for resource- and 

cost-constrained end devices like smartphones and tablets, 

it is preferable to use the device's NVM both for increased 

memory capacity and for fast access to persistent storage. 

This paper addresses the challenge of how to efficiently 
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use NVM's byte addressability, in terms of bypassing soft­

ware stack overheads, while at the same time, enabling per­

sistence for such memory when and if desired. Referring to 

the use of NVM for additional heap capacity without persis­

tence as NVMCap vs. its use of persistence as NVMPersist, 

we contribute (1) detailed studies of the performance over­

heads of simultaneously exploiting these two capabilities of 

NVM, followed by (2) the creation and evaluation of tech­

niques that mitigate these performance overheads. Specifi­

cally, concerning (1), NVM's high write latency compared 

to DRAM (5x-lOx) [3] makes it difficult to use it for ex­

tended capacity - NVMCap. Obtaining comparably high 

performance requires the efficient use of system caches by 

the end client applications being run. Yet these same caches 

are also in the path of accesses to NVMPersist, where to 

guarantee consistency, durability, and failure recovery, the 

application data as well as its metadata must be frequently 

serialized and flushed from cache. Cache line flushes in­

volve writebacks of dirty data (if any) and cache lines in­

validation broadcasts across all cores. Further, since evic­

tions from the cache can be in any order, the updates from 

cache must be serialized, by fencing memory write oper­

ations [26, 10]. An expected outcome of such actions is 

increased cache misses and higher NVM access latency for 

NVMPersist-based applications. A perhaps less obvious, 

yet quite undesirable outcome is that such cache flushes can 

also substantially impact the NVMCap applications using 

the same last level cache. 

We present experimental evidence documenting these 

facts. Concerning (2) above - the mitigation of performance 

overheads - key to attaining high performance when using 

NVM is to reduce the number of direct NVM writes and to 

reduce the last level cache misses suffered by NVMpersist 

and by NVMCap. We find that to deal with NVMPersist's 

cache usage (i.e., frequent cache flushes) requires a mul­

tistep, end-to-end solution that includes (i) OSlhardware 

techniques that provide efficient cache sharing between 

NVMPersist and NVMCap applications, coupled with (ii) 

user level techniques that reduce cache misses due to NVM 

writes for maintaining the ACID (atomicity, consistency, in­

tegrity, and durability) requirements of NVMPersist appli­

cations. For (i), we identify and evaluate appropriate cache 



sharing mechanisms. For (ii), we redesign traditional mem­

ory allocation methods and develop a cache efficient data 

versioningllogging method. 

This paper makes the following specific technical con­

tributions toward efficiently using NVM for both NVMCap 

and NVMPersist in end client devices with focus on reduc­

ing the cache misses: 

1. Persistence Impact: we analyze end client device 

workloads to better understand the impact of NVM­

Persist applications on NVMCap applications sharing 

the same cache. 

2. OS-level Cache Sharing: to reduce cache misses due 

to sharing, we propose a novel but simple page color­

ing mechanism that exploits as a metric 'physical page 

contiguity misses'. The approach is implemented in 

the Linux kernel memory management layer and re­

duces cache misses by 4% on a average, validated 

through hardware performance counters. 

3. Library-level Optimizations: the metadata structures 

needed for persistence cause overheads in terms of in­

creased cache misses. We analyze persistent memory 

allocators and their durability-related data structures 

across the system stack, and propose a novel cache­

efficient allocator and an efficient hybrid (word-object) 

logging approach that significantly reduces the number 

of writes to NVM. 

All solutions are evaluated with standard benchmarks and 

with the realistic end user device workloads. 

2 Background and Related Work 

NVM as virtual memory. NVMs like PCM are byte ad­

dressable persistent devices and are expected to be 100x 

faster (read-write performance) compared to current SSDs. 

Compared to DRAM, these devices have higher density 

scaling as they can store multiple bits per cell with no re­

fresh power, with known limitations imposed by an en­

durance of a few million writes per cell. These attributes 

make NVM a suitable candidate for replacing SSDs, but in 

addition, NVM can also be used as memory, placed in paral­

lel with DRAM, connected via the memory bus. In contrast 

to SSDs, NVM can be accessed via processor loadlstores 

(read/write), with read speed comparable to that of DRAM, 

but writes around lOx slower due [3] to high SET and PRE­

SET times. NVM therefore, presents one way forward to 

solving memory capacity problems as well as fast persis­

tent data access for end clients. 

Role of cache. For NVMPersist, NVM's high write la­

tency can be mitigated by using a fast intermediate cache 

and DRAM, as shown in [23, 15, 11]. For a write-back 

cache, writes that are evicted from the cache are then moved 

to the DRAM cache that behaves like a disk buffer cache. 

This model works well when there is sufficient buffer space 

(e.g., on high end servers), but when DRAM is scarce (e.g., 

on mobile devices), forcefully reserving pages for buffering 

can reduce overall system throughput. The Android OS, for 

instance, avoids DRAM use for page buffering by disabling 

swapping. A better alternative is to simply use the proces­

sor cache [26, 9]. The unfortunate consequence, however, 

is that, consistency and durability guarantees require it to be 

frequently flushed from the cache. We adopt this approach, 

contributing a thorough study of its performance implica­

tions. 

Software support for NVM. The usage model for NVM -

capacity extension, persistent storage, or dual-use - deter­

mines the systems software support needed for NVM man­

agement. 

(1) Application involvement. For NVMCap, the system can 

treat NVMs as a swap device [11, 18, 15], not involving ap­

plications. This is not the case for NVMPersist, which re­

quires applications to explicitly identify specific data struc­

tures to be saved. A recent work [14] proposes using PCM 

by intercepting the memory access to specific ranges, and 

a modified memory(SCM) controller to redirect access to 

PCM. The key contribution of this work, is to provide atom­

icity and durability guarantees with efficient use of cache. 

(2) Implementation approaches. (i) Using existing block 

110 interfaces for NVMPersist provides backwards com­

patibility to legacy applications. (ii) Providing a mem­

ory mapped (mmap) interface loses backward compatibil­

ity but offers byte-addressability via a system's 1/0 stack, 

and requires application level changes for applications us­

ing POSIX 110. (iii) Treating it as managed nonvolatile heap 

(i.e., via NVM allocation calls) results in byte-addressable 

NVMPersist, but entirely avoids using the 110 software 

stack. For (i) and (ii), previous work has shown the impor­

tance to redesign the system's 1/0 stack, as unlike for flash 

or disk, current 110 software stack is the bottleneck dom­

inating total memory access cost [10, 6]. J.Condit [10] et 

al. propose shadow buffering for NVM-based files, with 

epoch-based cache flush methods, but shadow buffering 

performs poorly for large 110 volumes [10]. Moneta [6] 

proposes a user level file system to reduce frequent 110 

call overheads and consequent large aggregate kernel switch 

times. File-based 1/0 accesses are software controlled, 

however, meaning that read and write will be controlled 

by the OS, thus not exploiting NVM's byte addressability. 

Instead, using a mmapO interface leverages NVM's byte 

addressability, but frequent mmapO system calls (and con­

sequent overheads) force applications to statically reserve 

large regions of memory and then self-manage their mapped 

memories. The resulting inefficiencies in memory use are 

not desirable for memory-limited end user devices. 

The issues raised for (1) and (2) above prompt us to treat 

NVM as nonvolatile heap managed by user level and ker­

nel allocators. Further, and in contrast to prior work [9, 26] 

using NVM only for persistence, we design interfaces for 

using NVM both for persistence - NVMPersist - and as 



hash *table = PersistAlloc(entries, "tableroot"); 
for each new entry: 

entry _s *entry = PersistAlloc (size, NULL); 
table = entry; 
count++; 
temp_buff = CapAlloc(size); 

Figure 1. Using NVM for Capacity and Persis­
tence: An Application's View. 

slow memory - NVMCap, the latter addressing memory 

capacity issues. Figure 1 shows an example of a persis­

tent hash table using the NVMPersist persistent allocation 

interface, as well as creating a temporary volatile buffer us­

ing the NVMCap capacity interface. Figure 2 shows a high 

level design model. The example presents a persistent al­

location interface similar to prior work, with the additional 

offering of the NVMCap option, to use NVM as volatile 

memory. The allocations made via these APIs are internally 

managed by user level and kernel level memory managers 

supporting them. This is similar to a recent work [17] for 

OS support for treating NVM as virtual memory, using ef­

ficient persistent and non persistent memory managers. In 

comparison, complementing such work, this paper evalu­

ates and then addresses the overheads of NVM's dual-use 

as both NVMCap and NVMPersist. Detailed studies of the 

overheads of managing nonvolatile heap and methods for 

mitigating them include issues with user level allocators, 

and overheads related to simultaneously providing strong 

consistency and durability guarantees. 

Applications use of NVMcap and NVMpersist. The num­

ber of cores and application threads in end clients is increas­

ing along with the increasing DRAM capacity and stor­

age requirement. For instance, take the case of a multi­

threaded memory hungry web browser, where the front end 

browser tab uses NVMCap for additional memory buffer, 

and the backend browser thread caches user data to trans­

actional database. Similarly, in a multi-threaded game en­

gine, the GUI thread can use NVMCap as graphics buffer, 

and the game I/O thread can access NVMPersist for stor­

age (load/store user state to the database). For NVMCap­

based allocation, the OS NVM manager does not track ap­

plication (user level allocator) and kernel data structures, 

but simply allocates pages (like DRAM). But for NVMPer­

sist, both user and kernel data structures are tracked. Hence, 

for NVMPersist, applications use explicit NVM allocation 

interface, whereas for NVMCap use of NVM is transpar­

ent (by linking to NVM library) and no application level 

changes is required. 

Durability and consistency. NVM hardware-software 

must support required consistency and durability across ap­

plication sessions. When using the processor cache to hide 

write latencies, since cache data can be evicted in any order, 

to maintain ACID properties, prior efforts have used write-

through caches [26], or epoch-based cache eviction meth­

ods [10] using memory barriers to order NVM writes. Fur­

ther, durability can be affected during power failures or de­

vice crashes, leaving the application in a non-deterministic 

state, e.g., due to partial updates (note that both data and 

metadata must be saved consistently). A common approach 

to deal with this relies on application commits, which in 

turn trigger cache flushes. Although sufficiently frequent 

flushes can reduce the possibility of non-recoverable fail­

ures, additional transactional mechanisms are needed for 

atomicity, accompanied with logging (e.g., undo/redo) sup­

port for durability. A recent work [29] proposed hardware­

based nonvolatile cache and nonvolatile memory to enable 

multi-version support with in-place updates (avoids the log­

ging cost). The cache contains the dirty version and the 

memory contains the cleaner version. While such micro­

architectural changes can reduce the cost of logging, we 

focus on the software optimizations for existing hardware 

(volatile cache). 

Other approaches. Prior work like whole system per­

sistence (WSP) [21] proposed a hardware power monitor 

to detect power failures and flush cache, processor regis­

ters, interrupt signals etc., to the persistent storage. During 

the restart, the OS and application states are restored like a 

transparent checkpoint. Two issues with such proposals are 

(i) they require additional hardware, like a microcontroller­

based power monitor dedicated to detecting power failures, 

and (ii) WSP works for whole system persistence, but when 

both DRAM and NVMs are used, it is unclear how to distin­

guish volatile from nonvolatile cache lines, and support for 

flushing only nonvolatile cache lines may require modifica­

tions to the hardware cache. Furthermore, they do not help 

harden durability guarantees in the event of system crashes. 

Other nonvolatile heap-based research [9, 26] used strong 

transactional semantics with word [26] or object-based [9] 

logging. We discuss these logging methods, and demon­

strate the benefits of our proposed novel hybrid (word + ob­

ject) approach developed in our research. 

3 The Costs of Persistence 

This section motivates the need for cache efficient, end­

to-end solutions when using NVM both for extended ca­

pacity and for persistent storage. We analyze the impact 

of cache sharing between persistent and non persistent ap­

plications, and establish that a key factor contributing to 

increased cache misses is the use of cache inefficient data 

structures to obtain ACID requirements for data persis­

tence. These inefficiencies arise in both the memory allo­

cator and the logging mechanisms. To analyze the over­

heads, we implemented a complete NVM software stack 

(OS/Application library). In keeping with the end client 

focus of this research, all experimental evaluations use a 

dual core 1.66 GHz 64 bit D510 Atom-based develop­

ment kit running a 2.6.39 Linux kernel with our OS-based 
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NVM support, with 2GB DDR2 DRAM, Intel 520 120GB 

SSD, 32KB Ll and 8 ways 1MB L2 writeback cache [1]. 

Out of the total 2GB system RAM, 1 GB is used towards 

NVM. MSR-based performance counters are used to mea­

sure cache misses, and the VTune analyzer is employed 

for function level miss estimation, for both user and ker­

nel code. Applications are run in ways that maintain simi­

lar execution times, to better capture the effects of resource 

sharing. 

3.1 Impact of Unmanaged Cache Sharing 

Representative end client workloads are used to verify 

the performance penalties of sharing last level cache across 

NVMCap and NVMPersist applications, the former using 

NVM for additional capacity but co-running with a single 

additional NVMPersist workload - a persistent hashtable 

(e.g., like those used in key-value stores), labeled as PHT 

(Persistent Hash Table). Again, the NVMCap applications 

do not require data persistence and thus, do not flush state of 

the cache, whereas the PHT NVMPersist-type application 

frequently flushes cache to obtain consistency and durabil-

ity guarantees. Figure 3 shows the pseudocode of the PHT 

with strict transactional guarantees, which we implement 

using a transactional heap library that guarantees consis­

tency and durability for applications. The pseudocode lines 

in bold indicate needed cache flush actions. The X axis in 

Figure 4 shows representative end client NVMCap applica­

tions. X264 is a video conversion application converting a 

50MB '. avi' to a mobile compatible '. mp4' file. B-tree is 

a cache efficient data structure commonly used for clients' 

in-memory databases. Animate provides animation for im­

age files. Each such NVMCap application is co-run with 

the PHT with random puts and gets for 500K keys (this size 

is based on our experimental device's available memory re­

sources). The Y axis shows the cache miss (%) increase of 

co-running these NVMCap applications with the NVMPer­

sist hash table relative to running NVMCap application with 

a version of the hashtable that is not persistent - NVMCap. 

Results obtained from reading MSR perfonnance counters 

demonstrate that while cache efficient NVMCap workloads 

like B-tree are not heavily impacted by the presence of the 

PHT NVMPersist application, codes like X264 and animate 

suffer substantial increase in cache miss rates. Also of in­

terest is the high variability of cache miss rates for NVM­

Cap, an unintended side effect of co-running NVMCap with 

NVMPersist applications. 

We also validate our previous analysis using a cycle 

accurate instruction level architectural MACSim simula­

tor [2]. We use CPU intensive workloads for this study 

and replace the I/O intensive animate use case with the end 

user benchmark WebShootbench [4], a popular workload 

now used by Google for Chrome OS tablet benchmarking. 

Also used are some memory intensive and CPU intensive 

SPEC workloads, since our goal is to investigate the im­

pact of dual-use NVM. To model cache impact, the simu­

lator is modified to identify all cache flush instructions in 

the trace generated by the PIN tool, invalidate those cache 

lines and writeback the cache lines if they are dirty. We 

use writeback cache as prior work [19, 26] have evaluated 

the performance impact due to write-through cache. As 

seen in Figure 5, most of the memory intensive benchmarks 

show substantially increased cache misses and writebacks 

when co-running with the PHT. Simulation results report 

only the cache misses incurred by applications, whereas 



the hardware counter-based measurements using the Intel 

VTune analyzer in Figure 4 also report cache misses due 

to OS functions (kernel mode execution of the application), 

constituting about 11-16% of the overall cache misses ob­

served. The clear conclusion from these experimental eval­

uations is the need for effective ways to reduce the impact of 

NVMPersist applications on co-running NVMCap applica­

tions, particularly given the ever increasing number of con­

current applications being run on today's end user devices. 

One way forward is described in Section 4. 

3.2 Library Overheads 

Preventing NVMPersist applications from impacting the 

performance of NVMCap applications requires end-to-end 

solution that begin at user level, for two important compo­

nents: (1) the memory allocator used by all NVM applica­

tions and (2) the logging manager guaranteeing durability 

for NVMPersist codes. They are each discussed below. 

3.2.1 Cache Inefficient Persistent Memory Allocators 

The allocator strongly influences application performance, 

particularly for data structures requiring frequent alloca­

tions (e.g., tree structures, linked lists, key-value stores us­

ing hash tables, etc.). Modern allocators, however, maintain 

complex hierarchical metadata structures for fast free space 

lookup, object (malloc'd memory) deletion, and more im­

portantly, for reducing fragmentation. lemalloc (see Fig­

ure. 6), for instance, is a multithreaded cache efficient allo­

cator that allocates large regions of memory, called chunks 

(1024 pages per chunk), where each chunk is further di­

vided into page runs. Each page run maintains a class of 

uniformly sized objects that vary from 8 bytes to 512 KB. 

Every pagerun has a fixed number of equally sized objects. 

The page run has one header with a bitmap to indicate used 

and freed objects. When an application allocates memory, 

based on the requested size, a corresponding page run is se­

lected and checks for free objects, and the corresponding 

bitmap and page run header are updated. For a group of 

objects in a page run, one header and a bitmap are suffi­

cient. The allocator data structure and application data are 

placed separately, to keep the application data contiguous 

and reduce cache misses on application data. For efficient 

memory usage and to reduce fragmentation, the allocator's 

metadata is frequently updated. 

Most prior proposals, to the best of our knowledge, 

maintain all allocator metadata in NVM [19, 9, 26]. Yet 

keeping such frequently updated data on NVM results in a 

large number of writes to NVM, with consequent numbers 

of cache flushes [19], thus impacting performance. Further, 

compared to volatile object allocations, additional metadata 

is required for each persistent object. This is because for 

volatile objects, the current virtual address is sufficient to 

locate an object in a pagerun and update its metadata and per 

object additional properties are required, but for persistent 

objects, the virtual address is invalid across restarts. Hence, 

objects contain additional information to locate them and 

identify their commit status (some prior work [19] even 

maintains CRC with each object). Furthermore, every up­

date to the allocator data must be logged and flushed from 

cache. Such cache flushing writes dirty lines if inconsistent 

with memory, followed by an invalidation broadcast across 

cores. This can result in a large number of cache misses 

experienced by applications, resulting in direct writes to the 

NVM and consequent application slowdown. In summary, 

frequent allocator metadata updates will result in substan­

tial 'persistence cost' (e.g., consider a PHT with millions of 

new entry addition and deletion). Section 4.2 shows solu­

tions that improve upon metadata structures and updates to 

mitigate these problems. 

3.2.2 Durability-based Write Latencies 

To provide ACID properties to applications, the NVM stack 

must support transactional semantics, coupled with a fail­

safe mechanism where every change to application memory 

is also logged. Logging mechanisms are used for recovering 

from failure to a consistent state, and can be broadly clas­

sified into 1.) UNDO and REDO methods, 2.) and based 

on the logging granularity, as word- vs. object-based. For 

UNDO logging, before every write to a log, the stable ver­

sion is first copied to a log, whereupon the application can 

continue writing to the original data location. If a transac­

tion fails, recovery actions copy the stable data from the log 

back to the original memory location. For REDO logging, 

all writes are appended to a log, and when a log fills up, the 

log entries are copied to original memory locations. With 

respect to logging granularity, prior NVM works uses ei­

ther (i) word-based logging [8, 24, 26], where every word 

is logged along with log metadata (described shortly) or (ii) 

an object-based log for NVMs [9], where the entire object 

is copied to log. We next discuss problems with this current 

state of the art. 

Each log entry is a record consisting of a metadata and 

the actual data stored in different locations. The record con­

tains the actual word address, a pointer to the data in a log, 

and a pointer to next log record. To log a word of data 

(8 bytes), 24 bytes of data must be written to NVM, thus 

drastically increasing the overall writes to NVM. Further, 

word-based logging requires substantial rollback time (scan 

word by word and apply updates). Recent work avoids re­

peated updates by logging at object granularity [5,9]. While 

this scales well for large objects, updates involving smaller 

member variables or counters of an object (e.g., updating 

a counter in a hash table structure when new entries are 

added), the object copy cost from its actual address to the 

log (in case of UNDO) or back from a modified object to 



an actual data address (in case of REDO) can be substan­

tial. Further, cache misses increase with increasing object 

copy sizes, resulting in slower NVM access. Section 4.3 

describes a novel hybrid logging approach that combines 

word-based and object-based logging to provide an adap­

tive approach to reduce NVM write latency issues. The ap­

proach does not require substantial developer effort to clas­

sify word- and object-based logging. 

4 NVM-Efficient End-to-End Software 

This section describes solutions to the cache inefficien­

cies identified in the previous section. It first describes a 

physical page contiguity-based page allocation mechanism 

that seeks to partition the cache entries used by NVMPersist 

vs. NVMCap applications. This simple but effective solu­

tion avoids the complexity of using traditional page coloring 

methods for this purpose. Second, allocator metadata man­

agement is improved to reduce allocator overheads, the key 

idea being to maintain complex allocator metadata struc­

tures in DRAM and logging their updates in NVM. Third, 

we reduce the cost of transaction logging via a hybrid log­

ging mechanism that automatically adapts to the appropri­

ate logging granularity (word vs. object). While our cache 

partitioning mechanism reduces the cache impact of NVM­

Persist apps on NVMCap apps, the allocator and logging 

optimizations reduce the cache misses suffered by NVM­

Persist applications and hence improves the overall cache 

misses. Experimental evaluations for the effects of each 

such NVM write-aware optimization are run on the same 

Atom-based development platform described in Section 3, 

using the same methods to gather experimental results via 

the MSR performance counters. All evaluations use re­

alistic end user NVMCap applications that include 'ani­

mate' used for image animation, 'x264' used for 64 MB 

file mp4 conversion, 'convert' used for converting images 

from .jpeg to .png. We also use SPEC 2006 benchmark 

applications that are more representative client-side appli­

cations, like 'astar' which is a portable 2D path-finding li­

brary, 'povray', a ray tracing application, and other mem­

ory intensive benchmarks like 'omnetpp', 'mef', 'soplex' 

and computation intensive benchmarks like 'sjeng', and 

'libquantum'. Details about these benchmarks concerning 

their cache and memory intensity can be found in [16]. 

4.1 Reducing the Cache Sharing Impact 

Cache sharing between NVMCap and NVMPersist ap­

plications can result in increased conflicts, false sharing, 

higher NVM writes, and reduction in memory bandwidth 

due to increased NVM traffic. We hypothesize that in­

creased cache misses experienced by NVMCap applica­

tions, caused by co-running NVMPersist application, can 

be avoided by partitioning the shared cache across these ap­

plications. Hardware and software cache partitioning strate­

gies for multiprocessor systems have been extensively stud-

ied in the past. Hardware mechanisms [20, 7, 22, 25] in­

clude simple static as well as dynamic partitioning methods, 

the latter monitoring the cache miss suffered by applica­

tions, and then adjusting the number of cache ways between 

NVMCap and NVMPersist applications. Software-based 

partitioning approaches [28] typically use page coloring 

mechanisms, which we describe shortly. Generally, hard­

ware approaches have shown higher benefits [27] compared 

to software partitioning, but software partitioning provides 

the flexibility to easily enable/disable page coloring, and of­

fers scope for various application-specific optimizations. 

We study the effectiveness of cache partitioning using 

the cycle accurate MACSim simulator, by statically parti­

tioning one 1MB LLC cache to use 3/4 of the cache sets 

dedicated to NVMCap application, and 1/4 for the NVM­

Persist applications. The analysis uses 500 million instruc­

tions of the same applications as those used in Figure 5. 

Note that most memory-intensive applications show up to 

12% improvement in performance, gained from cache par­

titioning, while there is no or little impact on other bench­

marks like bzip, and MCF. 

Page Coloring. OS-based cache partitioning between ap­

plications using software page coloring has been studied 

extensively. Implementing page coloring perfectly requires 

substantial changes to the memory management layer of the 

as [12]. Further, even when such changes are present, due 

to increasing cache associativity, operating systems often 

disable the page coloring feature. For end client devices 

with their few way caches (4-8 ways) and given our diagno­

sis of high conflict misses with NVMCap and NVMPersist 

applications, however, we posit the need to revisit page col­

oring. We therefore, prioritize two goals for suitable OS­

based cache partitioning methods: (1) to reduce the com­

plexity of page allocation (i.e., to avoid looking for specific 

pages at the time of page allocation) of existing, low over­

head page coloring mechanisms [12, 27], and (2) to make it 

easy to disable OS-based partitioning when only NVMCap 

applications are currently running (i.e., no co-running per­

sistent applications), or when there is little or no impact of 

persistent on non-persistent applications. 

Page Contiguity Based Partitioning. We propose a novel 

adaptive method for cache partitioning that leverages the 

high probability with which current caches map contigu­

ous physical pages to contiguous cache lines. The key idea 

is to increase the physical contiguity of pages allocated to 

an application. Intuitively, the more contiguous an applica­

tion page, the more contiguous its cache lines, and the less 

likely the cache interference with other applications sharing 

the same cache. This is in contrast to non-contiguous al­

locations in which different applications' random pages are 

mapped to various cache lines, thus increasing the chances 

of cache conflicts. 

Allocating a single page during first touch and page fault 
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can result in high page contiguity misses. We call this pol­

icy JIT (just in time) allocation. For instance, let N be the 

number of applications simultaneously accessing/allocating 

NVM pages. With JIT allocation, the probability of an ap­

plication receiving a physically contiguous page reduces to 

(lIN). Hence, with an increasing number of co-running ap­

plications, cache conflicts increase (see Figure 7). Reduc­

ing the number of physical page (physical frame) contiguity 

miss can substantially reduce cache misses. T he key idea 

to increase the contiguous pages allocated to application is 

that, for page faults (minor faults on first touch), instead of 

allocating one page, a batch of physically contiguous pages 

is reserved per application, and on subsequent page faults, 

specific contiguous pages are added to the page table. We 

refer this approach as contiguity aware allocation (CAA). 

Implementation of CAA. As a first step, to avoid conti­

guity misses, we create two types of lists in the kernel: 1) 

a contiguous list, and 2) a non-contiguous list. Each list 

contains one or more buckets. Each bucket in the contigu­

ous list contains an array of physically contiguous pages. 

For instance, Figure 9 shows a contiguous list with three 

buckets and each bucket contains 4 physically contiguous 

pages. A list here refers to linked list of buckets. Buckets in 

the non-contiguous list (the list at the bottom of the figure), 

contain pages that are ordered but not contiguous. 

For adding contiguous pages to the bucket, when there 

is a page fault, a batch of contiguous physical pages is allo­

cated and added to an application specific bucket in the con­

tiguous bucket list. While only the page corresponding to 

faulting address is added to page table, the other contiguous 

pages are used during subsequent page faults thereby using 

physically contiguous pages as shown in the Figure 8. Our 

design creates a separate bucket for each application, and 

as the pages of the buckets are exhausted, new batch allo­

cations refill the bucket. It is not always possible, that con­

tiguous batch allocations succeed (and depends on memory 

availability). In the event that batch allocations return non­

contiguous pages, such pages are moved to a bucket in the 

non-contiguous list. We avoid creating multiple buckets so 

as to increase the locality of the bucket data structure in the 

cache, but can easily support multiple buckets per applica­

tion thread. 

Our approach divides the applications into cache friendly 

and non cache friendly applications. All applications are al­

located from contiguous buckets initially. We maintain two 

memory watermarks (higher: less critical, lower: highly 

critical). As the free available memory reaches less than 

the 'higher water mark', we start using the non-contiguous 

pages for NVMPersist applications, and when the mem­

ory limit reaches less than the low water mark, we disable 

page contiguity aware allocation. Our approach substan­

tially reduces the page contiguity misses and reduce the 

cache misses due to conflicts as shown in our evaluation. 

Evaluation Baseline. In all evaluations, as a baseline, we 

use the PHT (persistent hash table) as the NVMPersist ap­

plication. The PHT uses the current JIT-based OS page allo­

cation combined with a naive allocator that stores/access all 

its complex allocator metadata in NVM, and uses a word­

based logging as proposed by prior 'NVM as a heap' re­

search [26]. We also report average (across all workloads) 

cache miss reduction after applying each optimization. 

Page Contiguity Miss Analysis. We next evaluate the 

effect of bucket size (the number of contiguous pages) on 

the page contiguity misses. In Figure 10, the X-axis shows 

several client and SPEC benchmarks, and the Y-axis show 

the percentage of reduction in physical page contiguity miss 

compared to JIT allocation. We evaluate our experiments 

for two different bucket sizes - CAA-4, CAA-16, where 4 

and 16 indicates the number of contiguous pages allocated 

in a batch and added to a bucket in the contiguous list when 

handling a page fault. As seen from the results, we are able 

to reduce the physical contiguous page misses for applica­

tions by up to 75% for CAA-4, and 91 % for CAA-16, for 

both client and SPEC workloads, compared to JIT-based 

method. Table 1 shows the actual number of page contiguity 

misses for some of the applications using all the three (JIT, 

CAA-4, CAA-16) methods. Applications like x264, ani­

mate, sjeng, show a higher reduction in miss counts, how­

ever, their expected benefits due to physical contiguity can 

be small since the total contiguity miss for these applica­

tions are substantially low even when using JIT-based al­

location. In comparison, for memory-hungry applications 

like to convert, soplex, astar, the benefits due to page con­

tiguity is higher. We next evaluate whether page contiguity 

miss reductions results in reduced cache misses of NVM­

Cap applications. 
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App .liT CAA-4 CAA- 16 Expec. 

Benefits 

x264 4890 1720 990 Low 

convert 177340 135080 118360 High 

animate 4860 1520 710 Low 

povray 8160 7950 7640 Low 

soplex 989560 828080 801090 High 

aSlar.BigCf 107360 38310 20120 High 

Table 1. Page contiguity miss count 

Reduction in overall cache misses. Figure 11 shows the 

relative reduction (in percent) in cache misses for the same 

set of benchmarks compared to the baseline_ We use two 

different contiguity-aware allocation bucket sizes, CAA-4, 

and CAA-16. We observe that, with CAA-4, the benefits in 

cache miss reduction vary from 1 % to 8%. While improve­

ments are observed in most applications, for some applica­

tions like x264 and soplex, the misses increase compared to 

the baseline. Maximum gains are seen for memory inten­

sive astar, and for the moderately intensive povray. Also, 

when varying the bucket size from CAA-4 to CAA-16, for 

applications with smaller memory footprint, like animate, 

sjeng, cache misses increase. Page contiguity for these ap­

plications does not provide much benefit, as the number of 

pages allocated by these applications is relatively small, the 

impact due to cache sharing is relatively less and the work­

ing set of these applications fits well into cache. When using 

CAA-16 during page fault for these applications, the kernel 

tries to allocate contiguous pages in a batch and then add 

them to the bucket linked list. The traversal across linked 

lists to add new pages or remove free pages adds cache over­

head, but with no benefits due to physical page contiguity. 

Such effects would be higher when the bucket size is further 

increased, outweighing the benefits of page contiguity. For 

applications with larger memory footprint (soplex, Iibquan­

tum, omnetpp), CAA-16 based allocation provides more re­

duction in cache misses compared to CAA-4. These results 

emphasize the fact that physical page contiguity-aware al­

locations reduce the cache sharing impact of NVMCap and 

NVMPersist applications and that using the right granular­

ity of bucket sizes (i.e., CAA-4 vs. CAA-16), based on appli­

cations' memory usage, can lead to higher cache miss re­

duction. The average reduction in cache misses due to CAA 

is around 1 %. We do not run the animate benchmark due to 

its high memory requirements of the Atom platform. For 

further improvements, we next focus on NVM write-aware 

allocators. 

4.2 Addressing Allocator Overheads 

Cache misses and writebacks due to application alloca­

tors can be reduced with an NVM write-aware allocator 

(NVWA). The key idea is to keep the complex hierarchical 

allocator metadata in DRAM, and maintain only an alloca­

tor data structure-independent log in NVM. The log of all 

NVM allocations, deletions, or reallocations by application 

threads is sufficient for restarting and rebuilding the allo­

cator state. The allocator log is always kept strongly con­

sistent with the actual DRAM metadata state by flushing to 

NVM. The log data structure in NVM is written sequen­

tially and writes are aligned with cache boundaries. 

Figure 12 shows a two-level allocator log. For every 

memory allocation by an application, the first log level con­

tains information about allocated chunks, and the second 

level contain information about the physical page to lo­

cate the corresponding chunk. For deletion of a memory 

chunk, there are two possibilities based on available stor­

age space: (1) the log can be parsed sequentially, and the 

corresponding entry is invalidated (by marking a exclude 

bit for garbage collection), or (2) one can just 'append' 

chunk deletion information to the log. For (1), when there 

is insufficient NVM space, to avoid sequential log parsing, 

we maintain an in-memory (DRAM) red-black tree with 

chunk pointers, which makes it possible to locate and up­

date chunk status in O(log n) time. For example, just ap­

pending a log entry for a new chunk and for deleting a new 

chunk (say a million entries hashtable) can consume twice 

the allocated data size. Further, these updates can cause an 

additional cache miss overhead. When NVM space is not 

a constraint, method (2) above can be used. For deletion, 

only a single bit is modified to indicate whether the chunk 

is still useful, and for reallocation, only the length field is 

updated. The benefits of such a log-based approach are: 
• During most metadata updates, no more than two 

cache line flushes are required, unlike with prior re­

search [19] in which a hierarchy of allocator data is 

maintained and flushed to NVM. 

• Updates to NVM logs are mostly sequential, cache 

aligned, and hence, no more than two cache line 

flushes are required. 

• Maintaining simple persistent restart metadata inde­

pendent of allocator metadata provides the flexibility 



of using different allocators. 
• A final benefit is a reduction in the total amount of 

persistent data kept in NVM, because only the log is 
persistent. 

Allocator Overheads. We next analyze the implications 
of the allocator optimizations using microbenchmarks and 
representative client applications. 

Microbenchmark analysis. We run only the persistent hash 
table (PHT) benchmark using the default persistent lemal­
loc allocator referred as a 'naive allocator' that keeps all 

of its complex allocator structures in NVM. This is com­
pared to the cache misses seen with the PHT using the 
NVM write-aware allocator (NVWA). We vary the number 

of PHT operations that include random hash table puts and 
gets. Along the x-axis in Figure 13, we vary the number 
of elements in a hash from 600K to 1.5Million, each with 

key and value of 64 bytes. The Y axis shows the increase 
in cache miss percentage compared to a baseline ideal PHT 
that does not flush the allocator metadata. As can be ob­
served, in all cases, the NVWA approach outperforms the 

naive allocator by around 3%. This is mainly because of the 

reduced number of cache line flushes by NVWA compared 
to the naive allocator, with only 2 flushes per every newly 
allocated memory chunk and a single cache line flush for 
deletion or resize operations. Table 2 compares the total 
number of allocator-specific cache line flushes of both ap­
proaches. Observe that the NVWA allocator reduces flushes 
as high as 8x compared to the naive allocator, thus substan­
tially reducing allocator-specific misses. 

Application benchmarks. Next, we compare the impact of 
the NVWA allocator on all of the application benchmarks 
used in Section 4.1. Figure 14 compares the cache misses 
under different allocator designs. For memory intensive 

client benchmarks like ' animate', we observe close to a 2% 
improvement when using NVWA, whereas 'convert' shows 
less than a 1 % improvement. Surprisingly, the lesser mem­
ory intensive x264 also experience substantial benefits from 

using NVWA. This is because x264 processes target files 
in frame size (192 bytes) granularity. Hence, for a 62MB 
file, the number of allocation-related flushes are substan­
tial for the naive vs. the NVWA allocator. The 'convert' 
application, in comparison, experiences a relatively smaller 
number of allocations. Similar trends are observed in mem­
ory intensive benchmarks, where the benefits are higher for 
memory capacity intensive applications like sop lex (4%) 
and libquantum (2%), but other benchmarks show less than 
a 1 % improvement. 

An interesting difference between our representative 
client applications and the SPEC benchmarks is that with re­
alistic client applications, the total number of allocations is 
larger, and are done throughout the applications' lifetimes, 
whereas the SPEC benchmarks (including memory inten­

sive benchmarks), have fewer allocations, mostly grouped 

Hash Elements(millions) Naive NVWA 
.5 2500036 500032 
I 5000044 1000043 
1.5 7500052 1500054 
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Figure 13. Allocator metadata persistence 
cost analysis. 

in their initiar execution stages. This abnormal behavior 
of the SPEC benchmark means that the impact of inter­

ference on NVMCap applications due to persistent alloca­
tions is relatively smaller. We conclude that gains from Us­
ing an NVWA depends both on the total number of alloca­
tions/deletions made by the applications and on when such 
operations are performed. Figure 15 quantifies the total re­
duction in cache misses from using the NVWA allocator 
compared to the ideal baseline. 

4.3 Hybrid Logging 

The purpose of the hybrid logging method introduced 

in this paper is to reduce NVM writes due to application 
logging, while still providing with failsafe durability guar­
antees. Specifically, hybrid logging (i) reduces the meta­
data writes for the word-based log (every word data logged 

requires three words of metadata), and (ii) reduces the 
data writes of object-based logs in which entire object is 

copied even when only a single word in an object has been 
changed. Hybrid logging provides developers with a flex­
ible object- and word-based logging interface that permits 
them to pass hints to the write aware NVM log manager 
concerning the granularity of changes. In Figure 17, for 
hash table data structure changes, incrementing the entry 

count in the hash table or dereferencing to key/value pairs, 
are word size updates, and the developer can commit these 
by passing the word logging hint. For changes larger than 
the word size, e.g., when modifying the key/value object, 
object-based logging makes it unnecessary to maintain a log 

record for every word of an object. 
Implementation details in Figure 16 show how hybrid 

logging is used with redo logs (undo logging is supported, 
as well). The object and word logs for an application are 
maintained independently. Further, for each log (word and 
object), the log metadata and actual log data are maintained 

in separate locations, by mapping a fixed contiguous size 

of NVM. Further, the log truncation frequency is set to 
LLC size (1MB in our case). Separating the log metadata 
from the log data enable easier traversal of log metadata for 
retrieval or clean up. W hen an application developer de­

cides to commit persistent data to NVM, a virtual address 
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Figure 15. CAA + NVWA performance 

is passed, along with a hint of the log granularity. The log 

record has a transaction ID (TID), the address/offset that 

points to log data, a pointer to the original data address 

(not the log data address). The monotonically increasing 

TID helps with data version conflicts, i.e., conflicts of the 

log records with the same virtual address are solved using 

the TID (higher ID number indicates newer log data). For 

word-based logging, log data and log metadata are similar 

in size. For object-based logging, the log metadata con­

tains additional fields indicating the size of of the objects 

logged. Again, key benefits of this hybrid logging approach 

are that by providing a flexible hybrid interface, (i) the high 

ratio of log metadataldata is reduced, by avoiding logging 

every word change, and (ii) high log data costs are reduced, 

by avoiding logging the entire object even when the data 

change is less than a word. 

Hybrid Logging - Experimental Evaluation. Similar to 

the allocator evaluation, we run the same PHT benchmark 

enabled with two different logg ing methods: 1.) word­

based logging and 2.) the proposed hybrid logging. The X 
axis in Figure 18 shows increasing numbers of hash oper­

ations that would consequently lead to increasing numbers 

of logging operations. The Y axis, shows the percentage 

reduction in relative cache misses using the hybrid logging 

approach. We use the same hash table implementation code 

as in prior work [26] with a similar transaction interface. 

For every hashtable key insert, in the case of hybrid log­

ging, 5 word level transactions are replaced by one object 

transaction, and for a delete operation, 3 word transactions 

are replaced by one object transaction. This reduces the to­

tal NVM writes of 120 bytes (5 log entries with 24 bytes 

each entry) to 28 bytes (three 8 byte record pointers (see 

Figure 16) plus a 4 byte object size field) when adding a 

new key and value to a hash. The outcome is a reduction of 

an average of two cache line flushes to one cache line flush. 

Obj log 
record hdr 

Word data log I Otj l Obj2 I Ob]3111 
<E--i> � 64 B 4K B Obj data log 

Figure 16. Hybrid logging design 
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memcpy(val. page. 4096); 
commiurans(IDI, value); 
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Figure 17. Hybrid logaing interface 
Additional optimizations like fluSh batching can combine 

multiple object record updates (approx. 3 log records) to 

one flush. The data written to log would be the same for 

both word-based or hybrid logging, as it is application de­

pendent. We observe that irrespective of the number of hash 

operations, the relative reduction in cache misses with hy­

brid log is almost constant, as expected. Additional benefits 

of hybrid logging can be expected when batching the log 

metadata flushed. Further, the impact of our optimizations 

on NVMPersist application was less than 0.7%. 

4.4 Discussion 
With the goal of enabling dual use of NVMs in end 

clients, we discussed three optimizations that include page 

contiguity-based cache partitioning implemented at the OS 

level, an NVM write aware allocator for reducing the allo­

cator NVM updates, thereby reducing the cache impact on 

NVMCap applications, and finally, we show the benefits of 

the hybrid logging mechanism. Each mechanism incremen­

tally improves the average reduction in cache misses (up to 

3.6-4%) and up to 12% in some end client applications. 

Figure 19 shows the overall effectiveness of combining 

all three optimizations: page contiguity, write aware alloca­

tor, and finally hybrid logging. In most application bench­

marks our proposed mechanisms provide 1-6% benefits and 

in some benchmarks like x264, the benefits are more than 

12%. While in the case of x264, the benefits primarily are 

from allocator optimizations, in case of other workloads, the 

benefits add up from all the three optimizations discussed. 

In some workloads like 'mef' we noticed less than 1 % im­

provement. In case of 'povray', we found the working set 

of application to be comparatively less, and also most mem­

ory allocations are by these applications are done towards 

the initial stages and our optimizations are not effective. 

Figure 20 shows the total number of misses reduced with 
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To understand the effectiveness of our mechanisms on 

other cache efficient applications, we used the persistent 

B-tree described earlier in section 4 with 1.5M operations 

(same as PHT). Figure 21 shows the performance gains of 

B-tree using all our optimizations. As expected, gains for 

cache efficient B-tree was restricted to less than 3.5%, and 

the average gain was around l.2%. Most benefits (73%) for 

B-tree was due to the allocator optimizations and the rest 

from the page contiguity method with no logging related 

gains. This is because, each B-tree node was aligned to a 

word size (we used 8 byte ints as node values), and hence, 

use of a hybrid approach instead of default word logging 

was not required. W hile our current optimizations show less 

benefits for cache efficient B-tree, our future work would 

explore more such optimizations. 

Simple Execution Time Estimation. Our design op­

timizations and evaluations specifically focus on methods 

to reduce the cache misses of NVMCap and NVMPer­

sist applications. Reducing cache misses reduces the need 

for direct access to NVM, thus avoiding execution time 

overheads due to poor NVM write latencies compared to 

DRAM. Our evaluation shows that for some applications 

our approach leads to up to 12% reduction is cache misses, 

where for others the reductions are more modest. Based on 

prior studies, however, we believe that even 1 % decrease in 

the total cache misses suffered by an application can have 

a substantial performance impact on the end client applica­

tions [l3]. 

Performing an accurate and direct assessment of the im­

pact of our methods on execution time is challenging, how­

ever. Currently, PCM devices are not commercially avail­

able, and emulating varying NVM read/write latencies us­

ing DRAM is not possible or accurate. Further, hardware 

performance counters for end client devices (Atom) do not 

classify cache misses due reads vs. writes. Hence, to pro­

vide a simple back of the envelope estimation, we use 

PIN-based instrumentation similar to several other prior ef­

forts [9, 26, 19] to capture total the NVM read/write and 

estimate the runtime impact of our optimizations. We use 

three models 'Half-Half' - half of the misses reduced by 

our methods is NVM writes, 'Full writes' - all the reduction 
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Figure 22. Runtime estimation 
is for NVM writes, and finally, one-third of misses are re­

duced for NVM writes. Using the write latency projections 

of 1 microsecond from [3] and assuming DRAM read la­

tency for NVM reads, Figure 22 shows a simple projection 

of the execution time reduction. We stress the fact that, our 

current scope of work is limited to reducing NVM writes 

(i.e., cache misses) by software optimization. Also, our es­

timation does not consider features like out of order exe­

cution, parallel issue of read/writes to memory in modern 

processors and should be viewed as a worst case analysis. 

As expected, when the number of cache misses due to NVM 

writes increases (Full writes), our optimizations can provide 

substantial performance gains for memory intensive bench­

marks. Even when the write misses are substantially less 

(one third due to writes), our optimizations can improve the 

application execution time by around 6%-8%. Our future 

work will focus on a more detailed investigation of the exe­

cution time impact of our techniques. 

5 Conclusions 
This paper analyzes the dual-use of NVM, for mem­

ory capacity and for persistent storage, in end client de­

vices. Analyzing NVM writes, we find that effective dual-



use NVM requires new methods that address cache sharing 

between persistent and non-persistent applications, in addi­

tion to optimizations to the memory subsystem's software 

stack, including allocators and logging. Cache sharing so­

lutions use a novel contiguity-based approach to memory 

allocation, which reduces by up to 8% the overall cache 

sharing impact experienced by non-persistent applications 

and caused by persistent co-runners. Further improvements 

are obtained with an efficient write aware persistent allo­

cator, leading to reductions in the overall cache misses of 

up to 12% for client applications and around 4% for SPEC 

benchmark. Finally, an NVM write-aware hybrid logging 

approach substantially reduces the NVM writes. An in­

teresting outcome of this research is that for efficient use 

of NVM, there is an experimentally demonstrated need for 

end-end solutions that include optimizing the ways caches 

are handled, changing the memory allocators used by the 

operating system and by application libraries, and consid­

ering carefully the manner in which persistence guarantees 

are made, e.g., through logging. 

W hile this paper's contribution specifically focuses on 

reducing NVM writes, by avoiding cache misses, an inter­

esting and important future work is to accurately assess the 

performance and power benefits from such reductions in 

NVM access. Also of interest is an analysis of additional 

persistent and non-persistent applications, coupled with a 

careful look at how such applications and the library and 

OS functionalities described in this paper would be imple­

mented in the popular Android OS for end client devices. 
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