
Thread Architecture
immediate

Different types of resources. Legend shown in a 
stage box means that stage consumes the 
corresponding resource.

Scheduling point, where requests are queued. 

Stage with either fixed number of threads, or has a 
limit on the maxim number of threads running.name

Stage without limits on number of threads. A new 
thread is spawned whenever needed. 

Data Streamer
Data Streamer

name

Asynchronous relationship between stages: 
upstream stage returns as soon as it hands off 
request to the downstream stage.
Synchronous relationship between stages: 
upstream stage blocks until the downstream stage 
completes the request.

Bypass path, where request bypass the regular 
processing path and scheduling point. 

Machine boundary. Communication between 
different machines consumes network resources.

Table 1: Legend Summary. Legends used in thread archi-
tecture graphs.

1 Thread Architecture of Popular

Systems
In this section we show the thread architecture of some

popular systems, and point out the scheduling problem

derived from their architecture. Table 1 summarizes the

legends used in the architecture graphs. Note that we

view each queue as a (potential) scheduling point. Even

though scheduling may not be explicitly implemented,

taking requests from a queue itself is a form of schedul-

ing. We omit the stages that are not resource intensive,

or not active in normal execution path, due to limited

space. We also omit background activities, e.g., com-

paction, which could be resource-intensive, but can be

managed by different mechansims, such as throttling or

utilizing system idle time.

1.1 Cassandra
The thread architecture of Cassandra is shown in Fig-

ure 1. In Cassandra, all nodes play an identical role in

a ”ring” architecture, and data are replicated in multiple

nodes in the ring. When clients send queries to one of

the Cassandra nodes, the following sequence of actions

occurs(the number labels in Figure 1 correspond to the

numbers in the list below):

1. In the Request Handling stage, threads asyn-

chronously read client’s requests, decode them,

and process them until completion. After pars-

ing the message to request, a thread first looks up

where the relevant data are stored. For local data

, read/mutation requests are directly submitted to

the corresponding stages locally. For remote data,

the coordination thread passes messages that con-

tain requests to the MessageOutgoingService stage.

It then blocks until the request completes (i.e., step

6 finishes).

2. The MessageOutgoingService stage, which spawns

three threads for each TCP connection (for small,

large and gossip message respectively), picks up

the messages and sends them through the network.

On the receiving end, the MessageIncomingService

stage reads the data off the network and de-serialize

them. MessageIncomingService spawns one thread

for each connection.

3. Once finished, MessageIncomingService puts the

parsed message into the queue of different process-

ing stages (Read, Mutation, etc.), based on the mes-

sage type. These processing stages execute the

tasks, which might include looking up the cache,

performing I/O, and compressing/de-compressing

the data.

4. After the requested actions on data are completed,

a response is generated and passed to the Message-

OutgoingService stage.

5. The MessageOutgoingService in the remote node

now sends to the response back to the coordina-

tion node, which is received by the MessageIncom-

ingService stage.

6. MessageIncomingService passes the response to the

Request Response stage, who is responsible for ex-

ecuting any callbacks associated with the request

completion.

7. Once the request is completed, the coordination

thread passes the response to the Response Stage,

who is responsible for serialize the response and

sent it back to the client.

1



Cassandra NodeCassandra Node

2

2

Mutation 

Stage

Data Streamer
Data StreamerMessageOutgoing

Service

Read Stage
Request 

Response Stage

cpu

network

I/O

1
6

Request 

Thread
MessageIncoming

Service

Mutation 

Stage

Data Streamer
Data StreamerMessageOutgoing

Service

3 3

4 4

MessageIncoming

Service

Read Stage

1

7

Response 

Stage

Figure 1: Cassandra Thread Architecture.

2



References
[1] Cassandra Issues: Move away from SEDA to TPC. https://

issues.apache.org/jira/browse/CASSANDRA-10989, Jan-
uary 2016.

3

https://issues.apache.org/jira/browse/CASSANDRA-10989
https://issues.apache.org/jira/browse/CASSANDRA-10989

