
Designing a True Direct-Access File
System with DevFS

Yuangang Wang, Jun Xu, Gopinath Palani

Huawei Technologies

Sudarsun Kannan, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau

University of Wisconsin-Madison

Modern Fast Storage Hardware

• Faster nonvolatile memory technologies such as NVMe, 3D Xpoint

Hard Drives

H/W Lat: 7.1ms 68us 12us

BW: 2.6MB/s 250MB/s 1.3GB/s

S/W cost: 8us 8us 6us

OS cost: 5us 5us 4us

PCIe-Flash 3D Xpoint

• Bottlenecks shift from hardware to software (file system)
2

Why Use OS File System?

• Millions of applications use OS-level file system (FS)

• Object stores have been designed to reduce OS cost [HDFS, CEPH]

- Need faster file systems and not new interface

- Guarantees integrity, concurrency, crash-consistency, and security

• User-level POSIX-based FS fail to satisfy fundamental properties

- Developers unwilling to modify POSIX-interface

3

DevFS

NVMe

Application

Read/Write data

Metadata

Data

Data

Data

Device-level File System (DevFS)

• Move file system into the device hardware

• Use device-level CPU and memory for DevFS

• Apps. bypass OS for control and data plane

• DevFS handles integrity, concurreny, crash-

consistency, and security

• Achieves true direct-access

FS kernel

Check security

Update metadata

4

Update data

Check security

Update metadata

Update data

• Limited memory inside the device

• DevFS lack visibility to OS state (e.g., process permission)

Challenges of Hardware File System

- Reverse-cache inactive file system structures to host memory

- Make OS share required (process) information with “down-call”

5

• Emulate DevFS at the device-driver level

• Benchmarks - more than 2X write and 1.8X read throughput

Performance

• Snappy compression application - up to 22% higher throughput

• Memory-optimized design reduces file system memory by 5X

• Compare DevFS with state-of-the-art NOVA file system

6

Introduction

Background

Motivation

DevFS Design

Evaluation

Conclusion

Outline

FS kernel

Check security

Update metadata
Update data

NVMe

Application

Read/Write data

Maintain security, manage integrity, crash-
consistency, and concurrency

Metadata

Data

Data

Data

Traditional S/W Storage Stack

8

FS kernel

Check security

Update metadata
Update data

NVMe

Application

Read/Write data

Metadata

Data

Data

Data

Traditional S/W Storage Stack

User-to-kernel switch for every data plane
operation

High software-indirection latency before
storage access

9

SSD

FS library

Application

Read/Write data

FS kernel

Challenge 1: How to bypass OS and provide
direct-storage access?

Holy grail of Storage Research

Challenge 2: How to provide direct-access
without compromising integrity, concurrency,
crash-consistency, and security?

Metadata
Data

10

• Prior approaches have attempted to provide user-level direct
access

Classes of Direct-Access File Systems

• We categorize them into four classes:

- Hybrid user-level

- Hybrid user-level with trusted server (Microkernel approach)

- Hybrid device

• Full device-level file system (proposed)

11

Hybrid User-level File System

NVMe

FS kernel

Application
FS lib

Read/Write
Data

Sharing,
protection

• Split file system into user library and kernel file components

• Library handles data plane (e.g., read, write) and manages metadata

• Kernel FS handles control plane (e.g., file creation)

Well known hybrid approaches
- Arrakis (OSDI ’14)
- Strata (SOSP ’17)

Create file

12

Hybrid Device File System

• File system split across user-level library, kernel, and hardware

• Control and data-plane operations same as hybrid user-level FS

• However, some functionalities moved inside the hardware

Well known hybrid approaches
- Moneta-D (ASPLOS ‘12)

Application

Read/Write
Data

NVMe

FS kernel

FS lib

Sharing,
protection

Manage
metadata

FS H/W
Perm.
CheckTx

- TxDev (OSDI ‘08)
Create file

13

Introduction

Background

Motivation

DevFS Design

Evaluation

Conclusion

Outline

File System Properties

• Integrity

• Crash-consistency

• Security

- Correctness of FS metadata for single & concurrent access

- FS metadata consistent after a failure

- No permission violation for both control and data-plane
- OS-level file system checks permission for control and data plane

15

NVMe

FS kernel

Application
FS lib

Coordinate sharing,
protection

Manage metadata Direct-access for the data-plane

Hybrid User-level FS Integrity Problem

Create file
Metadata

Data

Arrakis (OSDI ’14), Strata (SOSP ’17)

16

Hybrid User-level FS Integrity Problem

NVMe

FS kernel

Application
FS lib

Coordinate sharing,
protection

Manage metadata
Untrusted (buggy or malicious)

Metadata
Data

Metadata
Data

Can compromise metadata integrity
and impact crash consistency

Data plane security compromised

Create file

17

1
Free block bitmap

Set bitmap
Append

Update inode

Data block

Set bitmap
Append

Update inode

inode {
size = 0
m_time = 2

}

inode {
size = 4K
m_time = 1

}

1

Append(F1, buff, 4k) Append(F1, buff, 4k)App. 1
FS lib

App. 2
FS lib

Concurrent Access?

Arrakis and Strata trap into OS for data-plane and control plane – No direct access

Skip locking

18

18

Approaches Summary

Class File
System

In
te

gr
it

y

C
ra

sh
C

on
si

st
en

cy

Se
cu

ri
ty

C
on

cu
rr

en
cy

P
O

SI
X

su

pp
or

t

D
ir

ec
t-

ac
ce

ss

Kernel-level FS NOVA

Hybrid user-level
FS

Arrakis

Strata

Microkernel Aerie

Hybrid-device FS Moneta-D

TxDev

FUSE Ext4-FUSE

Device FS DevFS

19

Introduction

Background

Motivation

DevFS Design

Evaluation

Conclusion

Outline

DevFS

NVMe

Application

Read/Write data

Metadata

Data

Data

Data

Device-level File System (DevFS)

• Move file system into the device hardware

• Use device-level CPU and memory for DevFS

• Apps. bypass OS for control and data plane

• DevFS handles integrity, concurreny, crash-

consistency, and security

• Achieves true direct-access

FS kernel

Check security

Update metadata

21

Update data

Check security

Update metadata

Update data

DevFS

DevFS Internals

Controller
CPU

Global structures

On-disk file metadata

In-memory metadata

Super
Block

Bitmaps Inodes Dentries

Super
Block

Bitmaps Inodes Dentries

Per-file structures

22

DevFS Internals

Per-file structures

Controller
CPU

Submission
queue (SQ)

Completion
queue (SQ)

Journal Data

Per-file blocks

Per-file Journal

In-memory filemap tree
/root

/root/dir/root/proc

filemap {
*dentry
*inode;
*queues

*mem_journal
*disk_journal

}

Global structures

On-disk file metadata

In-memory metadata

Super
Block

Bitmaps Inodes Dentries

Super
Block

Bitmaps Inodes Dentries

• Modern storage device contain multiple CPUs

• Support up to 64K I/O queues

• To exploit concurrency, each file has own I/O queue and journal

DevFS

23

23

DevFS Internals

Per-file structures

Vaddr = CreateBuffer()

Controller
CPU

Submission
queue (SQ)

Completion
queue (SQ)

Journal Data

Per-file blocks

Per-file Journal

Application
User FS lib

In-memory filemap tree
/root

/root/dir/root/proc

filemap {
*dentry
*inode;
*queues

*mem_journal
*disk_journal

}

Global structures

On-disk file metadata

In-memory metadata

Super
Block

Bitmaps Inodes Dentries

Super
Block

Bitmaps Inodes Dentries

OS allocated
command buffer

DevFS

24

24

Per-file structures

Application
User FS lib

On-disk file metadata

In-memory metadata

In-memory filemap tree
/root

/root/dir/root/proc

filemap {
*dentry
*inode;
*queues

*mem_journal
*disk_journal

}

Submission
queue (SQ)

Completion
queue (SQ)

Global structures

Controller
CPU

DevFS I/O Operation

Cmd

Cmd

Super
Block

Bitmaps Inodes Dentries

Super
Block

Bitmaps Inodes Dentries

Journal
Journal

Journal Data

Per-file blocks

Open(f1)

Per-file Journal

OS allocated
command buffer

DevFS

25

25

Per-file structures

Application
User FS lib

On-disk file metadata

In-memory metadata

In-memory filemap tree
/root

/root/dir/root/proc

filemap {
*dentry
*inode;
*queues

*mem_journal
*disk_journal

}

Submission
queue (SQ)

Completion
queue (SQ)

Global structures

Controller
CPU

DevFS I/O Operation

Cmd

Cmd

Super
Block

Bitmaps Inodes Dentries

Super
Block

Bitmaps Inodes Dentries

Journal
Journal
Journal

Journal Data

Per-file blocks

Open(f1)

Per-file Journal

OS allocated
command buffer

DevFS

26

26

Per-file structures

Application
User FS lib

On-disk file metadata

In-memory metadata

In-memory filemap tree
/root

/root/dir/root/proc

filemap {
*dentry
*inode;
*queues

*mem_journal
*disk_journal

}

Submission
queue (SQ)

Completion
queue (SQ)

Global structures

Controller
CPU

DevFS I/O Operation

Cmd

Cmd

Super
Block

Bitmaps Inodes Dentries

Super
Block

Bitmaps Inodes Dentries

Journal
Journal
Journal

Journal Data

Per-file blocks

Write(fd, buff, 4k, off=3)

Per-file Journal

OS allocated
command buffer

DevFS

27

27

• Capacitors safely flush memory state to storage after power failure

• Capacitance support improves performance

Capacitance Benefits Inside H/W

• DevFS uses device memory for file system state

- Can avoid writing in-memory state to disk journal

- Overcomes the “double writes” problem

• Writing journals to storage has high overheads

• Modern storage devices have device-level capacitors

28

• Limited memory inside the storage device

• DevFS lack visibility to OS state (e.g., process permission)

Challenges of Hardware File System

- Reverse-cache inactive file system structures to host memory

- Make OS share required information with “down-call”

- Please see the paper for more details

29

today’s focus

Device Memory Limitation

• RAM used mainly by file translation layer (FTL)

• Device RAM size constrained by cost ($) and power consumption

- RAM size proportional to FTL’s logical-to-physical block mapping

- Example: 512 GB SSD uses 2 GB RAM to support translations

Unlike kernel FS, device FS footprint must be kept small

30

Memory Consuming File Structures
• Our analysis shows four in-memory structures using 90% of memory

- Inode (840 bytes) - created for file open, not freed until deletion

- Dentry (192 bytes) - created for file open, kept in a cache

- File pointer (256 bytes) - released when file is closed

- Others (156 bytes) - e.g., DevFS file map structure

- DevFS memory consumption ~1.2 GB (60% of device memory)
• Simple workload - open and close 1 million files

31

Reducing Memory Usage

• Reverse Caching

• On-demand allocation of structures

- Structures such as filemap not used after file is closed

- Allocated after first write and released when a file is closed

- Move inactive structures to host memory

32

0. Reserved during mount

3. open(file)

Device memory
Inode list

Dentry list
File Ptr list

DevFS

Reverse-Caching to Reduce Memory

Host memory
Inode Cache

Dentry Cache

Host

Application

4. Check host for dentry and inode

5. Move to device and delete cache

1. close(file)

2. Move to host cache

• Move inactive inode and dentry structures to host memory

33

33

Decompose FS Structures
• Reverse caching for a complicated for inode

• Inode’s fields accessed even file closing (e.g., directory traversal)

• Frequently moving between host cache and device can be expensive!

• Our solution – split file system structures (e.g., inode) into a host and
device structure

34

Devfs inode structure

struct devfs_inode_info {

inode_list

page_tree

journals

…….

struct inode vfs_inode

}

Decompose FS Structures

Decomposed DevFS structure

struct devfs_inode_info {
/*always kept in device*/
struct *inode_device

/*moved to host after close*/
struct *inode_host

}

840 bytes

593 bytes

35

Introduction

Background

Motivation

DevFS Design

Evaluation

Conclusion

Outline

Evaluation

- Filebench

- Snappy – widely used multi-threaded file compression

• Benchmarks and Applications

• Evaluation comparison

- NOVA – state-of-the-art in-kernel NVM file system
- DevFS-naïve – DevFS without direct access
- DevFS-cap – without direct access but with capacitor support

- DevFS-cap-direct – capacitor support + direct access

• For direct-access, benchmark and applications run as driver

37

Filebench - Random Write

0

4

8

12

16

1KB 4KB 16KB

10
0K

 O
ps

/S
ec

on
d NOVA DevFS-naïve

DevFS-cap DevFS-cap-direct

• DevFS-naïve suffers from high journaling overhead

• DevFS-cap uses capacitors to avoid on-disk journaling

27%

• DevFS-cap-direct achieves true direct-access bypassing OS

2.4X

38

0

0.2

0.4

0.6

0.8

1

1.2

1KB 4KB 16KB 64KB 256KB

10
0K

 O
ps

/S
ec

on
d

NOVA DevFS-naïve
DevFS-cap DevFS-cap-direct

Snappy Compression Performance

File Size

Read a file Compress Write output Sync file

• Gains even for compute +
I/O intensive application

22%

39

Memory Reduction Benefits

0

400

800

1200

1600

Cap Demand Dentry Inode + Dentry

M
em

or
y

U
sa

ge
 (

M
B)

filemap dentry inode

• Demand allocation reduces memory consumption by 156MB (14%)

• Inode and Dentry reverse caching reduces memory by 5X

No memory
reduction

On-demand FS
structures

Reverse caching
Dentry

Reverse caching
Dentry + Inode

• Filebench – File Create workload (Create 1M files and close files)

40

0

0.4

0.8

1.2

1.6

2

Cap Demand Dentry Inode +
Dentry

Inode +
Dentry +

Direct

10
0

K
 O

ps
/s

ec
Memory Reduction Performance Impact

• Dentry and Inode reverse caching overhead less than 14%

• Overhead mainly due to structure movement cost

14%

41

Summary

• Motivation
- Eliminating OS overhead and providing direct access is critical
- Hybrid user-level file systems compromise fundamental properties

• Solution
- We design DevFS that moves FS into the storage H/W
- Provides direct-access without compromising FS properties
- To reduce memory footprint of DevFS designs reverse-caching

• Evaluation
- Emulated DevFS shows up to 2X I/O performance gains
- Reduces memory usage by 5X with 14% performance impact

42

Conclusion

• We are moving towards a storage era with microsecond latency

• Eliminating software (OS) overhead is critical

- But without compromising fundamental storage properties

• Near-hardware access latency requires embedding S/W into H/W

• We take first step towards moving file system in H/W

• Several challenges such as H/W integration, support for RAID,

snapshots, and deduplication yet to be addressed

43

Permission Checking

44

APP

User-FS

OS

Host CPU Credentials

0 Task1.cred

1 Task1.cred
… …
24 Task2.cred

Set credential in DevFS

DevFS credential
region

Permission manager

Write(UID, buff, 4k,off=1)

payload=buff
ops = READ

UID= 1
off = 1

size = 4K

t_cred = get_task_cred(CPUID)
inode_cred= get_inode_cred(fd)
compare_cred(t_cred, inode_cred)

1

Process scheduled to CPU

User space

2

3

4

Concurrent Access

0

0.5

1

1.5

2

1 4 8 12 16

10
0K

 O
ps

/S
ec

on
d

#. Of Instances

NOVA DevFS [+cap] DevFS [+cap +direct]

• Limited device CPUs restricts DevFS scaling

Limited CPUs inside device

• DevFS uses only 4 device CPU
45

Slow CPU Impact – Snappy 4KB

46

0

0.2

0.4

0.6

0.8

1

1.2

1.2 1.4 1.8 2.2 2.6

10
0K

 O
ps

/se
c

CPU Frequency (GHz)

DevFS [+cap] DevFS [+cap +direct]

Questions?

Thanks!

47

