Designing a True Direct-Access File
System with DevFS

Sudarsun Kannan, Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau

University of Wisconsin-Madison

Yuangang Wang, Jun Xu, Gopinath Palani

Huawei Technologies

S

HUAWEI

Modern Fast Storage Hardware

* Faster nonvolatile memory technologies such as NVMe, 3D Xpoint

Hard Drives PCle-Flash 3D Xpoint
BWV: 2.6MB/s 250MB/s 1.3GB/s
H/W Lat: 7.lms 68us | 2us
S/W cost: 8us 8us bus
OS cost: Sus Sus 4us

* Bottlenecks shift from hardware to software (file system)

Why Use OS File System?

* Millions of applications use OS-level file system (FS)
- Guarantees integrity, concurrency, crash-consistency, and security

* Object stores have been designed to reduce OS cost [HDFS, CEPH]

- Developers unwilling to modify POSIX-interface

- Need faster file systems and not new interface

* User-level POSIX-based FS fail to satisfy fundamental properties

Device-level File System (DevFS)

Move file system into the device hardware
Use device-level CPU and memory for DevFS
Apps. bypass OS for control and data plane
DevFS handles integrity, concurreny, crash-
consistency, and security

Achieves true direct-access

Application

Check security
Update data

—

FS kernel Update metadata

H

Check security

Update data

Update metadata

DevFS

Metadata

NVMe

Challenges of Hardware File System

* Limited memory inside the device

- Reverse-cache inactive file system structures to host memory

* DevFS lack visibility to OS state (e.g., process permission)

- Make OS share required (process) information with “down-call”

Performance

* Emulate DevFS at the device-driver level
* Compare DevFS with state-of-the-art NOVA file system

* Benchmarks - more than 2X write and |.8X read throughput
* Snappy compression application - up to 22% higher throughput

* Memory-optimized design reduces file system memory by 5X

Outline

Introduction
Background
Motivation
DevFS Design
Evaluation

Conclusion

Traditional S/W Storage Stack

Application

Read/WVrite data

v
Check security ... Maintain security, manage integrity, crash-
Update data <= CONsistency, and concurrency

FS kernel Update metadata

Metadata

v

NVMe

Traditional S/W Storage Stack

Application

Read/WVrite data

v

Update data
FS kernel Update metadata

Metadata

v

NVMe

*
*
*
*
.
’t
.

%

High software-indirection latency before
storage access

Holy grail of Storage Research

Application

"
gy
~
....
¥
»
"
g
.

FS library <«

Challenge |: How to bypass OS and provide
direct-storage access!

Metadata ERead/Write data

Data B Challenge 2: How to provide direct-access
without compromising integrity, concurrency,
crash-consistency, and security!?

FS kernel

SSD

10

Classes of Direct-Access File Systems

* Prior approaches have attempted to provide user-level direct
access

* We categorize them into four classes:

- Hybrid user-level

- Hybrid user-level with trusted server (Microkernel approach)

- Hybrid device

* Full device-level file system (proposed)

11

Hybrid User-level File System

* Split file system into user library and kernel file components

* Kernel FS handles control plane (e.g., file creation)

* Library handles data plane (e.g., read, write) and manages metadata

Application
FS lib .
- Well known hybrid approaches
Createfile | : Read/Write - Arrakis (OSDI ’14)

Data - Strata (SOSP ’17)

.
s®
.
.
-

Sharing, 7 'FS§ kernel
protection =

NVMe

12

Hybrid Device File System

* File system split across user-level library, kernel, and hardware

* Control and data-plane operations same as hybrid user-level FS

e However, some functionalities moved inside the hardware

Manage

. FS kernel

Application

Create file |

Data

*
L
....

FS H/W

Read/WVrite

Well known hybrid approaches

- Moneta-D (ASPLOS ‘[2)
- TxDev (OSDI ‘08)

13

Outline

Introduction
Background
Motivation
DevFS Design
Evaluation

Conclusion

File System Properties

* Integrity

- Correctness of FS metadata for single & concurrent access

* Crash-consistency
- FS metadata consistent after a failure

* Security

- No permission violation for both control and data-plane
- OS-level file system checks permission for control and data plane

15

Hybrid User-level FS Integrity Problem

Application
Manage metadata. — @ Direct-access for the data-plane
: : Arrakis (OSDI ’14), Strata (SOSP’17)

Create file
i Metadata

FS kernel '
J 4

Coordinate sharing, NVMe
protection

16

Hybrid User-level FS Integrity Problem

Manage metadata

Application

L
I“‘
.
.
»

Create file

v

FS kernel

4

Coordinate é'haring,
protection

FS |ib: ' Untrusted (buggy or malicious)

Can compromise metadata integrity
and impact crash consistency

M ata

Data plane security compromised

NVMe

17

Concurrent Access?

App. | Append(F1, buff, 4k) App.2 Append(Fl, buff, 4k)

FSE FS lib .

Skip locking -

Set bitmap Set bitmap
Append Append
Update inode Update inode

.}
X X X

Free block bitmap Data block inode {
1 1 size = 4K
1 S ime s |
;

Arrakis and Strata trap into OS for data-plane and control plane — No direct access

18

Approaches Summary

R
Class File Eo < G E 0 2 = 5 O
System o 38 g S 2
|Kernel-level FS - NOVA Vv v/, % |
Hybrid user-level Arrakis 4 “ ® ? « ®
FS Strata J % J ¢
Microkernel Aerie V « “ %
Hybrid-device FS Moneta-D $§¢ J J J J > 4
TxDev & v v Vv v %
'FUSE Ext4-FUSE « « J J J 2
T S

|T3evice FS

19

Outline

Introduction
Background
Motivation
DevFS Design
Evaluation

Conclusion

Device-level File System (DevFS)

Move file system into the device hardware
Use device-level CPU and memory for DevFS
Apps. bypass OS for control and data plane
DevFS handles integrity, concurreny, crash-
consistency, and security

Achieves true direct-access

Application

Check security
Update data

—

FS kernel Update metadata

H

Check security

Update data

Update metadata

DevFS

Metadata

NVMe

21

DevFS Internals

Global structures

In-memory metadata

Super Bitmaps Inodes Dentries
Block

On-disk file metadata

Super Bitmaps Inodes Dentries
Block

CPU

Per-file structures

22

DevFS Internals

* Modern storage device contain multiple CPUs

* Support up to 64K |/O queues

* To exploit concurrency, each file has own I/O queue and journal

Global structures

In-memory metadata

Super Bitmaps Inodes Dentries

Block

On-disk file metadata

Super Bitmaps Inodes Dentries

Block

In-memory filemap tree

/root

/root/proc ; Q\ [root/dir

X
\

filemap { /’

\ *dentry *
\ o
N inode;
Y
queues
*mem_journal

*disk_journal

}

CPU

Ny Ala
VAV VAV

Submission Comepletion
queue (SQ) queue (SQ)

Per-file structures

Per-file Journal

Per-file blocks

Journal Data

23

DevFS Internals

Global structures

In-memory metadata

Super Bitmaps Inodes Dentries
Block

On-disk file metadata

Super Bitmaps Inodes Dentries
Block

OS allocated
command buffer

Application
User FS |ip Yaddr = CreateBuffer()

CPU

In-memory filemap tree Per-file structures

/root QD QD
/root/proc \ [root/dir
Submission Completion Per-file Journal
" filemap { ,/ queue (SQ) queue (SQ)
\ *dentry * :
S *inindg Per-file blocks
" *queues
*mem_journal

*disk_journal Journal Data

J 24

DevFS 1/O Operation

Open(fl)

OS allocated

command buffer

Global structures

In-memory metadata

Super Bitmaps Inodes Dentries

Block

On-disk file metadata

Super Bitmaps Inodes Dentries

Block

/root/proc

BN i /
. filemap {
*dentry *
*inode;
*queues

*mem_journal

*disk_journal

\
\
\
\

}

Application
User FS lib

Cmd

Cmd

/root

Q\ /root/dir

/

O

3

4

CPU

In-memory filemap tree

SNy AlA
VAV VAV

Submission
queue (SQ)

Completion

queue (SQ)

Per-file structures

Per-file Journal

Per-file blocks

Journal Data

25

DevFS 1/O Operation

Open(fl)

Global structures

In-memory metadata

Super Bitmaps Inodes Dentries

Block

On-disk file metadata

Super Bitmaps Inodes Dentries

Block

OS allocated
command buffer

/root/proc

X
\

Application
User FS lib

In-memory filemap tree

/root

Q\ /root/dir

filemap { 2

/
N *dentry *
\ *inode;
Y
queues
*mem_journal

*disk_journal

}

Cmd

Cmd

Controller
cbU

O

I3

4

Per-file structures

N “
A

N
VAV VAV |

Submission Completion
queue (SQ) queue (SQ)

Per-file Journal

Per-file blocks

Journal Data
26

DevFS 1/O Operation

Write(fd, buff, 4k, off=3)

Global structures

In-memori metadata

Super Inodes Dentries

Block

Bitmaps

On-disk file metadata

BN AN

Bitmaps

Super Inodes Dentries

Block

OS allocated
command buffer

Application
User FS lib

In-memory filemap tree

/root

Q\ /root/dir

oi'e

/
/

/root/proc

~_ filemap { ,’

N *dentry *
v *inode;
Yk
queues
*mem_journal

*disk_journal

}

Cmd

Cmd

4

Controller
cbU

\\\
N,
N,
\‘A

N W
s AV,

Submission Completion
queue (SQ) queue (SQ)

-:- 27

Per-file structures

Per-file Journal

Per-file blocks

Journal Data

27

Capacitance Benefits Inside H/'W

Writing journals to storage has high overheads
Modern storage devices have device-level capacitors

Capacitors safely flush memory state to storage after power failure

DevFS uses device memory for file system state
- Can avoid writing in-memory state to disk journal

- Overcomes the “double writes” problem

Capacitance support improves performance

28

Challenges of Hardware File System

* Limited memory inside the storage device today’s focus

- Reverse-cache inactive file system structures to host memory

* DevFS lack visibility to OS state (e.g., process permission)

29

Device Memory Limitation

* Device RAM size constrained by cost ($) and power consumption

RAM used mainly by file translation layer (FTL)

- RAM size proportional to FTL’s logical-to-physical block mapping
- Example: 512 GB SSD uses 2 GB RAM to support translations

Unlike kernel FS, device FS footprint must be kept small

30

Memory Consuming File Structures

* Our analysis shows four in-memory structures using 90% of memory

Inode (840 bytes) - created for file open, not freed until deletion
Dentry (192 bytes) - created for file open, kept in a cache
File pointer (256 bytes) - released when file is closed

Others (156 bytes) - e.g., DevFS file map structure

* Simple workload - open and close | million files

DevFS memory consumption ~1.2 GB (60% of device memory)

31

Reducing Memory Usage

* On-demand allocation of structures
- Structures such as filemap not used after file is closed

- Allocated after first write and released when a file is closed

* Reverse Caching

- Move inactive structures to host memory

32

Reverse-Caching to Reduce Memory

* Move inactive inode and dentry structures to host memory
Application

3. open(file) |. close(file)

0. Reserved during mount

4. Check host for dentry and inode

Device memory Host memory

HSSCUEERN)} 5. Move to device and delete cache § BINGESICACHE
Dentry list Dentry Cache
File Perlise 1 2 Move to host cache

Decompose FS Structures

Reverse caching for a complicated for inode

Inode’s fields accessed even file closing (e.g., directory traversal)
Frequently moving between host cache and device can be expensive!

Our solution — split file system structures (e.g., inode) into a host and
device structure

34

Decompose FS Structures

Devfs inode structure Decomposed DevFS structure
struct devfs_inode_info { struct devfs_inode_info {
inode_ list [*always kept in device™/
page tree > struct *inode_device
journals [*moved to host after close™/
....... struct *inode_host 593 bytes
struct inode vfs_inode }

} 840 bytes

35

Outline

Introduction
Background
Motivation
DevFS Design
Evaluation

Conclusion

Evaluation

* Benchmarks and Applications

Filebench

Snappy — widely used multi-threaded file compression

* Evaluation comparison

NOVA — state-of-the-art in-kernel NVM file system
DevFS-naive — DevFS without direct access

DevFS-cap — without direct access but with capacitor support

DevFS-cap-direct — capacitor support + direct access

* For direct-access, benchmark and applications run as driver

37

Filebench - Random Write

|6 - NOVA DevFS-naive
1y B DevFS-cap B DevFS-cap-direct

24X
-

| KB 4KB | 6KB

* DevFS-naive suffers from high journaling overhead

| 00K Ops/Second
0o

* DevFS-cap uses capacitors to avoid on-disk journaling

* DevFS-cap-direct achieves true direct-access bypassing OS

Snappy Compression Performance

Read a file == Compress =—> Write output = Sync file

NOVA DevFS-naive
1.2 - olo B DevFS-cap B DevFS-cap-direct
| - "y
O .
S * Gains even for compute +
@ 08 - /O intensive application
506 -
S 04 -
=
0.2 -
O | B

| KB 4KB | 6KB 64KB 256KB
File Size

39

Memory Reduction Benefits

* Filebench — File Create workload (Create | M files and close files)

o 1600 - . .

> N filemap dentry Hinode

o 1200 - ,

8 ML

5 800 -

-

CE) 400 -

()

s 0]

Cap Demand Dentry Inode + Dentry

No memory On-demand FS Reverse caching Reverse caching
reduction structures Dentry Dentry + Inode

* Demand allocation reduces memory consumption by |56MB (14%)

* |Inode and Dentry reverse caching reduces memory by 5X

40

Memory Reduction Performance Impact

2
g 'O i 4%
cg_ |.2 .
v 0.8
S 04
0
Cap Demand Dentry Inode + Inode +
Dentry Dentry +
Direct

* Dentry and Inode reverse caching overhead less than 4%

* Overhead mainly due to structure movement cost

41

Summary

Motivation
- Eliminating OS overhead and providing direct access is critical

- Hybrid user-level file systems compromise fundamental properties

Solution
- We design DevFS that moves FS into the storage H/W

- Provides direct-access without compromising FS properties
- To reduce memory footprint of DevFS designs reverse-caching

Evaluation
- Emulated DevFS shows up to 2X |/O performance gains

- Reduces memory usage by 5X with 14% performance impact

42

Conclusion

We are moving towards a storage era with microsecond latency

Eliminating software (OS) overhead is critical

- But without compromising fundamental storage properties

Near-hardware access latency requires embedding S/W into H/W
We take first step towards moving file system in H/W

Several challenges such as H/WV integration, support for RAID,

snapshots, and deduplication yet to be addressed

43

Permission Checking

User space

Process scheduled to CPU

1

@os

Set credential in DevFS /

oayload=buff \@
User-FS ops = READ

Write(UID, buff, 4k,off=1)
APP

-

UID=1
off =1
N size §= 4K y

v

DevFS credential
region

Host CPU |Credentials

Permission manager @

0 Taskl.creo

t cred = get task cred(CPUID)

1 Taskl.cred

inode_cred= get_inode_cred(fd)

compare _cred(t_cred, inode cred)

24 Task2.cred

Concurrent Access

2 XNOVA ADevFS [+cap] ©DevFS [+cap +direct]
-
= |.5
@)
& | X X
O .
¥ 0.5 M
8 Limited CPUs inside device

I 4 8 | 2 | 6
#. Of Instances

* DevFS uses only 4 device CPU
* Limited device CPUs restricts DevFS scaling

Slow CPU Impact — Snappy 4KB

1.2 -
| m DevES [+cap] mDevES [+cap +direct]

0.8 -

0.6 -

04 -

0.2 -

0 -
1.2 1.4 1.8 2.2

CPU Frequency (GHz)

100K Ops/sec

Thanks!

Questions?

